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Absfrocf- Several bit permutation instructions, including GRP, 
OMFLIP, CROSS, and BFLY, have been proposed recently for 
eNiciently performing arbitrary bit permutations. Previous work 
has shown that these instructions can accelerate a variety of 
applications such as block ciphers and sorting algorithms. In this 
paper, we compare the implcmentation complexity of these 
instructions in  terms of delay. We use logical effort, a process 
IechnologV independent method, 10 estimate the delay of the bit 
permutation functional units. Our results show that for @-bit 
operations, the BFLY instruction is the fastest among these bit 
permutation instructions; the OMFLIP instruction is next; and 
the GRP instruction is the slowest. 

1. INTRODUCTION 
Bit permutation operations permute the bits in the operand. 

They are very effective for achieving diffusion io block 
ciphers [I], where diffision dissipates the redundancy in the 
plain text over the encrypted cipher text. Bit permutation 
operations are used in many ciphers such as the Data 
Encryption Standard (DES), Twofish and Serpent. However, 
arbitmy bit permutations are not directly supported on 
existing microprocessors, and hence very slow. As a result, 
many ciphers such as RC5 [2] use datadependent rotation 
(DDR) instead. DDR uses only log(n) bits to specify the shift 
amount for n-bit words. This property of DDR has reduces 
the strength of the ciphers and makes them vulnerable to 
cryptanalytic attacks [3]. 

Several insfructions have been proposed recently to do 
arbitrary hit permutation efficiently. They are GRF' 141, 
OMFLIP [SI, CROSS [6], and BFLY [7, SI. Each instruction 
has its advantages and disadvantages [9]. For example, GRF' 
can accelerate subword sorting [IO] and has good 
cryptographic properties [ I l l .  OMFLIP needs only four 
stages regardless of how many bits are to be permuted. But 
these instructions have not been compared with each other in 
detail in terms of implementation complexity and latency. 

In this paper, we compare the implementation complexity 
of bit permutation instructions in terms of the latency, or delay, 
of their respective permutation units. Ideally, when a new 
instruction is added to a processor, the cycle time of the 
processor should not be significantly impacted. Knowing the 
relative delays of these permutation functional units is very 
helpful when deciding which one to include in a given 
processor. We use a process technology independent method, 
logical effort [IZ], to compare the delays of different 
permutation units. Logical effort is a design methodology that 

can be used to estimate the number of stages required to 
implement the critical path of a given logic function, and 
hence estimate its delay in a process technology independent 
way. 

In Section 11, we briefly describe the logical effort 
methodology. In Section In, we describe the bit permutation 
instructions and discuss their implementation. In Section IV, 
we use logical effort to estimate and compare the delay of 
different permutation circuits. Section V concludes the paper. 

11. LOGICAL EFFORT 
Logical effort [I21 is a technology-independent method to 

estimate the number of stages required to implement a given 
logic function with CMOS and to determine the maximum 
possible speed of the circuit. It uses the following concepts: 

logical effort g: The total gate capacitance of a logic gate 
relative to that of a minimum-sued inverter 
electrical effort h: The ratio of output capacitance of a gate 
to its input capacitance 
branching effort b: The ratio of total capacitive load on 
one logic gate's output to the gate capacitance of the next 
gate on the path examined 
parasitic delay p: The total diffusion capacitance on the 
output node of a gate relative to that of a minimum-sized 
inverter. 

The delay of a single gate can be calculated as: 

To find the delay along a path, we first calculate the total path 
effort: 

d = g h i p  (1) 

F = GBH (2) 
where G = IIg, B = IIb, and H = IIh. IIg means the product 

of the logical effort of all the gates along the path. Similarly, 
l lb  is for the total branch effort and IIh for the total electrical 
effort. The total electrical effort H = IIh reduces to the ratio 
of the output Capacitance loading the last gate to the gate 
capacitance of the fmt gate on the path. Normally, we assume 
a circuit drives a copy of itself, so H =  1. 

Once the path effort has been calculated, the ideal number 
of stages required to achieve the logical function can be 
estimated as: 

where 3.6 is the stage effort achieving the best performance 
[12]. N is then rounded to the nearest integer that is 
reasonable for the path, and the effort delay for each stage can 

N = log, 8. (3) 
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be calculated as: 
(4) a = F'" 

a can be used to decide the transistor size in each stage 
along the path. The basic idea is to estimate the number of 
stages using the ideal stage effort a-3.6, and then calculate the 
real a from the estimated number of stages. Finally, the total 
delay of the path can be calculated as: 

where P = G. We results in (5) are in the basic time unit 
used in logical effort, which is independent of process 
technology. Dividing D in (5) by five gives the estimated 
delay in terms of fan-out of four (F04). the delay of an 
inverter that drives four identical inverters. 

D = N a + P ,  (5) 

III. BIT PERMUTATION INSTRUCTIONS 

We now describe the permutation instructions CROSS, 
BFLY, OMFLIP and GRP. 

A. CROSS 
The CROSS instruction defined in [6] is based on the Benes 

network. A Benes network consists of a butterfly network 
followed by an inverse butterfly network. An n-bit butterfly 
network consists of log@) stages. In each stage, n bits are 
divided into n/2 pairs. Two bits in a pair can go to the same 
position at the output or exchange position with the other one. 
This is determined by a single control bit. So n / Z  control bits 
are needed for n/2 data pairs at each stage. The stages are 
differentiated by bow bits are paired. If we count stages 
starting fiom 1, the distance between two paired bits in stage i 
is 1112'. Figure 1 shows an example of a 16-bit butterfly 
network. Each small box is like a 2:l MUX, where one of two 
bits in a pair is selected. In the first stage, the distance 
between two paired bits is 16/2 = 8. In the last stage, the 
distance is one, i.e., two bits are next to each other. 

Figure I :  A 16-bit butterfly network 

The inverse butterfly network can be constructed by 
reversing the stages in a butterfly network. 

A Benes network is constructed by concatenating a butterfly 
network with an inverse butterfly network. A CROSS 
instruction is defined as: 

CROSS.ml.rn2 Rd, Rs, RC 

CROSS permutes the bits in Rs using any two stages in a 
Benes network that are specified by ml and m2, and stores the 
permuted bits in Rd. The two stages specified by ml and m2 
are coniigured with bits in Rc; the lower n/2 bits are used to 
configure Stage ml, and higher n/Z bits to configure Stage m2. 
A method is given in [6] to configure a Benes network to 
perform any permutations of the input bits using all stages in a 
Benes network. log(n) CROSS instructions are needed to 
achieve any one of the n! permutations of n bits. 

E. BFLY 
We BFLY instruction is also based on the Benes network 

However, BFLY uses the full butterfly network (six stages for 
64 bits) to permute input bits while CROSS uses only two 
stages of the butterfly network or inverse butterfly network per 
instruction. 

To perform arbitrary n-bit permutations, another instruction 
IBFLY is required to permute bits with the full inverse 
butterfly network. In th is  paper, we focus only on the BFLY 
instruction. IBFLY will have similar latency as BFLY. 

C. OMFLIP 
The OMFLIP instruction is based on the omega-flip 

network. A full omega network consists of log@) omega 
stages, and all omega stages are the same; a full flip network 
consists of log(n) flip stages, and all flip stages are the same. 
A full omega-flip network, constructed by concatenating a full 
omega network with a full flip network, is isomorphic to a 
Benes network. An OMFLIP instruction permutes bits with 
two stages of the full omega-flip network, and log@) 
instructions can perform arbitrary n-bit permutation. 

OMFLIP uses only two stages each time, and all omega 
stages or all flip stages are the same. Hence, only two omega 
stages and two flip stages are enough to do the OMFLIP 
instructions. Such a 4-stage network is shown in Figure 2. 
Unlike CROSS, the number of stages in the functional unit 
does not depend on the number of bits to be permuted. 

OWPUT 

Figure 2: A +stage omega-flip network for 16-bit O M n I P  operations 
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D. GFP 
The GRP instruction is defined as: 

The GRP instruction permutes the data bits in Rs according 
to the control bits in Rc. The bits in Rs are divided into two 
groups depending on whether the corresponding bit in Rc is 0 
or I .  The two groups of bits are then placed next to each other 
in Rd. The bits with a control bit of 0 are placed at tbe left 
end; the bits with a control bit of 1 at tbe right end. Figure 3 
shows an example of an 8-bit GRP operation. Since the 
control bit of b, c,f; and h is 0, these four bits are placed at the 
left end in Rd. a, d, e, and p are placed at the right end 

GRP R d ,  Rs, RC 

Rs a j b / c l d l e ] f / g l h  

output 0, and a select signal sel. The output o is connected 
with the input i wben and only wben sel = 1. In Figure 6, (b, 
11, 12, I,) and (4, Is, la, 17) are tbe outputs of two GRP4Z 
circuits. In both of them, z bits are already placed at the left 
end and other bits at the right end are set to 0. Those bits that 
are set to 0 will be referred to as padded Os. (&, S3, S2, SI, So) 
is a one-hot code indicating the number of padded Os in 6, I , ,  
12, 13). Depending on bow many padded Os are in (b, I,, 12, I,), 
one of (&, S,, S2, SI, SO) is set to 1, and that bit determines at 
which row the outputs are connected to the inputs. At the 
output, padded Os in (b, I,, 12, 13) are replaced with bits 
shifting in from (4, Is, IS, 17), and all the z bits are located at 
the left end. For example, wben (Io, 11, 12) are z bits and 1, is a 
padded 0, only SI is set to 1. The inputs and outputs are 
connected at the second row. The output (Oo, ..., 0,) = (b, I,, 
4 , 4 ,  Is, la, 17, 0). 

ni2 bits d2 bits 

Figure 3: 8-bit GRP operation 

There are many ways to implement a GRP operation. Here, 
we describe a parallel implementation. For convenience, the 
bits in Rs with a control bit of 0 are referred to as i bits, and 
the bits with control bit of 1 as M' bits. The GRP operation can 
he performed in three conceptual steps. Step 1 grabs all z bits 
and sets other bits in the word to 0; Step 2 grabs w bits and 
sets other bits in tbe word to 0; Step 3 merges the z hits and 
the w bits by OR-ing the results generated in the two previous 
steps. Step 3 is straightforward. And if we can grab z bits in 
Step 1, Step 2 can use the same circuit to grab w bits for 
flipping control bits changes w bits to z bits. 

We use the divide-and-conquer strategy to grab z bits in n 
bits, as shown in Figure 4. First, the n input bits are divided 
into two halves. After putting z bits at the left end in each half, 
we combine the z bits in both halves, putting all z bits at the 
left end and setting the rest of the bits to 0. For each half of 
n/2 bits, we can apply the same method by dividing them into 
two halves of d 4  bits. Each set of nl4 bits can be further 
divided into smaller sets until every set has only one bit. For 
sets that has only one bit, the z bit is already at the left end if 
the only bit is a z bit. Othenvise, it is set to 0. This can be 
done with the circuit shown in Figure 5, which we call GRF'IZ. 
In the figure, i is the input data bit, and c is the corresponding 
control bit. When c = 0, the output d = i because i is a z bit. 
When c = 1, d is set to 0. ( k , ,  ko) is one-bot code indicating 
the number of bits that are set to 0 in (4. So (k , ,  $) = (1, 0) 
when c = 1 because one bit d is set to 0. 

A circuit that grabs z bits from a n-bit set is called GRPeZ. 
GRF'IZ is illustrated in Figure 5.  GRPZZ consists of two 
GRPlZs, and combines their outputs; the circuit that does 
combination is called GRP2ZD. GRP4Z consists of two 
GRP2ZDs, and combines their results with a GRPPZD, and so 
on. Figure 6 presents a diagram of GRPIZD, wbicb combines 
z bits eom two 4-bit sets. Each small box is the basic cell that 
is shown in Figure 7. The basic cell has a data input i, a data 

I n bits I 

zbitr OS 

Figure 4; Grab z bits recursively 

C i 

k ,ko d 
Figure 5 :  GRPlZ the fim stage in GRP units 

10 I1 U U 14 I5 16 
I I I I I I I Y 9  

0 0  01 0 2  0 3  04 05 06 0 7  

Figure 6: Diagram ofGRP8ZD 

The circuits generating select signals have a similar 
stmcture to that of the data combining circuits shown in 
Figure 6. These circuits generate tbe number of padded Os in 
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T T each set of data bits. We call these circuits GRPIZS, GRPZZS, 
GRP4ZS, and so on. 

Figure 7: Basic cell 

Figure 8 shows the block diagram of the datapath of GRF'64, 
a GRP functional unit for 64 bits. We first use GRF'IZ to 
generate z bits and w bits for I-bit groups. Then, we keep 
combining the output of smaller sets to generate z hits and w 
bits for a larger sei until we get all the z bits and w bits for the 
64 bits. Then, the z bits and w bits are combined with OR 
gates to get the result of the &bit GRP operations. 

MdafabiaMdMW 
M h  bitrdfflcmm4 bim &bib h.reve!Tcoda 

A 
~ 

. .... .. ... ..... ... .. ...~ g::::.pg ~~ p)p-J 
. ~~~ ...... ~ .........,.,. ... 

* 
--m 

Figure 8: Diagram of GRPM 

w. ANALYSIS OF DIFFEREN? PERMUTATION CIRCUITS 

We now estimate the delay of the 64-bit permutation 
functional units that performs the BFLY, OMFLIP, and GRP 
instructions. As mentioned earlier, we assume each 
permutation unit drives a copy of itself. 

In OUT calculation, only the capacitance of the wires is 
considered. Wires are converted into a number of inverters, 
the total input capacitance of which is the same as the 
capacitance of the wires. We estimate the capacitance of a 
wire traveling across a cell as equivalent to 1 0  the input 
capacitance of a minimum-sized inverter [Appendix A]. 

A. BFLY burteifly nehvork latency 
In the butterfly network shown in Figure I, each box can be 

considered as a 2:l MUX. In a real implementation, we use 
2: 1 MUXl shown in Figure 9 instead of MUX. MUXl works 
similarly to a MUX except that the output of MUXI is inverted. 
This causes no problem as long as signals are inverted an even 
number of times. 

1 i 
Figure 9 T m i s t o r  diagram of a 2 1  MLixl 

The numbers in Figure 9 indicate the ratio of the width of 
transistors to the width of an N-type transistor in a minimum- 
sized inverter. To achieve the same drive characteristics as a 
minimum-sized inverter, we double the size of transistors that 
are connected io series. The parasitic delay of the 2 1  MUXI 
can be calculated as [12]: 

The denominator in (6) is the sum of the width of transistors 
that are connected to the output in a minimum-sized inverter; 
and the numerator is the sum of width of transistors that 
connected to the output in tbe MUXI. 

The capacitance of each input is twice that of a minimum- 
sized inverter. Therefore, the logical effort per data input is 2. 
The logical effort of the select si& is 4. 

Theload of the gates in each stage, except for the last stage, 
consists of wires and MUXIS in the next stage. As mentioned 
earlier, wires are converted into a number of inverten that 
have the same capacitance, and then can be modeled as 
branching effort. Let Nee,ls be the number of cells that the 
longest wire travels across in a stage. Since an output in a 
stage needs to drive the wire and two data inputs of 2:I 
MUXIs, we can estimate the branching effort in each stage 
with the following formula [12]: 

Table 1 lists the branching effort, logical effort, and the 
parasitic delay of gates on the critical path of a full 64-bit 
butterfly network. We use (7) to calculate the branching effort 
in all stages except for the last stage. The load of the last stage 
is the wire and the select signals in the first stage because we 
assume the circuit drives another copy of itself. Suppose the 
select signal has to cross 32 celk to reach both MUXIS in the 
first stage. In addition, the select signal needs to drive the 
select signal for two 2:l MUXIs; each bas a gate capacitance 
four times as a minimum-sized inverter (See Figure 9). The 
branching effort before the inverter in the 2:l MUXIS can be 
calculated as: 

In Table I ,  the p in Stage 1 is five because of the inverter in 
2:l MUXIS for the select signal. 

(3213 + 2 x 4) I 2  = 2813 
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TABLE I: LOGICAL EFFORT AND Pmsmc DELAY M B U T T E R ~ Y  NETWORK 

Stage Critical 

MUXl Track+ 161-2 
2 m s  = 1413 

2 MUXl Track+ 8/6+2 2 4 

%age I Gale I Load I b 1 1 1 1 U .  
1 M W i n  Track+ (3213+3*2)12 2 5 

2 I 3:1 MUXl I Track+ I (3213+3*2)12 I 2 I 6 
3 I M U X  33:IMUXIs =25/3 

Z M U X I E  

2 m r  =I316 
2813 

I I 2 select signals I I l l  
Total I I I 1957.31 I 64 I 25 

The total effort can be calculated as 
F = C B H = 6 4 x l 9 5 7 . 3 1 ~  1=125267.84 
The optimal number of stages is: 
N = log lp  = 9 
There are already seven stages (including the inverter inside 

the fust MUXI). Two inverters can be added along the path to 
drive long wires. This increases the parasitic delay by two. 
Therefore, the total delay is: 

D = N ~ F " ~ ' + P = 9 ~ 1 2 5 2 6 7 . 8 4 ' " + ( 2 5 + 2 ) = 6 0 . 2  
Hence, the delay is about 12.0 F04. 
The delay of the inverse butterfly network is estimated as 

13.0 F04 [Appendix B], slightly longer than the delay of the 
butterfly network. 

B. 
The OMFLIP instruction can be performed with a 4-stage 

omega-flip network that has two omega stages and two flip 
stages. Since it uses only two of the four stages each time, 
data need to pass through the other two stages. Such pass 
through paths do not exist in omega or flip stages, so they 
need to he added in the stages. After the pass through paths 
are added, an output in an omega or a flip stage can choose 
one fiom three input bits. Two of them are defined by omega 
or flip stages (Figure 2) and the third is for the pass through 
path. So each box in Figure 2 can be implemented with the 
3:l MUXes that is shown in Figure 10. In tbe figure, data bits 
either go through two 2:l MUXI or one inverter and one 2:l 
MUXI. MUXll chooses one from in-0 and in-1, the two 
paired bits defined by the omega or flip network. MUXIZ 
chooses one from the output of MUXll and the pass-through 
source i n g .  Since MUXI2 inverts the input, i n g  is inverted 
before going to MUXI2. l f p a s s  = 1 in a stage, data take the 
pass through path. Alternatively, 3:l MUXIS may be used for 
shorter delays from the data input to the output. The diagram 
of a 3:l MUXI is presented in Figure 11. Figure l l a  shows 
the transistors for selecting data inputs, which have similar 
structure as those in 2:l MUXIs. The select signals in Figure 
I l a  are generated in Figure l l h  from pass and se/. The 
parasitic delay of 3:l MUXIS is six; and the logical effort per 
data input is two, the same as that for 2:l M U X I s .  Since 3:l 
MUXIS have shorter delays from the data input to the output, 
we will use them to implement omega or flip stages except for 

4-srage omega andfl ip  network latency 

the fmt  omega stage, where the delay is dominated by the 
select signal. In the first omega stage, 3:l MUXes will be 
used for they have short delays frompass to the output. 

I 

Figure IO Implementing a 3:l MlJX with 2 1  MUXIS 

T T T 

0wl.U 
151 

NAND1 

b) 

Figure I I :  3:1 MUXlrforomegaarllipstages 

T4BLE 2 LOGICAL EFFORT PARASITIC DELAY FOR 4-STAGE OMEGA-FLIP 
NEWORK 

I I33:IMUXIr 112513 
3 I 3:1 MUXl I Track+ I (3213+3*21/2 I 2 I 6 

I I 3 3 : l M U x l s  I =25/3 I I  
4 I 3 : l M U x I  I NOT I I  I 2  1 6  

1 NOT I Track+ 1 (6413+64*4Y2 I 1 I I 
I I 64 select signals I 41613 I I  

Total 1 I I 80246.91 1 1 6 1 2 4  

The logical effort, branching effort, and parasitic delay for 
4-stage omega-flip network are listed in Table 2. 

883 

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore.  Restrictions apply.



The output of the fust three stages needs to drive wires and 
three data inputs of 3:1 MUXIs. The longest wire in a stage 

tahle, TG.sel refers to the select input of a TG, and TG.1 refers 
to the data inuut. 

GRPfflD 
- 

INV 1 i 2  

TPJ - 
Total 

Il?? ~- NOR+TRACK 128 133/5 U3 3 
NOR INV I 513 2 
I N V I N Y  2 1 1 

Z.OZxl0" 35.56 18 

,. .Yb,.O. -_I 

o f m .  The parasitic delayp becomes three because o f w .  
Since TGs generate the inverted Signals, Some Stages may 

have the inverted select signals. In such stages, We use ITGS 
instead of TGs and inverters. Figure 13 shows the diagram Of 

Since there are two in G W ~ D ,  we aheady have 1 I 
stages shown in Table 3. Twelve inverten need to be added 
along the path to drive the large load. The delay of the path 
can be calculated as: 

an ITG, which is the same as a TG except that it uses the 
inverted select signal. In a TG, the input goes to the output 
when sel = 1 while in an ITG, the input goes to the output 

D=N p / ~ +  = 13 F1/23 + (18 + 12) = 13.30 
when divided by five, this is about 22,7 ~ 0 4 ,  

when sel = 0. The input load of the data input i in an ITG is 
the same as in a TG; the input load of sel increases to 7/3. If 
the critical path extends Gom sel to nsel to o, an f l ~  has = 

D, 
Table 4 compares the latency of the different 64-bit 

permutation functional units. We see that GRF' is the slowest, 

disnrssion 

884 

Authorized licensed use limited to: Princeton University. Downloaded on January 17, 2009 at 18:01 from IEEE Xplore.  Restrictions apply.



Functional Unit 
GRP 

OMFLIP (4 stages with pass-throughs) 
BFLY (c~tagc Buttemy network) 

to whether a faster implementation of the GRP instruction 
exists, and this can be investigated in future work. 
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, Process technology 0.25 pm 0.18 pm 

Fringing capacitance of M1 35 aF1pm 38.5 aFipm 

I WidthafMl meks I 0.45 pm I 0.30 pm 

Gate capacitance of 
a minimum-sired inverter 

I I I 
101.50aF 100.1 aF 7 Capacitance of MI mck per pm 

I Number of inverters with equivalent I 0.045 I 0.062 

2.25 ff 1.61 ff 

Number of invenm with equivalent =I13 -113 
capacitance ofwire haveling across a 

1 I cell I I I 

The gate capacitance of minimum-sized inverter, which is 

g-/en x (g_len x 2 + g l e n  x 4) x g-cap 
listed in row 3 in the tahle, is calculated as [17]: 

where g-len is feature size of the process technology, and two 
and four are the width-to-length ratio of nFET and pFET, 
respectively. g-cap is the gate capacitance per unit area. 

The wire capacitance of I-pm MI track, which is listed in 
row 7 in the table, is calculated as [17]: 

area-cap x w n i d t h  +pinging-cap x 2 
where w-width is the width of the wire; area-cap is the 
capacitance per unit area and pinging-cap is the fringing 
capacitance per unit length. The length of the wire does not 

appear in the formula because it is one here. 
Row 8 in the table is the number of minimum-size inverters 

that have a capacitance equivalent to that of I-pm wire. It is 
calculated by dividing row 7 by row 3. 

In 0.25pm technology, the height of 2:l MUXI is 6.4 pm 
[IS], and the width ranges from 6.3pm to 7.2pm, where 
smaller ones are used to drive small loads. It is safer to 
choose a larger one. 

Row 10 is generated by multiplying row 9 by row 8. 
Table 5 shows the capacitance of wire extending across a 

2:1 MUXl is approximately one third of the capacitance of a 
minimum-sized inverter. Burgess uses similar method in [ 181 
to estimate the delay of adders, and shows the estimation 
matches the simulation results well. 

B. 
The following table lists the branching effort, logical effort, 

and parasitic delay for calculating the delay of the inverse 
butterfly network In the table, all MUXIS refer to 2:l MUXIs. 

Delay of inverse butierfly network 

TABLE 6: LOGICAL EFFORT AN0 PARASITIC DELAY OF THE MVERSE 
BWIERFLV NETWORK 

I I I I  
Total I I I 6624.74 1 6 4 1 2 5  

The total effort can be calculated as: 
F = G B H = 6 4 ~ 1 9 5 7 . 3 1 ~ 1 = 4 2 3 9 8 3 . 3 6  
The optimal number of stage is: 
N = log, 6 = 9 
Since there are already seven stages (including the inverter 

inside MUXI), we add two inverters on each path. This will 
increase the parasitic delay by 2. Therefore, the delay is: 

D = N x F”” + P = 9 x  FIB + 2 5 + 2  = 65.0 
When divided by 5 ,  this is about 13.0 F04. 
The inverse butterfly network is slightly slower than the 

butterfly network because the delay of the stage that has the 
longest wires can not overlap with the delay of the control 
signals. 
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