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Abstract- Several bit permutation instructions, including GRP,
OMFLIP, CROSS, and BFLY, have been proposed recently for
efficiently performing arbitrary bit permutations. Previous work
has shown that these instructions can accelerate a variety of
applications such as block ciphers and sorting algorithms. In this
paper, we compare the implementation complexity of these
instructions in terms of delay. We use logical effort, a process
technology independent method, to estimate the delay of the bit
permutation functional units. OQur resuits show that for 64-bit
operations, the BFLY instruction is the fastest among these bit
permutation instructions; the OMFLIP instruction is next; and
the GRP instruction is the slowest,

I. INTRODUCTION

Bit permutation operations permute the bits in the operand.
They are very cffective for achieving diffusion in block
ciphers [1], where diffusion dissipates the redundancy in the
plain text over the encrypted cipher text. Bit permutation
operations are used in many ciphers such as the Data
Encryption Standard (DES), Twofish and Serpent. However,
arbitrary bit permutations are not directly supported on
existing microprocessors, and hence very slow. As a result,
many ciphers such as RC5 [2] use data-dependent rotation
(DDR) instead. DDR uses only log(n) bits to specify the shift
amount for n-bit words. This property of DDR has reduces
the strength of the ciphers and makes them vulnerable to
cryptanalytic attacks [3].

Several instructions have been proposed recently to do
arbitrary bit permutation efficiently. They are GRP [4],
OMFLIP [5], CROSS [6), and BFLY [7, 8]. Each instruction
has its advantages and disadvantages [9]. For example, GRP
can accelerate subword sorting [10] and has good
cryptographic properties [11]. OMFLIP needs only four
stages regardless of how many bits are to be permuted. But
these instructions have not been compared with each other in
detail in terms of implementation complexity and latency.

In this paper, we compare the implementation complexity
of bit permutation instructions in terms of the latency, or delay,
of their respective permutation units. Ideally, when a new
instruction is added to a processor, the cycle time of the
processor should not be significantly impacted. Knowing the
relative delays of these permutation functional units is very
helpful when deciding which one to include in a given
processor. We use a process technology independent method,
logical effort [12], to compare the delays of different
permutation units. Logical effort is a design methodology that
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can be used to estimate the number of stages required to
implement the critical path of a given logic function, and
hence estimate its delay in a process technology independent
way.

In Section II, we briefly describe the logical effort
methodology. In Section IH, we describe the bit permutation
instructions and discuss their implementation. In Section IV,
we use logical effort to estimate and compare the delay of
different permutation circuits. Section V concludes the paper.

II. LoGIicAL EFFORT

Logical effort [12] is a technology-independent methed to
estimate the number of stages required to implement a given
logic function with CMOS and to determine the maximum
possible speed of the circuit. It uses the following concepts:

logical effort g: The total gate capacitance of a logic gate

relative to that of a minimum-sized inverter

electrical effort i: The ratio of output capacitance of a gate

to its input capacitance

branching effort &: The ratio of total capacitive load on

one logic gate’s output to the gate capacitance of the next

gate on the path examined

parasitic delay p: The total diffusion capacitance on the

output node of a gate relative to that of a minimum-sized

inverter.
The delay of a single gate can be calculated as:
d=gh+p : )]
To find the delay along a path, we first calculate the total path
effort:
F=GBH )
where G =Tlg, B =11b, and H = I1h. Ilg means the product
of the logical effort of all the gates along the path. Similarly,
Tb is for the total branch effort and I1h for the total electrical
effort. The total electrical effort / = T1# reduces to the ratio
of the output capacitance loading the last gate to the gate
capacitance of the first gate on the path. Normally, we assume
a circuit drives a copy of itself, so /= 1.

Once the path effort has been calculated, the ideal number
of stages required to achieve the logical function can be
estimated as:

N=logssF. 3

- where 3.6 is the stage effort achieving the best performance

[12]. N is then rounded to the nearest integer that is
reasonable for the path, and the effort delay for each stage can
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be calculated as:

o= FIIN (4)

a can be used to decide the transistor size in each stage
along the path. The basic idea is to estimate the number of
stages using the ideal stage effort =3.6, and then calculate the
real o from the estimated number of stages. Finally, the total
delay of the path can be calculated as:

D=No+P, 5)
where P = 3p, The results in {5) are in the basic time unit
used in logical effort, which is independent of process
technology. Dividing D in (5) by five gives the estimated
delay in terms of fan-out of four (FO4), the delay of an
inverter that drives four identical inverters.

Ifl. BIT PERMUTATION INSTRUCTIONS

We now describe the permutation instructions CROSS,
BFLY, OMFLIP and GRP. :

A CROSS

The CROSS instruction defined in [6] is based on the Benes
network. A Benes network consists of a butterfly network
followed by an inverse butterfly network. An »-bit butterfly
network consists of log(n) stages. In each stage, n bits are
divided into »/2 pairs. Two bits in a pair can go to the same
position at the output or exchange position with the other one,
This is determined by a single control bit. So r/2 control bits
are needed for n/2 data pairs at each stage. The stages are
differentiated by how bits are paired. If we count stages
starting from 1, the distance between two paired bits in stage /
is n/2'. Figure 1 shows an example of a 16-bit butterfly
network. Each small box is like a 2:1 MUX, where one of two
bits in a pair is selected. In the first stage, the distance
between two paired bits is 16/2 = 8, In the last stage, the
distance is one, i.e., two bits are next to each other.

INPUT

OLFrUT

Figure 1: A 16-bit butterfly network

The inverse butterfly network can be constructed by
reversing the stages in a butterfly network.

A Benes network is constructed by concatenating a butterfly
network with an inverse butterfly network. A CROSS
instruction is defined as:

CROSS, ml,m2 Rd, Rs, Rc

880

CROSS permutes the bits in Rs using any two stages in a
Benes network that are specified by m1 and m2, and stores the
permuted bits in Rd. The two stages specified by m1 and m2
are configured with bits in Rc; the lower #/2 bits are used to
configure Stage m1, and higher #/2 bits to configure Stage m2,
A method is given in [6] to configure a Benes network to
perform any permutations of the input bits using all stages in a
Benes network. log(n) CROSS instructions are needed to
achieve any one of the n/ permutations of n bits.

B. BFLY

The BFLY instruction is also based on the Benes network.
However, BFLY uses the full butterfly network (six stages for
64 bits) to permute input bits while CROSS uses only two
stages of the butterfly network or inverse butterfly network per
instruction.

To perform arbitrary n-bit permutations, another instruction
IBFLY is required to permute bits with the full inverse
butterfly network. In this paper, we focus only on the BFLY
instruction. IBFLY will have similar latency as BFLY.

C. OMFLIP

The OMFLIP instruction is based on the omega-flip
network. A full omega network consists of log(n) omega
stages, and all omega stages are the same; a full flip network
consists of log{n) flip stages, and all flip stages are the same.
A full omega-flip network, constructed by concatenating a full
omega network with a full flip network, is isomorphic to a
Benes network. An OMFLIP instruction permutes bits with
two stages of the full omega-flip network, and log(n)
instructions can perform arbitrary #-bit permutation.

OMFLIP uses only two stages each time, and all omega
stages or all flip stages arc the same. Hence, only two omega
stages and two flip stages are enough to do the OMFLIP
instructions. Such a 4-stage network is shown in Figure 2.
Unlike CROSS, the number of stages in the functional unit
does not depend on the number of bits to be permuted.
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Figure 2: A 4-stage omega-flip network for 16-bit OMFLIP operations
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D. GRP

The GRP instruction is defined as:

GRP Rd, Rs, Rc

The GRP instruction permutes the data bits in Rs according
to the control bits in Re. The bits in Rs are divided into two
groups depending on whether the corresponding bit in R is 0
or 1. The two groups of bits are then placed next to each other
in Rd. The bits with a control bit of 0 are placed at the left
end; the bits with a control bit of 1 at the right end. Figure 3
shows an example of an 8-bit GRP operation. Since the
control bit of b, ¢, £, and 4 is 0, these four bits are placed at the
left end in Rd. a, d, e, and g are placed at the right end
because their control bit is 1.

Rs [afb[cd]elfle]n]
Re [1]oJof1]1]of1]0]
= N =
J 75N
Rd [b]cff[h]ajd]e[g]|

Figure 3: 8-bit GRP operation

There are many ways to implement a GRP operation. Here,
we describe a parallel implementation. For convenience, the
bits in Rs with a control bit of 0 are referred to as z bits, and
the bits with control bit of 1 as w bits, The GRP operation can
be performed in three conceptual steps. Step 1 grabs all z bits
and sets other bits in the word to 0; Step 2 grabs w bits and
sets other bits in the word to 0; Step 3 merges the z bits and
the w bits by OR-ing the results generated in the two previous
steps. Step 3 is straightforward. And if we can grab z bits in
Step 1, Step 2 can use the same circuit to grab w bits for
flipping control bits changes w bits to z bits.

We use the divide-and-conquer strategy to grab z bits in »
bits, as shown in Figure 4. First, the n input bits are divided
into two halves. After putting z bits at the left end in each half,
we combine the z bits in both halves, putting all z bits at the
left end and setting the rest of the bits to 0. For each half of
n/2 bits, we can apply the same method by dividing them into
two halves of #/4 bits. Each set of n/4 bits can be further
divided into smaller sets until every set has only one bit. For
sets that has only one bit, the z bit is already at the left end if
the only bit is a z bit. Otherwise, it is set to 0. This can be
done with the circuit shown in Figure 5, which we call GRP1Z,
In the figure, i is the input data bit, and ¢ is the corresponding
control bit. When ¢ = 0, the output 4 = i because i is a z bit.
When ¢ = 1, d is set to 0. (ky, k) is one-hot code indicating

the number of bits that are set to 0 in (d). So (ky, k) = (1, 0) .

when ¢ = 1 because one bit d is set to 0.

A circuit that grabs z bits from a n-bit set is called GRPrZ,
GRP1Z is illustrated in Figure 5. GRP2Z consists of two
GRP1Zs, and combines their outputs; the circuit that does
combination is called GRP2ZD. GRP4Z consists of two
GRP2ZDs, and combines their results with a GRP4ZD, and so
on. Figure 6 presents a diagram of GRP8ZD, which combines
z bits from two 4-bit sets. Each small box is the basic ceil that
is shown in Figure 7. The basic cell has a data input i, a data

881

output o, and a select signal sel. The output o is connected
with the input / when and only when se/ = 1, In Figure 6, (I,,
I, I, I;) and (I, Ls, I5, I;) are the outputs of two GRP4AZ
circuits. In both of them, z bits are already placed at the left
end and other bits at the right end are set to 0. Those bits that
are set to 0 will be referred to as padded 0s. (S4, S3, 53, Sy, So)
is a one-hot code indicating the number of padded 0s in (I, L;,
I, I3). Depending on how many padded Os are in (I, 1}, I, I3),
one of (84, S;, S3, 51, So) is set to 1, and that bit determines at
which row the outputs are connected to the inputs. At the
output, padded 0s in (I, I;, L, I;) are replaced with bits
shifting in from (I, Is, Ig, I7), and all the z bits are located at
the left end. For example, when (Io, I, I,) are z bits and I is a
padded 0, only S, is set to 1. The inputs and outputs are
connected at the second row, The output (Oy,...,07) = Iy, I,
I, L4, Is, 1g, 17, 0).

/2 bits

Figure 4: Grab z bits recursively

C i
i d (ky.kq)
iy | AL i
T INV2 NANDj
INV3
kike d

Figure 5: GRP1Z: the first stage in GRP units

Figure 6: Diagram of GRPSZD

The circuits generating select signals have a similar
structure to that of the data combining circuits shown in
Figure 6. These circuits generate the number of padded 0s in

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore. Restrictions apply.



each set of data bits. We call these circuits GRP1ZS, GRP2ZS,

GRP4ZS, and so on,

sel

0

Figure 7: Basic cell

Figure 8 shows the block diagram of the datapath of GRP64,

a GRP functional unit for 64 bits. We first use GRP1Z to
generate z bits and w bits for 1-bit groups. Then, we keep
combining the output of smaller sets to generate z bits and w
bits for a larger set until we get all the z bits and w bits for the
64 bits. Then, the z bits and w bits are combined with OR

gates to get the resuit of the 64-bit GRP operations,
64 dats bits and 64 inverted

64 data bits and 64 control bits contraf bits in reverse order

EE—hetd” %%M
) — D0

i i [ s R i
m ’—i4\ J_T '2 & 16 bit> 32 bits

T. 32 bit» 64 bits

2 ] b1!—>2 bits

| 3: 2 bit-> 4 bits

64 OR gutes

)

cutput
Figure 8: Diagram of GRP64

IV. ANALYSIS OF DIFFERENT PERMUTATION CIRCUITS

We now estimate the delay of the 64-bit permutation
functional units that performs the BFLY, OMFLIP, and GRP
instructions.  As mentioned earlier, we assume each
permutation unit drives a copy of itself.

In our calculation, only the capacitance of the wires is
considered. Wires are converted into a number of inverters,
the total input capacitance of which is the same as the
capacitance of the wires. We estimate the capacitance of a
wire traveling across a cell as equivalent to 1/3 the input
capacitance of a minimum-sized inverter [Appendix A].

A. BFLY butterfly network latency

In the butterfly network shown in Figure 1, each box can be
considered as a 2:1 MUX. In a real implementation, we use
2:1 MUXI shown in Figure 9 instead of MUX. MUXI works

similarly to a MUX except that the output of MUXI is inverted.

This causes no problem as long as signals are inverted an even
number of times.
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Figure 9: Transistor diagram of a 2:1 MUX1

The numbers in Figure 9 indicate the ratio of the width of
transistors to the width of an N-type transistor in a minimum-
sized inverter. To achieve the same drive characteristics as a
minimym-sized inverter, we double the size of transistors that
are connected in series. The parasitic delay of the 2:1 MUXI
can be calculated as [12}:

W, 4444242 6
P =(Z 2 ]pim = (____)pim' = 4pinv ( )

1+2 1+2

The denominator in (6) is the sum of the width of transistors
that are connected te the output in a minimum-sized inverter;
and the numerator is the sum of width of transistors that
connected to the output in the MUXI.

The capacitance of each input is twice that of a minimum-
sized inverter. Therefore, the logical effort per data input 1s 2.
The logical effort of the select signal is 4.

The Ioad of the gates in each stage, except for the last stage,
consists.of wires and MUXIs in the next stage. As mentioned
earlier, wires are cenverted into a number of inverters that
have the same capacitance, and then can be modeled as
branching effort. Let M.y be the number of cells that the
longest wire travels across in a stage. Since an output in a
stage needs to drive the wire and two data inputs of 2:i
MUXIs, we can estimate the branching effort in each stage
with the following formula [12]:

N(‘(’"S
- Cnme + 2Cmnm‘ —_ 3 M 4

Cu:::ful C 2

i

C

tofal

b=

= Nrel!x +2 (7)
6

Table 1 lists the branching effort, logical effort, and the
parasitic delay of gates on the critical path of a full 64-bit
butterfly network. We use (7) to calculate the branching effort
in all stages except for the last stage. The load of the last stage
is the wire and the select signals in the first stage because we
assume the circuit drives another copy of itself. Suppose the
select signal has to cross 32 cells to reach both MUXIs in the
first stage. In addition, the select signal needs to drive the
select signal for two 2:1 MUXIs; each has a gate capacitance
four times as a minimum-sized inverter (See Figure 9). The
branching effort before the inverter in the 2:1 MUXIs can be
calculated as:

(32/3+2x4)/2=28/3
In Table 1, the p in Stage 1 is five because of the inverter in
2:1 MUXIs for the select signal.
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TABLE 1: LOGICAL EFFORT AND PARASITIC DELAY IN BUTTERFLY NETWORK

Stage | Critical Load b gip
Gate
1 MUXI Track+ 16/642 | 2 5
2 MUXIs =14/3
2 MUXI Track+ 8/6+2 2 |4
2 MUXIs =10/3
3 MUXI Track+ 4/6+2 2 |4
2 MUXIs =8/3
4 MUXI Track+ 2/6+2 2 14
2 MUXIs =713
5 MUXT Track+ 1/6+2 2 |4
2 MUXIs =13/6
6 MUXI Track+ 2873 2 4
2 select signals
Total 1957.31 | 64 | 25

The total effort can be calculated as

F=GBH=064x195731 x 1=125267.84

The optimal number of stages is:

N=log;sF=9

There are already seven stages (including the inverter inside
the first MUXI). Two inverters can be added along the path to
drive long wires. This increases the parasitic delay by two.
Therefore, the total delay is: )

D=NxF"" +P=9x125267.84" +(25+2) = 60.2

Hence, the delay is about 12.0 FO4.

The delay of the inverse butterfly network is estimated as
13.0 FO4 [Appendix B], slightly longer than the delay of the
butterfly network.

B. 4-stage omega and flip network latency

The OMFLIP instruction can be performed with a 4-stage
omega-flip network that has two omega stages and two flip
stages. Since it uses only two of the four stages each time,
data need to pass through the other two stages. Such pass
through paths do not exist in omega or flip stages, so they
need to be added in the stages. After the pass through paths
are added, an output in an omega or a flip stage can choose
one from three input bits. Two of them are defined by omega
or flip stages (Figure 2) and the third is for the pass through
path. So each box in Figure 2 can be implemented with the
3:1 MUXes that is shown in Figure 10. In the figure, data bits
either go through two 2:1 MUXI or one inverter and one 2:1
MUXI. MUXI1 chooses one from in_0 and in_1, the two
paired bits defined by the omega or flip network. MUXI2
chooses one from the output of MUXI1 and the pass-through
source /n_p. Since MUXI2 inverts the input, in_p is inverted
before going to MUXI2, If pass = 1 in a stage, data take the
pass through path. Alternatively, 3:1 MUXIs may be used for
shorter delays from the data input to the output. The diagram
of a 3:1 MUXI is presented in Figure 11. Figure 11a shows
the transistors for selecting data inputs, which have similar
structure as those in 2:1 MUZXIs. The select signals in Figure
1la are generated in Figure 11b from pass and sel. The
parasitic delay of 3:1 MUXIs is six; and the logical effort per
data input is two, the same as that for 2;] MUXIs. Since 3:1
MUXIs have shorter delays from the data input to the output,
we will use them to implement omega or flip stages except for
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the first omega stage, where the delay is dominated by the
select signal. In the first omega stage, 3:1 MUXes will be
used for they have short delays from pass to the output.

sel

in_0 UXII

in_p 1&1} ut

Figure 10: Implementing a 3:1 MUX with 2:1 MUXIs

Figure 11: 3:1 MUXIs for omega or flip stages

TABLE 2: LOGICAL EFFORT AND PARASITIC DELAY FOR 4-STAGE OMEGA-FLIP

NEWORK
Stage Gate Load b g|lr
1 MUXI2 in | Track+ (323+43%2)2 12 |5
3IMUX | 331 MUXTs =25/3
2 31 MUXT | Track+ (32/3+43%2)2 12 |6
3 3:1 MUXIs =25/3
3 3:1 MUXT | Track+ (327343*2)2 12 | 6
33:1 MUXIs =25/3
4 3:1 MUXI | NOT 1 2 {6
NOT Track + (64/3+64%4)2 | 1 1
64 select signals j =416/3
Total 8024691 16 | 24

The logical effort, branching effort, and parasitic delay for
4-stage omega-flip network are listed in Table 2.
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The output of the first three stages needs to drive wires and
three data inputs of 3:1 MUXIs. The longest wire in a stage
needs to cross 32 cells. Since 3:1 MUXes are used in the first
stage, the data are inverted only three times. As a result, a
stage of NOT gate is added after the fourth stage. The NOT
gates drive 64 pass signal of 3:1 MUXes, plus a wire crossing
64 cells, Here, we assume each stage has a separate pass
signal. The total effort can be calculated as:

F=GBH=180246.91x16x1=1283950.61
The optimal number of stage is:

N=log;sF =10

The gates listed in Table 2 already have six stages,
including the inverter inside the 2:1 MUXT in the first stage.
Four inverters may be added along the path. The delay of
such a stage can be estimated as:

D=Nx F+P=10x F1+ (24 + 4) = 68.82

The delay is about 13.8 FO4.

C. GRP implementation latency

The basic cell shown in Figure 7 is slow and reduces the
noise margin. We will use the transmission gate (TG) shown
in Figure 12 when implementing the GRP unit, Since the load
of the inverter INV is one P-type transistor, we use the
minimum-sized inverter. Thus, the input load of sef is (3 + 2)
/3 =5/3. The input load of i is 2, i.e., twice as a minimum-
sized inverter,

sel

Figure 12: Implementation of the basic cell (TG) in the GRP unit

If the critical path extends from i to ¢ in a TG, the TG has g
=2and p=2. Ifthe critical path extends from se! to nsel to o,
the TG has a logical effort g= 4/3 x 1, where 4 is the width of
the transistor that nusel drives in TG, and 1 is the logical effort
of INV. The parasitic delay p becomes three because of INV.

Since TGs generate the inverted signals, some stages may
have the inverted select signals. In such stages, we use ITGs
instead of TGs and inverters. Figure 13 shows the diagram of
an ITG, which is the same as a TG except that it uses the
inverted select signal. In a TG, the input goes to the output
when sel = 1 while in an ITG, the input goes to the output
when sel = 0. The input load of the data input 7 in an ITG is
the same as in a TG; the input load of sel increases to 7/3. If
the critical path extends from sel to nsel to o, an ITG has g =
2/3,andp=3.

Table 3 lists the branching effort, logical effort, and the
parasitic delay of gates on the critical path of GRP64. In the
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table, TG.sel refers to the select input of a TG, and TG i refers
to the data input,

e
=

INV

TR1
Figure 13: The diagram of ITG that uses the inverted select signal

TABLE 3: LOGICAL EFFORT AND PARASITIC DELAY OF GRP64

Stapge Gate Load Track ] g r
Length
GRP1Z INVI | [NV + NAND 7 38/3 1 1
+ 2 TG.sel
+2TGi
+ TRACK
GRP1Z INV2 2 TG.sel 7 29/6 1 1
+2TG.i
+ TRACK
GRP2S TG 4TTG.sel 14 10 2 2
+31TG.
+ TRACK
GRP4S TG 8 TG.sel 25 85/6 2 2
+5TGd
+ TRACK
GRPSS TG 16 ITG.sel 47 7112 2 2
+9ITG.i
+ TRACK
GRP163 | ITG 32 TG.sel 91 353/6 2 2
+17 TG.i
+ TRACK
GRP32S | TG 64 ITG.sel 114 562/3 2 2
+ TRACK.
GRP64D | ITG | NOR + TRACK | 128 133/5 2/3 3
NOR | INV 1 53 2
INV INV 2 1 1
Total 2.02x10" | 35.56 | 18

* The critical path extends from sef to o in this stage.

The total effort can be calculated as:

F=GBH=TIg*11h=2.02 x 10" x 3556 =7.17 x 10"

The optimal number of stages is:

N=log; s =23

Since there are two stages in GRP&4D, we already have 11
stages shown in Table 3. Twelve inverters need to be added
along the path to drive the large load. The delay of the path
can be calculated as:

D=NxF™+pP=13x F"® +(18+12)=113.30

When divided by five, this is about 22.7 FO4.

D, Comparison and discussion

Table 4 compares the latency of the different 64-bit
permutation functional units. We see that GRP is the slowest,
and the 6-stage butterfly network (BFLY) is the fastest. The
4-stage OMFLIP is in the middle. Although OMFLIP needs
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only four stages because there are only two different types of
stages, the 4-stage OMFLIP unit is not as fast as the 6-stage
butterfly network for 64-bit operations. This is because one of
the control signals has to drive all the gates in a stage; the
length of the longest wire does not change between stages; and
adding the pass through paths introduces delays. In the
butterfly network, no signals have to drive a large number of
gates, and the wires become shorter and shorter - the length of
the wires reduces by half between stages. In addition, the
butterfly network already provides a pass-through path in
every stage.

GRP is the most complicated of the bit permutation
instructions we investigated. Although the data do not go
through a large number of gates, the select signals have a very
large load in the later stages. In addition, wires become longer
as the combining circuits become larger.

TABLE 4: THE LATENCY OF DIFFERENT FUNCTIONAL UNITS {64 BITS)

Functional Unit Latency (FO4)
GRP 227
OMFLIP (4 stages with pass-throughs) 11.8
BFLY (6-stage Butterfly network) 12.0

Normally, microprocessors have a cycle time of 20-30 FO4
[13]. Aggressive designs may use a cycle time around 16 FO4
[13]. Except for the GRP unit, both the OMFLIP unit and the
BFLY unit can finish in one cycle even in aggressive designs.
The GRP instruction can finish in one cycle on most
microprocessors, but it may affect the cycle time on more
aggressively-designed microprocessors or take two cycles.

Y. CONCLUSIONS

In this paper, we use the logical effort method to compare
the delay of different bit permutation units for permuting 64
bits. We found that GRP is the slowest, and the butterfly
network (BFLY) the fastest, with OMFLIP in the middle.
Although OMFLIP only needs four stages, it is not as fast as
the G-stage butterfly network used by BFLY because of its
long wires between stages, the large load on one of the control
signals, and the overhead for adding the pass through paths.
The butterfly network already has a pass-through path in each
stage; the length of the wires reduces by half between stages;
and no signal has to drive a large number of gates. We present
a fast, hierarchical implementation of the GRP operation. This
is the most complex implementation of these bit permutation
instructions; select signals have a very large load in the later
stages, and wires become very long when the combining
circuits are large.

For typical processors, GRP, OMFLIP, and BFLY
permutation units can all complete in a single cycle. Even for
processors with aggressive cycle times around 16 FO4, both
OMFLIP and BFLY can finish in one cycle, but GRP would
take two cycles or cause the cycle time to increase. Although
the GRP instruction is slower than the BFLY or OMFLIP
instruction, it has better cryptographic properties than the
other two [11], and is more versatile with a varlety of
applications including fast subword sorting [10], multimedia
as well as fast cryptography [9,11]. It is an open question as
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to whether a faster implementation of the GRP instruction
exists, and this can be investigated in future work.
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APPENDIX

A. The capacitance of wires

This section is based on correspondence with Prefessor Neil
Burgess in July 2002.

The capacitance is estimated for process technologies of
0.25um and 0.18um, as shown in Table 5. The gate
capacitance is taken from [14, 16]. Tt is assumed that a
minimum-size inverter has an nFET ratio of 2:1 and a pFET
ratio of 4:1. The capacitance of the wires depends on many
factors. The parameters for M1 are taken from [14, 16],
assuming typical layout strategies, where M1 does not overlap
with polysilicon and M2.

TABLE 5: ESTIMATION OF WIRE CAPACTIANCE

appear in the formula because it is one here.

Row 8 in the table is the number of minimum-size inverters
that have a capacitance equivalent to that of 1-ym wire, Itis
calculated by dividing row 7 by row 3.

In 0.25um technology, the height of 2:1 MUXI is 6.4 pm
[15], and the width ranges from 6.3um to 7.2um, where
smaller ones are used to drive smalf loads. It is safer to
choose a larger one.

Row 10 is generated by multiplying row 9 by row 8.

Table 5 shows the capacitance of wire extending across a
2:1 MUXI is approximately one third of the capacitance of a
minimum-sized inverter. Burgess uses similar method in [18]
to estimate the delay of adders, and shows the estimation
matches the simulation results well.

1 | Process technology 025 um 0.18 pm B. Delay of inverse butterfly network
S| Gate capacitanceruntt area 5000 aF/u® | 8300 oF st The following table lists the branching effort, logical effort,
e _ - o T ﬂ: and parasitic delay for calculating the delay of the inverse
ate capacitance o . . .
| ot imverter butterfly network. In the table, all MUXIs refer to 2:1 MUXIs,
4 Area capacitance of M1 70 aF/um? 77 aF/um’ TABLE 6: LOGICAL EFFORT AND PARASITIC DELAY OF THE INVERSE
5 Fringing capacitance of M1 35 aF/um 38.5 aF/um b RFLY NETWORK
- Stage | Gate Load b zglp
6 | Widthof Ml tracks 045 ym 030 um 1 MUXL | Track 2 MUXIs | 2/6+2=13 |2 [5
7 | Capacitance of M1 track per pm 101.50 aF 100.1 aF 2 MUXI | Track +2 MUXIs 4/6+2 =8/3 2 14
_ i i 3 MUXI | Track +2 MUXIs 8/6+2 =10/3 2 [4
3 Numbler of inverters with e_quwalent 0.045 0.062 4 MUXI | Track +2 MUXIs 16/642 = 1473 2 |4
capacitance of 1-pm M1 wire _ 5 MUXI | Track 42 MUXIs 32/6+2=22/3 2 14
g | Cell width 7.2um 5.2 pm 6 MUXI | Track +2 MUXIs’ 28/3 2 |4
- - - lect signal
Number of inverters with equivalent =1/3 =1/3 se
10
capacitance of wire traveling across a Total 6624.74 64125
cell

The gate capacitance of minimum-sized inverter, which is
listed in row 3 in the table, is calculated as [17]:

glenx(glenx2+g lenx4)xg cap
where g_len is feature size of the process technology, and two
and four are the width-to-length ratio of nFET and pFET,
respectively. g _cap is the gate capacitance per unit area,

The wire capacitance of I-um M1 track, which is listed in
row 7 in the table, is calculated as [17]:

area_cap x w_width + fringing_cap x 2
where w_width is the width of the wire; area_cap is the
capacitance per unit area and fiinging_cap is the fringing
capacitance per unit length. The length of the wire does not
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The total effort can be calculated as:

F=GBH=064x1957.31 x 1 =423983.36

The optimal number of stage is:

N=log;sF'=9 .

Since there are already seven stages (including the inverter
inside MUXI), we add two inverters on each path. This will
increase the parasitic delay by 2. Therefore, the delay is:

D=NxF" +P=9xF" +25+2=650

When divided by 5, this is about 13.0 FO4,

The inverse butterfly network is slightly slower than the
butterfly network because the delay of the stage that has the
longest wires can not overlap with the delay of the control
signals.
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