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ABSTRACT
Software cache-based side channel attacks present a serious
threat to computer systems. Previously proposed counter-
measures were either too costly for practical use or only
effective against particular attacks. Thus, a recent work
identified cache interferences in general as the root cause
and proposed two new cache designs, namely partition-
locked cache (PLcache) and random permutation cache (RP-
cache), to defeat cache-based side channel attacks by elim-
inating/obfuscating cache interferences. In this paper, we
analyze these new cache designs and identify significant vul-
nerabilities and shortcomings of those new cache designs.
We also propose possible solutions and improvements over
the original new cache designs to overcome the identified
shortcomings.

Categories and Subject Descriptors
E.3 [Data Encryption]: [Code breaking]; B.3.2 [Memory
Structures]: Design Styles—Cache memories

General Terms
Security

Keywords
Cache Architecture, Cryptanalysis, Cache Attack, Timing
Attack, Side-Channel Analysis, Microarchitectural Analysis

1. INTRODUCTION
Concrete implementations of theoretically “bullet-proof”

cryptographic algorithms may possess certain weaknesses
due to physical properties of those implementations. For ex-
ample, an adversary can observe so-called “side channel’” in-
formation such as the power consumption of a cryptographic
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chip or the execution times of cryptographic applications to
derive confidential information, particularly secret keys.

Although previous efforts were often focused on embed-
ded systems like smart cards, practical side channel attacks
have been demonstrated on modern commodity computer
systems [12, 7, 23]. Recent software-based side channel at-
tacks exploiting architectural features such as data caches
([6, 10, 11, 16, 19, 22]), instruction caches ([2]), shared func-
tional units ([5]) and branch predictors ([3, 4]) are gaining
increased attention as these attacks do not require physical
device access and only conduct legitimate activities. As a
result, they pose serious threats to the security of computer
systems. This is also apparent from the fact that widely used
cryptographic software, e.g. OpenSSL, have gone through
several revisions (e.g. [17, 18]) to strengthen their imple-
mentations against side channel cryptanalysis techniques.
Furthermore, the recent AES instruction addition to the
x86 ISA from Intel explicitly mentions protection against
software-based side-channels as one of the justifications for
the new AES instructions [15].

Moreover, this microarchitectural threat gets much more
severe due to recent developments, which propose to enable
the so called performance counter paradigm also within the
user mode level (CPL=3) of the Intel x86 or AMD64 archi-
tecture, cf. [9]. Here, the goal is to enable modules such as
dynamic optimizers and managed runtime environments to
monitor the currently running program with very high ac-
curacy and resolution, thereby allowing them to report on
performance problems and opportunities and fix them im-
mediately. Although this is nowadays a definitely required
feature within the growing Web-based and Java-oriented
software engineering efforts, the security implications are
also very clear as pointed by AMD. I.e., “. . . the operating
system must ensure that information does not leak from one
process to another or from the kernel to a user process”, cf.
[9].

Although caches are highly effective in reducing average
memory access time and thus widely used in modern proces-
sors, their internal functionalities, i.e., hit/miss behaviors,
were shown to leak critical information that puts trusted
software implementations in an unforeseen danger. Of course,
some mitigation methods were proposed to defend against
software cache-based side channel attacks immediately after
the realization of cache architectures as a new side channel
source for malicious attacks [20, 10, 19, 22]. However, as



also stated in [25], we have seen only what we can call “ad-
hoc” solutions to these security problems so far. In other
words, each different cache-based side-channel vulnerability
was analyzed separately and the software mitigation were
proposed in a case-by-case basis. Furthermore, one needs to
employ all of these countermeasures together, which brings
significant performance overhead, in an implementation to
achieve a reasonable security level.

Wang et. al. realized the lack of a comprehensive hard-
ware solution to mitigate cache attacks with low perfor-
mance overhead and tried to address this issue by proposing
new cache designs [25]. They analyzed some cache-based
side-channel attacks, identified their root causes, and pro-
posed two different cache architectures, Partition-Locked
cache (PLcache) and Random Permutation cache (RPcache).
Unfortunately, the authors of [25] did not consider every
known cache attack, especially the type of attacks known
as cache-collision attacks. Therefore, their proposals do not
provide sufficient security levels as will be shown in later
sections.

In this paper, we analyze these two cache designs and em-
pirically prove that they fall short on avoiding some cache
attacks. We simulated a MIPS R10000 processor with these
new cache designs using a timing simulator tool, which is
built upon the Simplescalar toolset [13]. We ran several
cache attacks on this simulated CPU and used OpenSSL’s
AES implementation as our target cryptosystem applica-
tion. Our results show that these cache architectures are
still vulnerable to cache attacks. Eventually, we will dis-
cuss possible solutions and improvements over the original
designs to overcome the identified shortcomings of PLcache
and RPcache.

Our paper is organized as follows. The following section
gives a short introduction into AES, its usual software im-
plementation and reviews also the known cache-based side-
channel attacks against AES. The next section presents then
the recently proposed new cache designs from Wang et. al.
[25], while section 4 analyzes the respective security of these
new cache designs. After having presented in section 4 their
security shortcomings, we will discuss in section 5 some po-
tential improvements of the new cache designs from Wang
et. al. [25]. The paper finishes with some conclusions in
section 6.

2. BACKGROUND

2.1 AES and Its Software Implementation
Rijndael ([14]) is a symmetric block cipher, which was an-

nounced as Advanced Encryption Standard (AES) by NIST
[8]. AES allows key sizes of 128, 192, and 256 bits and oper-
ates on 128-bit blocks. For simplicity, we will describe only
the 128-bit version of the algorithm in this paper.

AES performs operations on a 4x4 byte-matrix, called
State, which is the basic data structure of the algorithm.
The algorithm is composed of a certain number of rounds
depending on the length of the key. When the key is 128 bits
long, the encryption algorithm has 10 rounds of computa-
tions, all except the last one of which performs the same op-
erations. Each round has different component functions and
a round key, which is derived from the original cipherkey.
The four component functions are

• SubBytes Transformation,

• ShiftRows Transformation,

• MixColumns Transformation,

• and AddRoundKey Operation.

The AES encryption algorithm has an initial application
of the AddRoundKey operation followed by 9 rounds and a
final round. The first 9 rounds use all of these component
functions in the given order. The MixColumns Transforma-
tion is excluded in the last round. A separate key scheduling
function is used to generate all of the round keys, which are
also represented as 4x4 byte-matrices, from the initial key.
The details of the algorithm can be found in [14] and [8].

The most widely used software implementation of AES
is described in [14] and it is designed especially for 32-bit
architectures. To speed up encrytion, all of the component
functions of AES, except AddRoundKey, are combined into
lookup tables and the rounds turn to be composed of table
lookups and bitwise exclusive-or (XOR) operations. The five
lookup tables T0, T1, T2, T3, T4 employed in this imple-
mentation are generated from the actual AES S-box values
as the following way:

T0[x] = (2 • s(x), s(x), s(x), 3 • s(x)),

T1[x] = (3 • s(x), 2 • s(x), s(x), s(x)),

T2[x] = (s(x), 3 • s(x), 2 • s(x), s(x)),

T3[x] = (s(x), s(x), 3 • s(x), 2 • s(x)),

T4[x] = (s(x), s(x), s(x), s(x)) ,

where s(x) and • stand for the result of an AES S-box lookup
for the input value x and the finite field multiplication in
GF (28) as it is realized in AES, respectively.

As shown in Figure 1, in a typical 128-bit-key 10-round
AES implementation, each round has two inputs, 16-byte
xi

0, ..., xi
15, which is the output from the previous round,

and 16-byte round key ki
0, ..., ki

15, which are pre-computed
from the 16-byte secret key k0, ..., k15. Each of the lookup
tables T0, T1, T2, and T3 contains 256 pre-computed 4-byte
values. The initial state x0

0, ..., x0
15 is computed by 16-byte

plaintext p0, ..., p15 XORed with the key k0, ..., k15. The
last round uses another set of tables (T4, T4, T4, T4) and
its output is the ciphertext.

Since the initial state, which is computed by XORing the
plaintext and the secret key, is used as the table indices
in the first round; an adversary can recover the key if the
plaintext and the table indices are known . The strength of
AES depends on the infeasibility of recovering the table in-
dices, which is a valid argument in the context of theoretical
cryptanalysis, even in the case when an adversary has an un-
limited number of plaintext and ciphertext pairs computed
under the same secret key. Although AES is (still) secure
in theory, cache attacks can, in practice, directly exploit the
implementation weaknesses to recover the table indices.

2.2 Software Cache-based Side-Channel
Attacks

We have seen an increased research efforts on the side-
channel analysis of commodity PC platforms for the last
few years, especially after the realization of some processor
components causing serious side-channel leakages. These ef-
forts led to the development of the new Microarchitectural
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Figure 1: Round computations in AES.
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Figure 2: An example of access-driven attacks: prime and probe caches.

Analysis (MA) research area. Those attacks exploit the mi-
croarchitectural components of a processor to reveal cryp-
tographic keys. The functionality of some processor com-
ponents such as cache and branch predictors generates data
dependent variations in execution time and power consump-
tion during the execution of cryptosystems. These variations
either directly gives the key value out during a single cipher
execution (c.f. [3]) or leaks information which can be gath-
ered during many executions and analyzed to compromise
the system (c.f. [19, 10, 16]).

There are currently four main types of MA attacks in the
literature: Data Cache, Instruction Cache Attacks, Branch
Prediction Analysis, and Shared Functional Unit Attacks.
In this paper, our focus will only be on data cache attacks,
which are usually referred to as cache-based side-channel
attacks or simply cache attacks in the literature.

Cache attacks exploit the cache behavior of a cryptosys-
tem by obtaining the execution time and/or the power con-
sumption variations generated via cache hits and misses.
Cache analysis techniques enable an unprivileged process to
attack another process, e.g., a cipher process, running in
parallel on the same processor as done in [19, 16, 22]. Fur-
thermore, some of the cache attacks can even be carried out
remotely, e.g., over a local network [6].

Theoretical cache attacks were first described by Page in
[20]. He characterized two types of cache attacks: trace-
driven and time-driven. Later, we saw another type of cache
attack, which is now referred as access-driven, in [22, 19].
We will discuss time-driven and access-driven attacks in this
paper and exclude trace-driven attacks due to the fact that

there is no instance of a software based trace-driven attack
in the literature.

2.2.1 Access-driven Cache Attacks
Figure 2 illustrates access-driven attacks on a target crypto

application — AES as in our case. A typical access-driven
attack consists of the following steps:

1. The attacker occupies the entire cache with his own
data (Figure 2a). This can be accomplished by an
attack process/thread through loading a large array
into the cache.

2. He then invokes an AES execution. During execution,
the cipher issues table lookups with the indices de-
pending on the key and the plaintext, and the corre-
sponding parts of the AES tables will be loaded into
the cache (Figure 2b). Since some parts of the at-
tacker’s array will be evicted from the cache, the cache
state after the encryption becomes dependent on the
accessed table indices and thus leaks information of
the secret key.1

3. Shortly after the encryption, the attacker reads again
its own large array, but this time he also measures
the time to read each individual cache line. Since the

1The fact that one single cache line contains multiple table
elements and multiple rounds share the same set of tables
do reduce the leaked information. However, the full key can
still be recovered statistically as discussed in [19]. It is also
the same case for time-driven attacks.
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Figure 3: The relationship between the number of
collisions in the final round and the encryption time.

cache lines that have been already evicted from the
cache require a longer time to read compared to the
data still inside the cache, he knows which cache lines
were replaced by the AES execution. In other words,
the attacker can infer which parts of the AES lookup
tables have been accessed during the encryption.

Neve et al. [16] have demonstrated that an adversary can
get fine-grained cache behavior snapshots of an AES pro-
cess on single-threaded processors by manipulating the OS
scheduling. It is also shown there that observing a small
number of encryptions under the same key provides suffi-
cient information to recover a full 128-bit AES key. Multi-
threaded architectures facilitate this class of attacks since
attackers can use a hardware-assisted spy process to moni-
tor the execution of the crypto process on-the-fly during the
encryption, as demonstrated by Acıiçmez [2], Osvik et. al.
[19], and Percival [22]. Although the attacks in [2] and [22]
are against RSA, the RSA-vulnerability associated with ta-
ble lookups is similar to the AES attacks presented in [19].
All these access-driven attacks exploit the same root cause:
the shared cache among processes/threads.

2.2.2 Time-driven Cache Attacks
The first cache-based timing attack against AES was in-

troduced by Bernstein [10]. His attack exploits the statisti-
cal correlations between the AES encryption time variations
and inputs to the encryption, i.e., plaintext and cipher key.

This attack was analyzed in [25] and cache interferences are
identified as the root cause. However, Bernstein’s attack is
not the only time-driven cache attack. A more recent time-
driven attack, named “cache-collision attack”, has different
characteristics. Therefore, the countermeasures designed to
defeat Bernstein’s attack, including the ones proposed in
[25], may not provide sufficient protection against cache-
collision attacks, which is the case as shown in this paper.

An AES encryption operation can be viewed as a se-
quence of table lookups and some additional computations.
A “cache collision” occurs when two lookups refer to the
same element in a table. In this case, the second lookup will
certainly be a cache hit. If there is no cache collision, the
second lookup may be a cache miss. Statistically, a higher
number of cache collisions lead to a smaller number of cache
misses in an encryption and thus a shorter encryption time
compared to encryptions with a smaller number (or zero)
of cache collisions. This statement has been experimen-
tally verified in [6, 11, 24]. We have also confirmed it by
re-producing the experimental results of the so-called last
round AES attack described in [11, 24] on both a real Pen-
tium 4 machine and a simulated processor model (our pro-
cessor configuration is given in Table 1). Our results 2 are
shown in Figure 3 and they are computed from 16 million
encryptions (each encryption starts with a clean cache) of
16-byte random plaintexts. Each point in this figure shows
the variation between the mean encryption time based on
the runs with the same number of collisions and the overall
mean encryption time. One can see that the mean encryp-
tion time decreases as the total number of collisions for the
last round increases. The non-decreasing effects of the last
data point (encryption runs with 6 collisions) are mainly due
to an insufficient number of the samples with such a high
number of cache collisions, thereby not statistically signifi-
cant.

Cache collision attacks work as follows: Assume there are
two table lookups ki ⊕ xi and kj ⊕ xj where ki, kj are the
AES encryption key bytes and xi, xj are plaintext bytes
for the first round. If used for the last round, ki, kj are
expanded last round key bytes and xi, xj are ciphertext
bytes. The essence of the attack is to find the correct key
difference between ki and kj , i.e., ki ⊕ kj . If there is a
collision between ki⊕xi and kj ⊕xj , the following equation
holds:

ki ⊕ xi = kj ⊕ xj ⇐⇒ ki ⊕ kj = xi ⊕ xj (1)

From a large number of samples, attackers can expect that
among all possible 256 values of xi ⊕ xj , the one with the
smallest mean encryption time implies a cache collision and
therefore corresponds to the correct value of the key byte
difference ki ⊕ kj . Figure 4 shows one such example for the
last round attack. The figure shows the mean encryption
time for each of the 256 values of x0 ⊕ x1, where x0,x1 are
the first two bytes of the ciphertext. Here, the mean en-
cryption times are computed from 16 million encryptions
under the same key on both a real Pentium 4 machine and
our simulated processor. The actual difference between the
first key byte and the second key byte (i.e. k0 ⊕ k1) is 254.

2In this paper, timing deviation is defined as the difference
between the mean encryption time among the samples with
the same feature, e.g., the same number of collisions, and
the mean encryption time among all the samples.
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Figure 4: The relationship between the mean en-
cryption time and x0 ⊕ x1 given k0 ⊕ k1 being 254.

As shown in Figure 4, among all possible values of x0 ⊕ x1,
the one with the smallest encryption time correctly reveals
the value of k0 ⊕ k1. As a result, an attacker only needs to
record the encryption time and the ciphertext to derive the
relationship among different key bytes. Then, an attacker
can conduct off-line analysis to recover the complete key.
Certain searching algorithms can also be used to dramati-
cally reduce the number of samples needed to recover the
key. Further details of cache collision attacks can be found
in [1, 6, 11, 24].

In summary, current time-driven attacks exploit the fact
that access to different levels of the memory hierarchy can
introduce observable time differences. If certain aspects of
the secret key correlate to the number of cache hits/misses,
the cipher is endangered by time-driven attacks. Further-
more, if attackers have the ability to set the initial “clean
cache” state, the number of required samples is reduced as
it is more likely for cache collisions to lead to reduced en-
cryption time.

3. RECENTLY PROPOSED NEW CACHE
DESIGNS FOR THWARTING SOFTWARE
CACHE-BASED SIDE CHANNEL ATTACKS

As stated above, we have seen only what we can call ”ad-
hoc” solutions to the cache side-channel problem so far.
In other words, different cache-based side-channel vulner-
abilities were analyzed separately and the software coun-
termeasures were proposed in a case-by-case basis as out-
lined above. One needs to employ many of these counter-
measures together, which may incur significant performance
overhead, to achieve a reasonable security level. Therefore,
we evidently need comprehensive, robust, and efficient de-

Original Cache Line
ID
L


Figure 5: The new cache line of the PLcache

fense techniques. Along this direction, Wang et. al. [25]
analyzed the Berstein’s time-driven attack [10] and Perci-
val’s access-driven attack [22]. They identified cache inter-
nal interference (interferences from the same process) and
external interference (interferences from different processes)
as the root cause of cache-based attacks and proposed two
new cache designs to overcome the cache interference effect.

3.1 Partition-Locked Cache
The concept of using partitioned caches against software

cache-based side channel attacks was introduced in [21]. It
is used to isolate the protected processes from others so
that cache interference among different processes (i.e., ex-
ternal interferences) becomes infeasible. Besides incurring
too much performance cost, this approach does not solve the
internal interference within the same process. The Partition-
Locked cache (PLcache) solves those problems with a fine-
grain locking over the cache lines. With support from PLcache,
software applications are able to lock critical data in the
cache in the granularity of one cache line size. Once a cache
line is locked in the cache, both external and internal in-
terferences cannot evict it. Therefore, an attacker cannot
observe the access pattern of the protected cache lines and
can not gain any useful information from the time variance
behavior associated with the accesses of those cache lines.

The PLcache design mainly includes two parts: hardware
support for locking and architecture exposures for software
applications. In the PLcache, each cache line has been aug-
mented with an ID field and a lock bit L. As shown in Fig-
ure 5, the ID indicates the owner of the cache line, normally
a process. The lock bit L indicates the locking state of the
cache line. These two fields will help cache replacement to
decide whether a cache line should be replaced as usual or
not. For the cache lines of the same process, the basic rule
is that incoming non-locked cache lines can’t replace locked
cache lines. For the cache lines of different processes, the
basic rule is that no incoming cache line of one process can
replace any locked cache line of another process. For the in-
terface to software applications, special instructions (ld lock,
ld unlock, st lock, st unlock) are introduced. They are used
to update the lock bit to control which cache lines should be
locked or unlocked. This way, software application can use
these special instructions to prevent their critical data be-
ing replaced by interferences, thereby defeating some cache
attacks.

PLcache has several advantages. The design addresses
the root cause of two analyzed attacks - cache interferences
and thus provide generic countermeasure support against
attacks based on that. Because of fine-grain locking control
over cache lines, it was also shown to have low performance
overhead on AES. In the meanwhile, however, excessive lock-
ing could cause unfairness problems and it was proposed to
have the operating system to manage the locking requests
from processes.
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3.2 Random-Permutation Cache
Rather than eliminating cache interferences as the PLcache

aims to achieve, the Random-Permutation cache (RPcache)
takes another perspective. It allows cache sharing and cache
interferences but it obfuscates the interferences so that no
useful information can be derived. A spy process can ob-
serve another process’ cache access only if the victim process
replaces the spy process’ cache lines deterministically. The
RPcache improves the security by making such replacements
random. In other words, the cache line address in the RP-
cache is generated in a random instead of a pre-determined
manner.

In the RPcache, each cache line is augmented with one
protection bit and an ID. As shown in Figure 6, the protec-
tion bit P indicates whether the cache line should be pro-
tected. The ID indicates the owner of the cache line, nor-
mally a process. In a case of interference, when the fetched
cache line and the chosen replacement cache line belong to
two different processes, the original cache set will not be
used. Instead, another cache set is chosen randomly and
replacement happens in that set. This process changes the
mapping between addresses and cache sets. To support it, a
hardware permutation table is introduced in the RPcache.
As shown in Figure 6, typically the protected process will use
the hardware random permutation table and thus indirectly
address the cache. Other processes will have no permutation
tables and therefore no address indirections. It was shown
that with such random permutation cache interferences leak
no information. Note the P bit is used to defend against
the cache attack in [10] and details about the defense can
be found in [25].

The novel RPcache design provides the security protection
against some analyzed cache attacks, particularly access-
driven attacks. In addition, it has the advantage of low
performance overhead and requires no changes in the pro-
grams.

4. SECURITY ANALYSIS OF THE NEW
CACHE DESIGNS

This section discusses the security problems of PLcache
and RPcache that we could identify. We have conducted
several experiments to support our claims. We implemented
both the PLcache and RPcache in our timing simulator.
Our simulator is developed upon the Simplescalar toolset

7-stage pipeline:
Fetch/Dispatch/Issue/RegisterRead
/EXE/WriteBack/Retire
Fetch/Dispatch/Issue/
MEM issue/Retire Bandwidth: 4

Superscalar Fully-symmetric Function Units: 4
Core Reorder Buffer size: 64

Issue Queue Size: 32
Load Store Queue Size: 32
Address Generation: 1 cycle

Execution Memory Access: 2 cycles
(hit in data cache)

Latencies Integer ALU ops: 1 cycle
Complex ops:MIPS R10000 latencies

Instruction Cache 32KB 2-way, Block size: 64B
10-cycle miss penalty

L1 Data Cache 32KB 2-way, Block size: 64B
10-cycle miss penalty

L2 Unified Cache 2MB 16-way, Block size: 64B
300-cycle miss penalty

Table 1: Processor Configuration

[13]. The simulator models MIPS R10000 processor, with
the default configuration shown in Table 1.

4.1 Analysis of PLcache
The PLcache design has two security deficiencies. The

first security vulnerability of the PLcache lies in the initial
phases of process execution. Only after all the critical data
of a crypto process are loaded into the cache, the PLcache
ensures that they are locked and stay in the cache. However,
when this crypto process starts to run, the critical data are
gradually loaded into the cache, making it vulnerable to
either access-driven or cache-collision attacks.

To illustrate this problem, we first ran an access-driven
attack on AES using our simulated processor model. In this
experiment, we started an AES process with a cold cache
and ran a spy process to observe the cache usage of the ci-
pher. Our spy routine asked the AES process to encrypt
single 16-byte message blocks and observed cache sets after
each encryption. The measurements of this spy process in-
dicate which blocks of AES tables had been accessed and
locked in the cache, as shown in Figure 7. For simplicity,
we only show the part of the cache that holds only one AES
table. The dark boxes represents the cache lines (or blocks
of this AES table) locked by the crypto process. As shown
from this figure, the PLcache leaks the cache usage informa-
tion of AES, which enables successful access-driven attacks.
It is reported that on average less than 15 clean observations
like the one in our experiment are sufficient to completely
break a 128-bit AES key [16].

Similarly, for cache-collision attacks, if an adversary can
set up a clean cache state before each encryption run, the
encryption time correlates to the number of cache collisions.
We implemented the PLcache in our timing processor sim-
ulator and used the analysis tool from Bonneau’s website 3

to conduct last round cache-collision attack. In this attack,
each encryption run starts with a clean cache state. The
encryption time and the cipher text are collected to derive

3http://www.jbonneau.com/research.html
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Figure 7: An example of using access-driven attacks to reveal cache line usage in the PLcache.

the relation between the key bytes. With 214 samples, the
derived relationship among different key bytes is enough for
the tool to successfully recover the complete 128-bit key.

Besides the security vulnerabilities discussed above, the
PLcache is also subject to denial-of-service attacks due to
its inherent over-locking problem. Even though OS over-
sight was proposed to properly handle the locking requests
or impose limit on the size of locked cache lines for each
process, the PLcache design does not support the locked
cache lines to be replaced when the owner process is not
running, i.e. switched out because of context switches. As a
result, processes may still lock too many cache lines, causing
fairness problem or even severely degrading other processes’
performance.

4.2 Analysis of RPcache
The main security issue with the RPcache is its vulnera-

bility to cache-collision attacks. In cache-collision attacks,
no interference is explicitly needed since their fundamental
cause is that higher number of cache collisions lead to lower
encryption time. As the RPcache does not guarantee that
all the protected data (e.g., the AES lookup tables) are in
the cache, this side channel still exists. We performed an
experiment to test whether the RPcache is vulnerable to
cache-collision attacks. In this experiment, we ran 16 mil-
lion encryptions upon random 16-byte data with the same
key and a clean cache state is setup before each encryption.
Figure 8 shows the timing characteristics collected from our
experiment. As shown in this figure, the relationship be-
tween the total number of cache collisions in the final round
and the mean execution time still holds. The mean encryp-
tion time of the encryption runs with the correct key-byte
difference is still significantly lower than the overall mean
encryption time.

To get a solid proof, we implemented the RPcache in our
timing processor simulator and conducted an actual cache-
collision attack, the last round attack of Bonneau et. al.
[11] on AES. Similar to PLcache results, 214 samples were
sufficient to completely recover 128-bit AES key on RPcache.

5. POTENTIAL SOLUTIONS
As analyzed in [25], the recently proposed secure cache ar-

chitectures (i.e., the PLcache and the RPcache) have many
desirable features including low performance overhead, generic
countermeasure support, and transparency to the protected
applications in the case of the RPcache. Unfortunately, as
shown above, they are still vulnerable to software cache-
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Figure 8: Experimental results of running last round
cache-collision attack on RPcache.

based side channel attacks. Thus, in this section, we will
briefly discuss potential solutions to their security problems.

5.1 Securing the PLcache
The main weakness of the PLcache design is that it does

not protect the initial loading procedure. Therefore, to se-
cure the PLcache, one possible solution would be a preload-
ing and locking all critical data right before the crypto op-
erations. This way, there is no initial loading process to be
exploited for information leakage attacks. Note that this is
different from pure software preloading. The reason is that
without the PLcache support, pure software preloading can
not guarantee that the critical data will not be replaced after
the preloading process.

In terms of the denial-of-service vulnerability, the key is to



make sure that when a process is not active, it will not lock
its data in the data cache so that other processes will not suf-
fer from the reduced cache capacity. Then, when an inactive
process becomes active again, we need to reload and lock all
its critical data since some of the data may be replaced by
other processes’ data. This way, OS oversight is not nec-
essary for managing locking requests in uni-processors and
each process can have locking request up to the whole cache
without causing problems to other processes, which reduces
the design complexity. However, in multi-threaded proces-
sors, there may be multiple active processes at the same
time. OS oversight is still required to manage the processes
that are competing for the locked cache lines. For example,
OS may simply choose to run one single protected process at
a time if an additional protected process requires overlapped
locked cache lines.

There exist several possible ways to implement the mecha-
nisms to secure the PLcache. One could be mainly software.
This way, the protected process performs the preloading and
locking before critical operations and performs unlocking
once the critical operations are completed. The OS will per-
form the preloading and locking during context switches of
the protected process. The preloading and locking can also
be accelerated with hardware support. In this case, new in-
structions are required to specify the address and length of
the critical data and to invoke the preloading and locking.
Besides the security enhancement, these solutions need to
be evaluated for performance overheads and complexity.

5.2 Securing the RPcache
The main weakness of the RPcache design is that it is

vulnerable to collision-based time-driven attacks. The RP-
cache design defeats access-driven attacks by obfuscating
cache interferences. However, it still leaks information due
to the variations of the encryption/decryption time, which
are dependent on the number of cache misses. Therefore, to
defeat time-driven attacks, the ideal approach is to eliminate
cache misses so as to remove the variations of the encryp-
tion/decryption time. However, since there is no locking
mechanism in the RPcache design, there is no guarantee
that the accesses to the critical data will be cache hits. As
a result, both compulsory misses (i.e., initial access to the
critical data) and conflict misses (re-access to the critical
data after they are replaced) are possible. One potential
mitigation technique would be to eliminate as many cache
misses as possible so as to increase the number of required
samples to an infeasible level.

To accomplish this idea, we need a way to reload the crit-
ical data after it is replaced. One symptom of replaced data
is that the re-access will be a cache miss. To capture such
events, we need to change the hardware architecture to ex-
pose the cache miss event to the software. Once the software
is being notified by the critical event, certain countermea-
sures can be performed. A detailed study of how this ap-
proach will help to secure the RPcache design and how much
performance overhead will be introduced is part of our fu-
ture work.

6. CONCLUSIONS
In this paper, we analyzed the latest advances in the

software cache-based side channel attacks. We practically
demonstrated (by our MIPS simulations) that the previ-
ously proposed cache designs, the partition locked cache

(PLcache) and random permutation cache (RPcache), al-
though effective in defeating information leakage due to in-
terferences, are vulnerable to the latest attacks built upon
either cache sharing or cache collisions. Our results are par-
ticularly interesting as the authors of [25] proved a theo-
rem which stated that the RPcache totally eliminates side-
channel attacks due to cache line addresses Thus, as usual
within the space of “provable security”, our result shows
again that any kind of “security proof” has to be carefully
scrutinized for general validity or applicability. We also dis-
cussed the potential enhancement to overcome the vulnera-
bilities of these new cache designs.

7. ACKNOWLEDGMENTS
This research was initiated during Jingfei Kong’s intern-

ship with Samsung Electronics. This work was supported in
part by NSF CAREER award CCF-0747062.

8. REFERENCES
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