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Abstract—Known covert channel based on splitting algorithms 
in Medium Access Control (MAC) protocols requires the 
receiver’s knowledge of the sender’s identity. In this paper we 
present a new covert channel that does not have this restriction. In 
such a channel, multiple senders may operate independently 
without knowing each other, and the receiver can learn the 
transmitted information without knowing the identity of any 
covert sender a priori. These properties make the channel robust 
to malfunctioning senders, and more importantly help protect the 
secrecy of senders’ identity which is essential for covert 
communications. We also analyze the capacity of our proposed 
covert channel. 

Keywords—security; covert channels; Medium Access Control. 

I. INTRODUCTION 
Covert channels, first introduced in [1], often refer to 

communication channels that are neither designed nor intended 
to transfer information. Covert channels usually exploit 
“legitimate” use of shared resources and operations of a system 
to leak sensitive information to someone who is not authorized 
to access it. For example, in a computer system with multiple 
security levels, a sending program (the sender) with a high 
security level can embed information into its usage of the 
system’s CPU time and leak it out to a listening program (the 
receiver) with a low security level, bypassing all mandatory 
access control mechanisms. The sender can simply use as much 
CPU time as possible to send a bit ‘1’ and use minimum CPU 
time to send a bit ‘0’. Other running programs in the system will 
experience longer delay if the sender sends a bit ‘1’. The 
receiver can therefore decode this information bit by measuring 
the delay it experiences. 

Unlike traditional communication channels, a covert channel 
does not need to have a high capacity or transmission rate to be 
useful. In contrast, the stealthiness and resilience are much 
more important issues for covert channels. It should be hard for 
an auditor to discover if there is covert communications going 
on. More importantly, it is essential to ensure the secrecy of the 
sender’s as well as the receiver’s identity in all circumstances. 

In past work, two types of covert communications were 
studied. One category exploits techniques that “hide” secret 
messages into existing “cover text”, e.g., an image. Such 
techniques are usually referred to as information hiding and 
steganographic techniques. In covert communication over a 
network, it is a common technique to embed covert information 
into certain portions of network packets [3]. The other category 

of covert communications does not rely on any existing 
messages. Rather, some seemingly normal operations are 
exploited to interfere with the system so that the receiver can 
detect covert information from the system behavior. The 
CPU-time-based covert channel described above belongs to this 
category. A covert channel based on the splitting algorithms in 
Medium Access Control (MAC) protocol [2] is such a 
network-based covert channel. In this covert channel, the 
receiver needs to know the identity of the sender, even though 
the reverse is not needed. 

In this work, we present a new covert channel that exploits 
splitting-tree algorithms in MAC protocols. Our new covert 
channel falls into the second category of covert communication 
channels, and has several salient features that significantly 
improve its stealthiness and resilience. 

1) Multiple covert senders, without knowing the existence 
or identities of each other, can transmit covert information 
independently. The covert communication data rate and 
secrecy are improved (cf. sections III.D&E). 
2) The receiver does not need to know the identity of the 
covert sender(s) a priori. We will show that such a 
difference has major effect on our covert channel’s security 
performance (cf. section III.D). 

The rest of the paper is organized as follows. In section II, the 
splitting algorithm in MAC protocol and the covert channel in 
[2] are reviewed. In section III, we first describe the basic idea 
of the new covert channel. We then discuss the detectability 
issue of the channel and present more advanced transmission 
techniques that improve transmission rate and communication 
secrecy. A brief capacity analysis is then presented. We 
conclude our work in section IV.  

II. SPLITTING ALGORITHMS AND COVERT COMMUNICATIONS 

A. Splitting-tree Algorithms 
The network model is that of a time-slotted channel, with 

Poisson arrival, collision or perfect reception, (0, 1, e) 
immediate feedback. In our study, we assume that there are a 
fixed number of potential contending nodes. There are m covert 
senders and n normal contenders. We further assume that the 
data packets have a fixed length, Lpacket.  

Splitting-tree algorithms were designed to efficiently resolve 
collisions among active channel contenders. One example of 
such algorithms is the binary tree splitting algorithm. In this 
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algorithm, the colliding nodes are split into two subsets by 
randomly choosing either the left or the right subset to join. The 
nodes joining the left subset will send in the next time slot. The 
exact procedure depends on the outcome of the next time slot: 

1) If the next time slot experiences collisions (e-state), the 
same procedure repeats for the new set of colliding nodes; 
2) Otherwise, the next time slot experiences successful or 
idle state (1- or 0-state) and the right subset should transmit in 
the following time slot. 

The period of time in which the collisions are resolved is called 
Collision Resolution Period (CRP). 

There are also improved schemes based on this basic 
splitting-tree algorithm. For example, one technique asks these 
nodes to split immediately if the next time slot is idle (0-state), 
since all colliding nodes have joined the right subset. In this 
work, however, we base our discussions on the standard binary 
splitting-tree algorithm.   

B. Covert Channels based on Splitting Algorithms 
As shown in [2], a node in the network can covertly send out 

a sequence of bits by choosing a specific path in the splitting 
tree in a CRP. Upon each collision, the sender intentionally, 
rather than randomly, chooses to join either the left set (if the 
covert bit to be sent is ‘1’), or the right set (if the covert bit is 
‘0’). The receiver can be any node in the network or an external 
observer that knows the identity of the covert sender. At the end 
of each CRP, all nodes have transmitted successfully and the 
receiver sees the path that the sender has followed. The 
transmitted bits can then be decoded by looking at which subset 
the sender has joined at each splitting point, defined as the slot 
with collisions and further splitting is necessary. Figure 1 shows 
an example where the sender sends a bit string ‘01’.  

 
Figure 1. An example of covert transmission using splitting-tree algorithm 
As shown in Figure 1, 3 nodes in the network contend for the 

medium in the CRP. The sender’s path is highlighted with red 
color. The sender first joined the R subset to send a bit ‘0’ and 
then joined subset RL (the left subset of set R) to send a bit ‘1’. 
Two covert bits were transmitted in this CRP. Note that the 
identity of the covert sender has to be known before the covert 
information is decoded. In our new covert channel, this is not 
needed. 

C. Other Related Work 
The notion of covert communication was first introduced in 

[1]. It was defined and analyzed, mostly in the context of 
computer systems, e.g., the Multi-Level Security (MLS) 
systems. A comprehensive survey of work in this area can be 
found in [4, 5]. To measure the significance of a covert channel, 
Shannon’s theory of communications was often employed in 

the analysis of channel capacities [6-9]. Recent work also 
studied covert channels in communication networks that exploit 
the weakness of different communication layers [2, 3, 10]. Our 
work falls into this category. 

III. A NEW COVERT CHANNEL  
In this section, we present our new covert channel that 

exploits the splitting-tree algorithm. This channel allows 
multiple anonymous senders to simultaneously transmit covert 
information to the anonymous receiver, resulting in more robust 
communication and higher transmission rate. A salient feature 
of our new covert channel is that the receiver and the covert 
senders do not need to know each other’s identities a priori. The 
senders do not even need to know the existence of their peer 
senders. This makes the channel survivable under extreme 
circumstances. For example, if a sender is captured and all 
information it knows is revealed, other senders and the receiver 
are still safe.  

We assume that every sender keeps an identical copy of the 
covert text to be sent, and these senders are initially 
synchronized at a certain position in the text, e.g., the first bit of 
the whole sequence.  

In the rest of the section, we first present a Basic Covert 
Transmission (BCT) technique that sends one bit in each CRP. 
Then an Advanced Covert Transmission (ACT) technique with 
higher transmission rate is proposed. We discuss the 
detectability issue of these techniques, and then we present an 
Undetectable Covert Transmission (UCT) technique.  

A. Basic Covert Transmission (BCT) Technique 

 
Figure 2. Transmission procedure of BCT 

Figure 2 shows the transmission procedure of BCT. getbit(ti) 
returns the bit to be sent at the current position in the covert text 
of sender ti and moves the pointer to the next bit; rand() returns 
a random number x that uniformly distributes in [0,1); pb is a 
pre-defined biased probability, 0 < pb < 1.  

At the beginning of each CRP, if there is a collision in the 
first slot, the transmission set needs to split. Note that although 
in Figure 2 the operation for a sender is in a FOREACH loop, all 
operations are executed independently by each sender in 
parallel rather than in serial. Depending on the value of the 
covert bit, each sender joins either the L subset or the R subset 
with a biased probability pb (e.g., 0.95). This would make the L 

IF collision in the 1st slot THEN 
FOREACH sender ti  DO 

x = rand(); 
bi = getbit(ti);  
IF  bi == ‘1’  THEN 
 IF  x < pb  THEN  
  join_L(ti); 
 ELSE 
  join_R(ti); 
ELSE 
 IF  x < pb  THEN  
  join_R(ti); 
 ELSE 
  join_L(ti); 

 END 

S 

L R 

RRL Transmitting set Feedback

1  S      e 

2  L      1 

3  R      e 

4  RL     1 

5  RR     1 
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‘1’ 
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subset larger if a ‘1’ is sent or R larger if a ‘0’ is sent. The 
receiver can then decode the transmitted bit based on the sizes 
of the L and R subsets. Note that the random behavior of the 
normal nodes may corrupt the above relationship with certain 
probability and make the channel erroneous.  

Hard decision can be made in the reception procedure, i.e., if 
subset L is larger than R, a ‘1’ bit is decoded. Otherwise a ‘0’ bit 
is decoded. Other more sophisticated techniques can be used 
here to achieve more reliable transmission, e.g., channel coding 
and/or soft decision can be applied here to overcome errors. 
However such detailed discussion is out of the scope of this 
paper. 

B.  Advanced Covert Transmission (ACT) Technique 
The covert information transmission rate using BCT is very 

low: one bit transmitted in each CRP. We propose here an 
Advanced Covert Transmission (ACT) technique that can send 
multiple bits in each CRP. The basic idea is to ask covert 
senders to transmit one covert bit at each splitting point in a 
CRP, using the BCT technique repeatedly. In order to maintain 
synchronization among all covert senders and between the 
senders and the receiver, everyone needs to advance one bit in 
the covert text whenever there is a splitting point, regardless of 
whether it participates in the splitting operations.  

 
Figure 3. Transmission procedure of ACT 

Figure 3 shows the transmission procedure of ACT. Upon a 
collision, the corresponding transmission set (e.g., S or L in 
Figure 1) needs to split. If a sender belongs to this set, it will try 
to send the bit in a similar way as in BCT. Other senders sit out 
during this splitting operation but they need to skip one bit to 
keep synchronization. After the CRP is completed, all senders 
“send” the same number of covert bits (some of the bits are 
actually skipped, though at different positions for different 
senders). The number of bits that have been sent equals to the 
number of splitting points in the splitting tree.  

C. Detection of Senders and Stealthiness of the Channel 
As the receiver is a pure passive listener during both the 

transmission and reception operations, it is undetectable even if 
the auditor is aware of the covert communication. However, 
with BCT or ACT it is still possible that a covert sender or even 

an external observer can figure out the identities of the covert 
senders. To do so, a covert sender simply looks for the nodes 
that go to the same branch as itself with a probability higher 
than 0.5. An external observer can detect the covert senders by 
looking for nodes that go more frequently to the same branch of 
the splitting tree. It is not difficult to show that the larger pb, the 
easier it is to find the covert senders. Furthermore, with larger 
pb, senders will be more likely to join the same subsets and 
therefore cause more collisions. This will artificially lengthen 
the CRP and raise suspicions. It is of course possible to improve 
the covert channel’s stealthiness by employing a pb closer to 
0.5. However, this leads to channel capacity degradation. With 
ACT, a trade-off has to be made between the stealthiness of the 
covert channel and the capacity. 

D. Undetectable Covert Transmission (UCT) Technique 
To prevent an arbitrary observer other than the receiver from 

detecting the covert communications and/or the identities of the 
senders, a secret shared by the senders and the receiver is added 
into the scheme. One can detect the covert communications or 
may identify the covert senders only if he knows the secret.  

However, simply letting all senders know the common secret 
will significantly reduce the resilience of the channel: if a 
sender is captured, it can be disassembled and the secret will be 
exposed, leading to easier discovery of all other senders. Below 
we present our improved scheme that overcomes this problem. 

Assumptions:  
1) Each node in the network has a unique ID; 
2) The receiver is always safe. 
Given that most networks use some sort of unique ID for each 

node to address the network packets, the first assumption should 
not impose extra restriction on existing networks. We assume 
that the receiver is safe because it is a purely passive listener and 
hence undetectable. Furthermore, unlike the senders, who are 
network nodes and often accessible for testing and investigation 
by the network administrator, the receiver can be an external 
listener that is out of the investigator’s control. 

Secret distribution: a secret K is shared among all covert 
senders and the receiver but is stored in different forms. 

1) Receiver: the receiver keeps a copy of K in its original 
form since it is considered safe. 

2) Sender: each sender ti keeps Ci = HASH(IDi||K), where 
HASH() stands for a one-way hash function and || is the 
concatenation operator.  

The one-way property of the hash function ensures that even 
if Ci is revealed, it is impossible to calculate K based on Ci and 
IDi. Any good cryptographic hash function such as SHA and 
MD5 can be used to generate Ci. By doing this, even if a sender 
is captured and Ci is discovered, K remains secret. 

Operations:  
1) Sender: the sender’s operation is identical to ACT/BCT 

except that the covert bits are pre-coded before 
transmission. The pre-coding scheme is simple: XOR the 
original covert bits with a sequence of random bits 
generated based on a common random source and the 
node’s secret Ci. Detailed steps are shown in Figure 4.  

2) Receiver: the receiver first needs to decode the transmitted 

FOREACH splitting set Sk DO 
FOREACH sender ti DO 
 bi = getbit(ti); 

IF  ti∈Sk THEN 
x = rand(); 
IF  bi == ‘1’  THEN 

  IF  xi < pb  THEN  
   join_L(ti,Sk); 
  ELSE 
   join_R(ti,Sk); 

ELSE 
  IF  xi < pb  THEN  
   join_R(ti,Sk); 
  ELSE 
   join_L(ti,Sk); 

 END 
END 
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bits into its original form for each node (assuming all 
nodes are senders). The final received bits are then derived 
based on the decoded bits for all nodes. Figure 5 shows the 
detailed operations. 

 
Figure 4. Sender’s Operations 

 
Figure 5. Receiver’s Operations 

The common random source should be visible to all senders and 
the receiver. For instance, it can be obtained from the network 
itself during the normal communication, e.g., the content of one 
or more data packets transmitted in the previous CRP, e.g., the 
first transmitted packet, the last transmitted one, or packet(s) 
that can be determined using any predefined (and possibly 
public known) rules. With this common random source and the 
secret Ci, each sender can generate a unique random bit 
sequence to pre-code the covert bits. The receiver can generate 
exactly the same sequence of random bits for each node based 
on the node ID and the secret K. It is possible that one can force 
all nodes to send non-random data packets to remove the 
randomness and detect the covert channel. However, since the 
senders are also nodes in the network, they can stop sending out 
bits to protect themselves once they receive such commands.  

In step 1 of the receiver’s operations, once the CRP is 
completed, the bits (the pre-coded bits) that a node has 
transmitted can be determined: at the splitting point where it 
participated in set splitting, a bit ‘1’ or ‘0’ can be determined 
based on whether it joined the L subset or the R subset. At other 

splitting points, a symbol ‘e’ is put into the bit sequences, 
meaning that the bit has been skipped by this node. 

In step 2, for each node the receiver needs to generate the 
same random bit sequence that was used in pre-coding the 
covert bits during the sender’s transmission procedure (see 
Figure 4 -- STEP 2). To do so, it first computes Ci for each node 
using the secret K and the node’s IDi: Ci = HASH(IDi||K). It then 
computes the random bit sequence in the same way as the 
sender does in Figure 4. The original covert bits can then be 
recovered with XOR operations. Note that the bit sequence 
obtained in step 1 may contain ‘e’. Any XOR operation over ‘e’ 
will still generate an output of ‘e’. The obtained bit sequence for 
each node therefore is a series of ‘1’, ‘0’ and ‘e’. 

The receiver then computes the sizes of the L subset and the 
R subset for each splitting point. This can be done by the 
decode() function shown in Figure 6. For a given splitting point, 
the numbers of nodes that join the L subset and the R subset are 
accumulated in variables size_L and size_R, respectively. The 
final decoded bit can then be determined based on these two 
numbers. Figure 6 shows a decoder using hard decision. 

 
Figure 6. An example decode function 

Security Analysis:  
Stealthiness of the channel: In UCT, each sender in the CRP 

generates a unique random bit sequence with which the covert 
bits (identical to all senders) are encoded into the actual 
transmitted bits. If the PRNG() function can generate 
independent sequences with different seeds, the covert senders 
will not join the same subset with high probability. This makes 
the sender nodes indistinguishable from normal nodes, which 
prevents an external observer from detecting the covert 
communications.  In practice, cryptographically secure pseudo 
random number generators (CSPRNG), e.g., the AES-based or 
SHA-based PRNG, can be good candidates of the PRNG() 
function. 

Detection of the covert senders: For a covert sender ti, 
although it knows Ci, the property of the HASH() function 
ensures that it cannot derive the secret K or Cj of any other 
sender. This prevents the sender from correctly decoding the 
transmitted bits of any other sender, which makes it impossible 
to find out the peer senders. Similarly, if any one of the senders 

STEP 1:  Once a CRP is complete, decode the 
transmitted bits TXbitsi for each node Ni 
based on the splitting tree T. 

 

FOREACH node Ni DO 
    TXbitsi = obtain_bits(Ni, T); 

END 
 

STEP 2:  For each node Ni, decode TXbitsi into the 
original bit sequence Bits[i]; 

 

Seed  = common_rand(); 
FOREACH node Ni DO 

    Ci   = HASH (IDi||K); 
    Bitseqi =  PRNG(seed||Ci); 
    Bits[i] = TXbitsi XOR Bitseqi;  

END 
 

STEP 3: Derive the final received bits text based on 
Bits 
text = decode(Bits); 

STEP 1:  At the beginning of a CRP, obtain a random 
number Seed based on a common random 
source. 
Seed  = common_rand(); 

STEP 2:  Generate a sequence of random bits Bitseq 
based on Seed and its secret Ci, using a 
pseudo random number generator PRNG(). 
Bitseq= PRNG(seed||Ci); 

STEP 3: Pre-code the original covert bits text with 
Bitseq. 
newtext =  Bitseq XOR text; 

STEP 4: Send the bits using ACT or BCT 
    ACT(newtext); (or BCT(newtext);) 

FUNCTION decode (Bits) 
 /* number of bits transmitted in the CRP */ 
 M = number of branching points in splitting tree; 

 FOR j = 1 TO M 
  /* initialize counters */  
  size_L= size_R = 0; 
 

FOREACH node Ni DO 
  b = Bits[i][j]; 
  IF b != ‘e’ THEN 
   IF b == ‘1’ THEN size_L++; 
   IF b == ‘0’ THEN size_R++; 
 END 
 

 IF size_L >= size_R THEN 
  text[j] = ‘1’; 
 ELSE 
  text[j] = ‘0’; 
END 
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is captured and its secret Ci is discovered, the secrecy of the 
identity of other senders will not be compromised.  

Discussion: 
Initial synchronization: In the above discussion we assume 

an initial synchronization of all covert senders. Although a 
system clock should of course help achieve this 
synchronization, we do not assume this since it may be 
unrealistic. Similar to the way we obtain the common random 
source from the normal operations of the network, the senders 
may synchronize themselves with some common events such as 
a certain byte of a successful packet on the channel or the hash 
of it being equal to a predefined value. If such an event occurs in 
the current CRP, all senders start to transmit in the next CRP. A 
sender may fail to synchronize with others, but this does not 
mean the covert communication will fail, as we explain below.  

Malfunctioning nodes: A malfunctioning sender may lose 
synchronization and/or behave incorrectly during the covert 
transmission. However, since there is no cooperation among 
peer senders, this will not affect other senders. From the 
receiver’s perspective, a malfunctioning sender simply behaves 
like a normal node, which reduces the number of effective 
covert senders by 1 and degrades the channel capacity slightly.  

Discovery of the senders’ identity by the receiver: The 
receiver does not need to know the identities of the covert 
senders a priori. It will treat all nodes in the network as covert 
senders, decode their messages, and regenerate the covert text 
using majority voting. In this process, the senders’ identities 
will eventually be disclosed to the receiver. Since the receiver is 
undetectable, such disclosures do not change the stealthiness of 
our covert channel. Note that this is more flexible and secure 
than requiring the receiver to know the identities of the senders 
a priori [2]. For instance, any covert sender can join in or quit 
the covert transmission without the need to keep the receiver 
updated. 

E. Capacity Analysis 
The channel with BCT can be modeled as a discrete time 

memoryless channel (DMC). The input alphabet of the channel 
is {‘0’,‘1’}. The output alphabet is a set of ordered pairs (L,R) 
where L and R are the numbers of nodes that joined in the left 
subset and right subset, respectively. It is rather straightforward 
to compute the channel matrix, given the number of covert 
senders, the number of normal nodes, and the biased probability 
pb used in Figure 2. The capacity of such a channel can then be 
easily calculated. The analysis of the channels with ACT and 
UCT is rather complicated. Due to the limited space, we omit 
the detailed derivation of the capacity bounds, which can be 
found in our full technical report [11].  

Our results show that the capacity of the channel with BCT is 
low. For example, in a network with 30 nodes among which 15 
are covert senders, when a pb = 0.9 is used, the channel capacity 
is approximately 0.96 bit/CRP or 0.012 bit/slot. In contrast, 
using ACT the channel capacity is improved significantly. With 
the same network parameters, the upper bound of the capacity is 
approximately 36 bits/CRP or 0.4 bit/slot. In a channel with 
UCT, a more biased pb can be used since the covert 
communication is undetectable. Our result shows that in the 
same network with pb=1, the upper bound of the capacity is 

approximately 0.35 bit/slot, which is only slightly lower than 
the capacity of the channel with ACT. 

IV. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed and investigated a new 

covert channel based on the splitting tree algorithms in MAC 
protocols. The covert information is embedded into the covert 
senders’ behavior in choosing which subset to join during a 
splitting operation. Unlike other known covert channels based 
on splitting tree algorithms, this channel allows multiple 
senders to participate in the covert communications, improving 
the robustness and transmission rate of the channel.  

One salient feature of this covert channel is that it does not 
require the receiver’s knowledge of identities of the covert 
senders. Furthermore, all senders operate without knowing the 
identities of other senders or that of the receiver. This mutual 
anonymity significantly improves the resilience of the channel: 
even if part of the channel is compromised, e.g., one or more 
covert senders are captured and their information is exposed, 
the rest of the channel remains safe. We have analyzed the 
transmission techniques involved in this channel and discussed 
the detectability issue. We further proposed a UCT scheme that 
enables undetectable covert communications. The capacity of 
the channel with different transmission techniques is also 
analyzed and calculated. 

Future work will involve further investigation in other 
transmission schemes that allow more robust and faster covert 
communications, and countermeasures to mitigate these covert 
channels. 
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