
DoS Attacks on Your Memory in the Cloud

Tianwei Zhang
Princeton University

tianweiz@princeton.edu

Yinqian Zhang
The Ohio State University

yinqian@cse.ohio-
state.edu

Ruby B. Lee
Princeton University

rblee@princeton.edu

ABSTRACT
In cloud computing, network Denial of Service (DoS) at-
tacks are well studied and defenses have been implemented,
but severe DoS attacks on a victim’s working memory by
a single hostile VM are not well understood. Memory DoS
attacks are Denial of Service (or Degradation of Service) at-
tacks caused by contention for hardware memory resources
on a cloud server. Despite the strong memory isolation tech-
niques for virtual machines (VMs) enforced by the software
virtualization layer in cloud servers, the underlying hard-
ware memory layers are still shared by the VMs and can be
exploited by a clever attacker in a hostile VM co-located on
the same server as the victim VM, denying the victim the
working memory he needs. We first show quantitatively the
severity of contention on different memory resources. We
then show that a malicious cloud customer can mount low-
cost attacks to cause severe performance degradation for a
Hadoop distributed application, and 38× delay in response
time for an E-commerce website in the Amazon EC2 cloud.

Then, we design an effective, new defense against these
memory DoS attacks, using a statistical metric to detect
their existence and execution throttling to mitigate the at-
tack damage. We achieve this by a novel re-purposing of
existing hardware performance counters and duty cycle mod-
ulation for security, rather than for improving performance
or power consumption. We implement a full prototype on
the OpenStack cloud system. Our evaluations show that this
defense system can effectively defeat memory DoS attacks
with negligible performance overhead.

1. INTRODUCTION
Public Infrastructure-as-a-Service (IaaS) clouds provide

elastic computing resources on demand to customers at low
cost. Anyone with a credit card may host scalable applica-
tions in these computing environments, and become a ten-
ant of the cloud. To maximize resource utilization, cloud
providers schedule virtual machines (VMs) leased by differ-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052978

ent tenants on the same physical machine, sharing the same
hardware resources.

While software isolation techniques, like VM virtualiza-
tion, carefully isolate memory pages (virtual and physical),
most of the underlying hardware memory hierarchy is still
shared by all VMs running on the same physical machine
in a multi-tenant cloud environment. Malicious VMs can
exploit the multi-tenancy feature to intentionally cause se-
vere contention on the shared memory resources to conduct
Denial-of-Service (DoS) attacks against other VMs sharing
the resources. Moreover, it has been shown that a malicious
cloud customer can intentionally co-locate his VMs with vic-
tim VMs to run on the same physical machine [31, 33, 37];
this co-location attack can serve as a first step for performing
memory DoS attacks against an arbitrary target.

The severity of memory resource contention has been se-
riously underestimated. While it is temping to presume the
level of interference caused by resource contention is mod-
est, and in the worst case, the resulting performance degra-
dation is isolated on one compute node, we show this is not
the case. We present advanced attack techniques that, when
exploited by malicious VMs, can induce much more intense
memory contention than normal applications could do, and
can degrade the performance of VMs on multiple nodes.

To demonstrate that our attacks work on real applications
in real-world settings, we applied them to two case stud-
ies conducted in a commercial IaaS cloud, Amazon Elastic
Compute Cloud (EC2). We show that even if the attacker
only has one VM co-located with one of the many VMs of
the target multi-node application, significant performance
degradation can be caused to the entire application, rather
than just to a single node. In our first case study, we show
that when the adversary co-locates one VM with one node of
a 20-node distributed Hadoop application, he may cause up
to 3.7× slowdown of the entire distributed application. Our
second case study shows that our attacks can slow down the
response latency of an E-commerce application (consisting
of load balancers, web servers, database servers and memory
caching servers) by up to 38 times, and reduce the through-
put of the servers down to 13%.

Despite the severity of the attacks, neither current cloud
providers nor research literature offer any solutions to mem-
ory DoS attacks. Our communication with cloud providers
suggests such issues are not currently addressed, in part be-
cause the attack techniques presented in this paper are non-
conventional, and existing solutions to network-based DDoS
attacks do not help. Research studies have not explored de-
fenses against adversarial memory contention either. As will

http://dx.doi.org/10.1145/3052973.3052978

be discussed in Sec. 6.2, existing solutions [13, 17, 38, 44, 46]
only aim to enhance performance isolation between benign
applications. Intentional memory abuses that are evident in
memory DoS attacks are immune to these solutions.

Therefore, a large portion of this paper is devoted to
the design and implementation of a novel and effective ap-
proach to detect and mitigate all known types of memory
DoS attacks with low-cost overhead. Our detection strat-
egy provides a generalized method for detecting deviations
from the baseline behavior of the victim VM due to memory
DoS attacks. We collect the baseline behaviors of the mon-
itored VM at runtime, by creating a pseudo isolated period,
without completely pausing co-tenant VMs. This provides
periodic (re)establishment of baseline behaviors that adapt
to changes in program phases and workload characteristics.
Once memory DoS attacks are detected, we show how ma-
licious VMs can be identified and their attacks mitigated,
using a novel form of selective execution throttling.

We implemented a prototype of our defense solution on
the opensource OpenStack cloud software, and extensively
evaluated its effectiveness and efficiency. Our evaluation
shows that we can accurately detect memory DoS attacks
and promptly and effectively mitigate the attacks. The per-
formance overhead of persistent performance monitoring is
lower than 5%, which is low enough to be used in produc-
tion public clouds. Because our solution does not require
modifications of CPU hardware, hypervisor or guest oper-
ating systems, it minimally impacts the existing cloud im-
plementations. Therefore, we envision our solution can be
rapidly deployed in public clouds as a new security service
to customers who require higher security assurances (like in
Security-on-Demand clouds [22,39]).

In summary, the contributions of this paper are:

• A set of attack techniques to perform memory DoS at-
tacks. Measurement of the severity of the resulting Degra-
dation of Service (DoS) to the victim VM.
• Demonstration of the severity of memory DoS attacks

in public clouds (Amazon EC2) against Hadoop applica-
tions and E-commerce websites.
• A novel, generalizable, attack detection method to detect

abnormal probability distribution deviations at runtime,
that adapts to program phase changes and different work-
load inputs.
• A novel method for detecting the attack VM using selec-

tive execution throttling.
• A new, rapidly deployable, defense for all memory DoS

attacks with accurate detection and low-overhead, using
existing hardware processor features.

We first discuss our threat model and background of mem-
ory resources in Sec. 2. Techniques to perform memory DoS
attacks are presented in Sec. 3. We show the power of these
attacks in two case studies conducted in Amazon EC2 in
Sec. 4. Our new defense techniques are described and eval-
uated in Sec. 5. We summarize related work in Sec. 6 and
conclude in Sec. 7.

2. BACKGROUND

2.1 Threat Model and Assumptions
We consider security threats from malicious tenants of

public IaaS clouds. We assume the adversary has the ability
to launch at least one VM on the cloud servers on which the

DRAM

Hypervisor

Core 0 Core 1 Core 2

Shared LLC

IMC

Core 0 Core 1 Core 2

Shared LLC

DRAM

Victim VM

Shared by vCPUs 0 and 1 Shared by vCPUs 0, 1 and 2

Attacker VM
vCPU 0 vCPU 1 vCPU 2 ……

Scheduler

InterPkg Bus IMC

Hardware

Figure 1: An attacker VM (with 2 vCPUs) and a victim VM
share multiple layers of memory resources.

victim VMs are running. Techniques required to do so have
been studied [31, 33, 37], and are orthogonal to our work.
The adversary can run any program inside his own VM. We
do not assume that the adversary can send network packets
to the victim directly, thus resource freeing attacks [32] or
network-based DoS attacks [25] are not applicable. We do
not consider attacks from the cloud providers, or any attacks
requiring direct control of privileged software.

We assume the software and hardware isolation mecha-
nisms function correctly as designed. A hypervisor virtual-
izes and manages the hardware resources (see Figure 1) so
that each VM thinks it has the entire computer. A server can
have multiple processor sockets, where all processor cores in
a socket share a Last Level Cache (LLC), while L1 and L2
caches are private to a processor core and not shared by
different cores. All processor sockets share the Integrated
Memory Controller (IMC), the inter-package bus and the
main memory storage (DRAM chips). Each VM is desig-
nated a disjoint set of virtual CPUs (vCPU), which can be
scheduled to operate on any physical cores based on the hy-
pervisor’s scheduling algorithms. A program running on a
vCPU may use all the hardware resources available to the
physical core it runs on. Hence, different VMs may simul-
taneously share the same hardware caches, buses, memory
channels and DRAM bank buffers. We assume the cloud
provider may schedule VMs from different customers on the
same server (as co-tenants), but likely on different physical
cores. As is the case today, software-based VM isolation by
the hypervisor only isolates accesses to virtual and physical
memory pages, but not to the underlying hardware memory
resources shared by the physical cores.

2.2 Hardware Memory Resources
We briefly describe the hardware memory resources that

can cause contention between different VMs. We use Intel
processors as an example.

Last Level Caches (LLC). An LLC is shared by all cores
in one socket. Intel LLCs usually adopt an inclusive cache
policy: every cache line maintained in the core-private (level
1 or level 2) caches also has a copy in the LLC. When a
cache line in the LLC is evicted, so are the copies in the
core-private caches. On recent Intel processors (since Ne-
halem), LLCs are split into multiple slices, each of which is
associated with one physical core, although every core may
use the entire LLC. Intel employs static hash mapping al-
gorithms to translate the physical address of a cache line to
one of the LLC slices. These mappings are unique for each

processor model and are not released to the public. So it is
harder for attackers to generate LLC contention using the
method from [34].

Memory Buses. Intel uses a ring bus topology to inter-
connect components in the processor socket, e.g., processor
cores, LLC slices, Integrated Memory Controllers (IMCs),
QuickPath Interconnect (QPI) agents, etc. The high-speed
QPI provides point-to-point interconnections between differ-
ent processor sockets, and between each processor socket and
I/O devices. The memory controller bus connects the LLC
slices to the bank schedulers in the IMC, and the DRAM bus
connects the IMC’s schedulers to the DRAM banks. Cur-
rent memory bus designs with high bandwidth make it very
difficult for attackers to saturate the memory buses. Also,
elimination of bus locking operations for normal atomic op-
erations make bus locking attacks via normal atomic opera-
tions (e.g., [34]) less effective. However, some exotic atomic
bus locking operations still exist.

DRAM and Integrated Memory Controllers. Each
DRAM chip consists of several banks. Each bank has mul-
tiple rows and columns, and a bank buffer to hold the most
recently used row to speed up DRAM accesses. Each proces-
sor socket contains several Integrated Memory Controllers
(IMCs) to control DRAM accesses using some scheduling al-
gorithms (e.g., First-Ready-First-Come-First-Serve). Mod-
ern DRAM and IMCs can handle a large amount of requests
concurrently, so the attack technique in [27] is less effective.

3. MEMORY DOS ATTACKS
A hardware memory subsystem is hierarchical, composed

of multiple levels of storage-based resources (e.g., Level 1
caches, Level 2 caches, LLC and DRAMs – from fastest
to slowest storage). These are inter-connected by a vari-
ety of scheduling-based resources (e.g., memory buses and
controllers). Memory DoS attacks are based on storage-
based contention or scheduling-based contention, or both.
For storage based contention, an adversary can evict the vic-
tim’s data from upper-level (faster) storage-based memory
resources to lower-level (slower) memory resources. So the
victim will need a longer time to fetch the data to the pro-
cessor core. For scheduling-based contention, an attacker
can decrease the probability that the victim’s memory re-
quests are selected by the scheduler at a given memory level,
e.g., by tricking the scheduler to improve the priority of the
attacker’s requests, or overwhelming the scheduler by sub-
mitting a huge amount of requests simultaneously.

Testbed configuration. To demonstrate the severity of
different types of memory DoS attacks, we use a server con-
figuration, representative of many cloud servers, configured
as shown in Table 1. We use Intel processors, since they are
the most common in cloud servers, but the attack methods
we propose are general, and applicable to other processors
and platforms as well.

In each of the following experiments, we launched two
VMs, one as the attacker and the other as the victim. By
default, each VM was assigned a single vCPU. The victim
VM runs one benchmark from a suite of representative com-
puting workloads (6 benchmarks from SPEC2006, 2 bench-
marks from PARSEC and some OpenSSL cryptographic ap-
plications.) Each experiment was repeated 10 times, and
the mean values and standard deviations are reported. The
attacker runs one of the attacks described below.

Table 1: Testbed Configuration
Server Dell PowerEdge R720
Processor Sockets Two 2.9GHz Intel Xeon E5-2667 (Sandy Bridge)
Cores per socket 6 physical cores, or 12 hardware threads with Hyper-Threading
Core-private L1 I and L1 D: each 32KB, 8-way set-associative;
Level 1 and Level 2 caches L2 cache: 256KB, 8-way set-associative
Last Level Cache (LLC) 15MB, 20-way set-associative, shared by cores in socket, divided

into 6 slices of 2.5MB each; one slice per core
Physical memory Eight 8GB DRAMs, divided into 8 channels, and 1024 banks

Hypervisor Xen version 4.1.0
VM’s OS Ubuntu 12.04 Linux, with 3.13 kernel

3.1 LLC Cleansing Attack
Of the storage-based contention attacks, we found that

the LLC cleansing attacks result in the most severe perfor-
mance degradation. The root vulnerability is that an LLC is
shared by all cores of the same CPU socket, without access
control or quota enforcement. Therefore a program in one
VM can evict LLC cache lines belonging to another VM.
Moreover, inclusive LLCs (e.g., most modern Intel LLCs)
will propagate these cache line evictions to core-private L1
and L2 caches, further aggravating the interference between
programs (or VMs) in CPU caches. Non-inclusive or exclu-
sive caches (used in most AMD processors) can be more re-
silient to LLC cleansing attacks than inclusive caches, since
the victim can still fetch data or instructions from private
caches during the attack. However, if the victim has a mem-
ory footprint larger than private caches, it will access LLC
frequently, and suffer from LLC cleansing attacks.

Cache cleansing attacks. To cause LLC contention, the
adversary can allocate a memory buffer to cover the entire
LLC. By accessing one memory address per memory block
in the buffer, the adversary can cleanse the entire cache and
evict all of the victim’s data from the LLC to the DRAM.
Cache cleansing attacks are conducted by repeating such a
process continuously.

The optimal buffer used by the attacker should exactly
map to the LLC, which means it can fill up each cache set
in each LLC slice without self-conflicts (i.e., evicting earlier
lines loaded from this buffer). There are two challenges that
make this task difficult for the attacker: the host physical
addresses of the buffer to index the cache slice are unknown
to the attacker, and the mapping from physical memory ad-
dresses to LLC slices is not publicly known.

Mapping LLC cache slices: To overcome these challenges,
the attacker can first allocate a 1GB Hugepage which is
guaranteed to have continuous host physical addresses; thus
he need not worry about virtual to physical page transla-
tions which he does not know. Then for each LLC set in all
slices, the attacker selects a group of cache-line-sized mem-
ory blocks with the same set index mapped into this same
set but not necessarily the same slice. Then the attacker
accesses these blocks and measures the access latency. A
longer access latency indicates there are self-conflicts due
to contention in the same slice. The attacker can recur-
sively remove some memory blocks from the set until no
self-conflicts are observed. After conducting the same pro-
cess for each cache set and cache slice, the attacker obtains
a memory buffer with non-consecutive blocks that maps ex-
actly to the LLC. Such self-conflict elimination is also useful
in improving side-channel attacks [24].

We further improve this attack by increasing the cleansing
speed, and the accuracy of evicting the victim’s data.

Multi-threaded LLC cleansing. To speed up the LLC
cleansing, the adversary may split the cleansing task into n
threads, with each running on a separate vCPU and cleans-

ing only a non-overlapping 1/n of the LLC simultaneously.
This effectively increases the cleansing speed by n times.

In our experiment, the attacker VM and the victim VM
were arranged to share the LLC. The attacker VM was as-
signed 4 vCPUs. He first prepared the memory buffer that
exactly mapped to the LLC. Then he cleansed the LLC
with (1) one vCPU; (2) 4 vCPUs (each cleansing 1/4 of the
LLC). Figure 2 shows that the attack can cause 1.05 ∼ 1.6×
slowdown to the victim VM when using one thread, and
1.12 ∼ 2.03× slowdown when using four threads.

m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6
1 . 8
2 . 0
2 . 2

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e L L C c l e a n s i n g (1 t h r e a d)
 L L C c l e a n s i n g (4 t h r e a d s)

Figure 2: Performance slowdown due to multi-threaded LLC
cleansing attack

Adaptive LLC cleansing. The basic LLC cache cleansing
technique does not work when the victim’s program has a
memory footprint (<1MB) that is much smaller than an
LLC (e.g., 15MB), since it takes a long time to finish one
complete LLC cleansing, where most of the memory accesses
do not induce contention with the victim. To achieve finer-
grained attacks, we developed a cache probing technique to
pinpoint the cache sets in the LLC that map to the victim’s
memory footprint, and cleanse only these selected sets.

The attacker first allocates a memory buffer covering the
entire LLC in his own VM. Then he conducts cache prob-
ing in two steps: (1) In the Discover Stage, while the
victim program runs, for each cache set, the attacker ac-
cesses some cache lines belonging to this set and figures out
the maximum number of cache lines which can be accessed
without causing cache conflicts. If this number is smaller
than the set associativity, this cache set will be selected to
conduct adaptive cleansing attacks, because the victim has
frequently occupied some cache lines in this set; (2) In the
Attack Stage, the attacker keeps accessing these selected
cache sets to cleanse the victim’s data.

Figure 3 shows the results of the attacker’s multi-threaded
adaptive cleansing attacks against victim applications with
cryptographic operations. While the basic cleansing did not
have any effect, the adaptive attacks can achieve around 1.12
to 1.4 times runtime slowdown with 1 vCPU, and up to 4.4×
slowdown with 4 vCPUs.

3.2 Exotic Atomic Locking Attack
We demonstrate the most effective scheduling-based con-

tention on Intel processors, which is enabled by exotic atomic
instructions that will temporarily “lock down” the internal
memory buses as their side effect. AMD processors also have
similar features that enable this attack [4].

Atomic locking attack. Intel processors provide locked
atomic operations for managing shared data structures be-
tween multi-processors [7]. Before Intel Pentium (P5) pro-
cessors, the locked atomic operations always generate LOCK
signals on the internal buses to achieve operation atomic-

A E S

B L O W F I S H R C 4
R S A D S A

H M A C M D 5
S H A

0

1

2

3

4

5

6

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e C o m p l e t e L L C c l e a n s i n g (1 t h r e a d)
 C o m p l e t e L L C c l e a n s i n g (4 t h r e a d s)
 A d a p t i v e L L C c l e a n s i n g (1 t h r e a d)
 A d a p t i v e L L C c l e a n s i n g (4 t h r e a d s)

Figure 3: Performance slowdown due to adaptive LLC
cleansing attacks

ity. So other memory accesses are blocked until the locked
atomic operation is completed. For processor families af-
ter P6, the bus lock is transformed into a cache lock: the
cache line is locked instead of the bus and the cache co-
herency mechanism is used to ensure operation atomicity.
This causes much smaller scheduling lockdown times.

However, we have found two exotic atomic operations the
adversary can still use to lock the internal memory buses:
(1) Locked atomic accesses to unaligned memory blocks: the
processor has to fetch two adjacent cache lines to complete
this unaligned memory access. To guarantee the atomic-
ity of accessing the two adjacent cache lines, the processors
will flush in-flight memory accesses issued before, and block
memory accesses to the bus, until the unaligned memory ac-
cess is finished. (2) Locked atomic accesses to uncacheable
memory blocks: when uncached memory pages are accessed
in atomic operations, the cache coherency mechanism does
not work. Hence, the memory bus must be locked to guaran-
tee atomicity. The codes for issuing exotic atomic operations
can be found in Appendix A.

Experiments. To evaluate the effectiveness of atomic lock-
ing attacks, we scheduled the attacker VM and victim VM
on different processor sockets. The attacker VM kept gen-
erating atomic locking signals by (1) requesting unaligned
atomic memory accesses, or (2) requesting uncached atomic
memory accesses. For comparison, we also run another two
groups of experiments, where the attacker kept issuing nor-
mal memory accesses, and normal locked memory accesses.
The normalized execution time of the victim program is
shown in Figure 4. We observe that the victim’s perfor-
mance can be degraded as much as 7 times when the at-
tacker conducted exotic atomic operations, while the normal
atomic operations did not affect the victim’s performance.

3.3 Less Severe Memory Contention
DRAM controller and DRAM bank contention are also

possible, but these attacks are significantly less severe. An
adversary may contend on the schedulers in the memory con-
troller by frequently issuing memory requests to the sched-
uler. This can also induce storage-based contention on DRAM
bank buffers by frequently occupying them with the at-
tacker’s data. The adversary can use multi-threads to adap-
tively flood the DRAM channels which are frequently used
by the victim. Our experiments show that an adversary can
induce up to 44% performance degradation to the victim
using a combination of DRAM scheduling and storage con-
tention. Since this contention is less severe, we will not use
these DRAM attacks in the following sections.

m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r0

2

4

6

8

1 0

1 2

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e N o r m a l a c c e s s
 N o r m a l a t o m i c a c c e s s
 U n a l i g n e d a t o m i c a c c e s s
 U n c a c h e d a t o m i c a c c e s s

Figure 4: Performance slowdown due to atomic locking at-
tacks.

4. CASE STUDIES IN AMAZON EC2
We now evaluate our memory DoS attacks in a real cloud

environment, Amazon EC2. We provide two case studies:
memory DoS attacks against distributed applications, and
against E-Commerce websites.

VM configurations. We chose the same configuration for
the attacker and victim VMs: t2.medium instances with 2
vCPUs, 4GB memory and 8GB disk. Each VM ran Ubuntu
Server 14.04 LTS with Linux kernel version 3.13.0-48-generic,
in full virtualization mode. All VMs were launched in the
us-east-1c region. Information exposed through lscpu indi-
cated that these VMs were running on 2.5GHz Intel Xeon
E5-2670 processors, with a 32KB L1D and L1I cache, a
256KB L2 cache, and a shared 25MB LLC.

For all the experiments in this section, the attacker em-
ploys exotic atomic locking (Sec. 3.2) and LLC cleansing
attacks (Sec. 3.1), where each of the 2 attacker vCPUs was
used to keep locking the memory and cleansing the LLC.

VM co-location in EC2. The memory DoS attacks re-
quire the attacker and victim VMs to co-locate on the same
machine. Past work [31, 33, 37] have proven the feasibil-
ity of such co-location attacks in public clouds. While cloud
providers adopt new technologies (e.g., Virtual Private Cloud
[3]) to mitigate prior attacks in [31], new ways are discov-
ered to test and detect co-location in [33, 37]. Specifically,
Varadarajan et al. [33] achieved co-location in Amazon EC2,
Google Compute Engine and Microsoft Azure with low-cost
(less than $8) in the order of minutes. They verified co-
location with various VM configurations, launch delay be-
tween attacker and victim, launch time of day, datacenter
location, etc.. Xu et al . [37] used similar ideas to achieve
co-location in EC2 Virtual Private Cloud. We also applied
these techniques to achieve co-location in Amazon EC2. In
our experiments, we simultaneously launched a large number
of attacker VMs in the same region as the victim VM. A ma-
chine outside EC2 under our control sent requests to static
web pages hosted in the target victim VM. Each time we se-
lect one attacker VM to conduct memory DoS attacks and
measure the victim VM’s response latency. Delayed HTTP
responses from the victim VM indicates that this attacker
was sharing the machine with the victim.

4.1 Attacking Distributed Applications
We evaluate memory DoS attacks on a multi-node dis-

tributed application deployed in a cluster of VMs, where
each VM is deployed as one node. We show how much per-
formance degradation an adversary can induce to the victim
cluster with minimal cost, using a single attacker VM.

Experiment settings. We used Hadoop as the victim

system. Hadoop consists of two layers: MapReduce for data
processing, and Hadoop Distributed File System (HDFS)
for data storage. A Hadoop cluster includes a single master
node and multiple slave nodes. The master node acts as
both the Job Tracker for scheduling map or reduce jobs and
the NameNode for hosting HDFS indexes. Each slave node
acts as both the Task Tracker for conducting the map or re-
duce operations and the DataNode for storing data blocks in
HDFS. We deployed the Hadoop system with different num-
bers of VMs (5, 10, 15 or 20), where one VM was selected
as the master node and the rest were the slave nodes.

The attacker only used one VM to attack the cluster. He
either co-located the malicious VM with the master node or
one of the slave nodes. We ran four different Hadoop bench-
marks to test how much performance degradation the single
attacker VM can cause to the Hadoop cluster. Each experi-
ment was repeated 5 times. Figure 5 shows the mean values
of normalized execution time and one standard deviation.

MRBench: This benchmark tests the performance of the
MapReduce layer of the Hadoop system: it runs a small
MapReduce job of text processing for a number of times.
We set the number of mappers and reducers as the number
of slave nodes for each experiment. Figure 5a shows that
attacking a slave node is more effective since the slave node
is busy with the map and reduce tasks. In a large Hadoop
cluster with 20 nodes, attacking just one slave node intro-
duces 2.5× slowdown to the entire distributed system.

TestDFSIO: We use TestDFSIO to evaluate HDFS per-
formance. This benchmark writes and reads files stored in
HDFS. We configured it to operate on n files with the size of
500MB, where n is the number of slave nodes in the Hadoop
cluster. Figure 5b shows that attacking the slave node is ef-
fective: the adversary can achieve about 2× slowdown.

NNBench: This program is also used to benchmark HDFS
in Hadoop. It generates HDFS-related management requests
on the master node of HDFS. We configured it to operate
on 200n small files, where n is the number of slave nodes in
the Hadoop cluster. Since the master node is heavily used
for serving the HDFS requests, attacking the master node
can introduce up to 3.4× slowdown to the whole Hadoop
system, as shown in Figure 5c.

Terasort: We use this benchmark to test the overall perfor-
mance of both MapReduce and HDFS layers in the Hadoop
cluster. TeraSort generates a large set of data and uses
map/reduce operations to sort the data. For each exper-
iment, we set the number of mappers and reducers to n,
and the size of data to be sorted to 100n MB, where n is
the number of slave nodes in the Hadoop cluster. Figure 5d
shows that attacking the slave node is very effective: it can
bring 2.8 ∼ 3.7 × slowdown to the entire Hadoop system.

Summary. The adversary can deny working memory avail-
ability to the victim VM and thus degrade an important
distributed system’s performance with minimal costs: it can
use just one VM to interfere with one of 20 nodes in the large
cluster. The slowdown of a single victim node can cause up
to 3.7× slowdown to the whole system.

4.2 Attacking E-Commerce Websites
A web application consists of load balancers, web servers,

database servers and memory caching servers. Memory DoS
attacks can disturb an E-commerce web application by at-
tacking various components.

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

No

rm
ali

za
tio

n e
xe

cu
tio

n t
im

e

o f n o d e s

 A t t a c k i n g t h e m a s t e r
 A t t a c k i n g o n e s l a v e

(a) MRBench

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

o f n o d e s

 A t t a c k i n g t h e m a s t e r
 A t t a c k i n g o n e s l a v e

(b) TestDFSIO

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

o f n o d e s

 A t t a c k i n g t h e m a s t e r
 A t t a c k i n g o n e s l a v e

(c) NNBench

5 1 0 1 5 2 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

No
rm

ali
za

tio
n e

xe
cu

tio
n t

im
e

o f n o d e s

 A t t a c k i n g t h e m a s t e r
 A t t a c k i n g o n e s l a v e

(d) TeraSort
Figure 5: Performance slowdown of the Hadoop applications due to memory DoS attacks.

Experiment settings. We chose a popular open source
E-commerce web application, Magento [8], as the target of
the attack. The victim application consists of five VMs:
a load balancer based on Pound for balancing network re-
quests; two Apache web servers to process and deliver web
requests; a MySQL database server to store customer and
merchandise information; and a Memcached server to speed
up database transactions. The five VMs were hosted on
different cloud servers in EC2. The adversary is able to
co-locate his VMs with one or multiple VMs that host the
victim application. We measure the application’s latency
and throughput to evaluate the effectiveness of the attack.

1 0 2 0 3 0 4 0 5 0
0 . 5

1

2

4

8

1 6

3 2

No
rm

ali
ze

d l
ate

nc
y

R e q u e s t r a t e (/ s)

 l o a d - b a l a n c e r
 w e b
 d a t a b a s e
 m e m c a c h e d
 a l l

(a) Latency

l o a d - b a l a n c e r w e b
d a t a b a s e

m e m c a c h e d0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %

No
rm

ali
ze

d t
hr

ou
gh

pu
t

S e r v e r
(b) Throughput

Figure 6: Latency and throughput of the Magento applica-
tion due to memory DoS attacks.

Latency. We launched a client on a local machine outside
of EC2. The client employed httperf [12] to send HTTP re-
quests to the load balancer with different rates (connections
per second) and we measured the average response time.
We evaluated the attack from one or all co-located VMs.
Each experiment was repeated 10 times and the mean and
standard deviation of the latency are reported in Figure 6a.
This shows that memory contention on database, load bal-
ancer or memcached servers do not have much impact on
the overall performance of the web application, with only up
to 2× degradation. This is probably because these servers
were not heavily used in these cases. Memory DoS attacks
on web servers were the most effective (17× degradation).
When the adversary can co-locate with all victim servers
and each attacker VM induces contention with the victim,
the web server’s HTTP response time was delayed by 38×,
for a request rate of 50 connections per second.

Server throughput. Figure 6b shows the results of an-
other experiment, where we measured the throughput of
each victim VM individually, under memory DoS attacks.
We used ApacheBench [1] to evaluate the load balancer

and web servers, SysBench [11] to evaluate the database
server and memtier benchmark [9] to evaluate the mem-
cached server. This shows memory DoS attacks on these
servers were effective: the throughput can be reduced to
only 13% ∼ 70% under malicious contention by the attacker.

Summary. The adversary can compromise the quality of
E-commerce service and cause financial loss in two ways:
(1) long response latency will affect customers’ satisfaction
and make them leave this E-commerce website [30]; (2) it
can cause throughput degradation, reducing the number of
transactions completed in a unit time. The cost for these
attacks is relatively cheap: the adversary only needs a few
VMs to perform the attacks, with each t2.medium instance
costing $0.052 per hour.

5. PROPOSED DEFENSE
We propose a novel, general-purpose approach to detect-

ing and mitigating memory DoS attacks in the cloud. Unlike
some past work, our defense does not require prior profiling
of the memory resource usage of the applications. Our de-
fense can be provided by the cloud providers as a new secu-
rity service to customers. We denote as Protected VMs
those VMs for which the cloud customers require protection.
To detect memory DoS attacks, lightweight statistical tests
are performed frequently to monitor performance changes of
the Protected VMs (Sec. 5.1). To mitigate the attacks,
execution throttling is used to reduce the impact of the at-
tacks (Sec. 5.2). A novelty of our approach is the combined
use of two existing hardware features: event counting using
hardware performance counters controllable via the Perfor-
mance Monitoring Unit (PMU) and duty cycle modulation
controllable through the IA32_CLOCK_MODULATION Model Spe-
cific Register (MSR).

5.1 Detection Method
The key insight in detecting memory DoS attacks is that

such attacks are caused by abnormal resource contention be-
tween Protected VMs and attacker VMs, and such re-
source contention can significantly alter the memory usage
of the Protected VM, which can be observed by the cloud
provider. We postulate that the statistics of accesses to
memory resources, by a phase of a software program, fol-
low certain probability distributions. When a memory DoS
attack happens, these probability distributions will change.
Figure 7 shows the probability distributions of the Pro-
tected VM’s memory access statistics, without attacks
(black), and with two kinds of attacks (gray and shaded),
when it runs one of four applications introduced in Sec. 4.2,
i.e., the Apache web server, Mysql database, Memcached

0 2 4 6 8 1 0 1 2 1 40 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5

0 2 4 6 8 1 0 1 2 1 40 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5

0 2 4 6 8 1 0 1 2 1 40 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5

0 2 4 6 8 1 0 1 2 1 40 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5

W e b

pr

ob
ab

ilit
y

m e m o r y b a n d w i d t h (G B p s)

 w / o . c o n t e n t i o n
 w / L L C c l e a n s i n g
 w / a t o m i c l o c k i n g

D a t a b a s e

pr
ob

ab
ilit

y

m e m o r y b a n d w i d t h (G B p s)

 w / o . c o n t e n t i o n
 w / L L C c l e a n s i n g
 w / a t o m i c l o c k i n g

M e m c a c h e d

pr
ob

ab
ilit

y

m e m o r y b a n d w i d t h (G B p s)

 w / o . c o n t e n t i o n
 w / L L C c l e a n s i n g
 w / a t o m i c l o c k i n g

L o a d - b a l a n c e r

pr
ob

ab
ilit

y
m e m o r y b a n d w i d t h (G B p s)

 w / o . c o n t e n t i o n
 w / L L C c l e a n s i n g
 w / a t o m i c l o c k i n g

Figure 7: Probability distributions of the Protected VM’s
memory bandwidth.

and Pound load-balancer. When an attacker is present, the
probability distribution of the Protected VM’s memory
access statistics (in this case, memory bandwidth in Giga-
Bytes per second) changes significantly.

In practice, only samples drawn from the underlying prob-
ability distribution are observable. Therefore, the provider’s
task is to collect two sets of samples: [XR

1 , XR
2 , ..., XR

nR] are
reference samples collected from the probability distribution
when we are sure that there are no attacks; [XM

1 , XM
2 , ...,

XM
nM] are monitored samples collected from the Protected

VM at runtime, when attacks may occur. If these two sets
of samples are not drawn from the same distribution, we
can conclude that the performance of the Protected VM
is hindered by its neighboring VMs. When the distance be-
tween the two distributions is large, we may conclude the
Protected VM is under some memory DoS attacks.

We propose to use the two-sample Kolmogorov-Smirnov
(KS) tests [26], as a metric for whether two samples belong
to the same probability distribution. The KS statistic is
defined in Equation 1, where Fn(x) is the empirical distri-
bution function of the samples [X1, X2, ..., Xn], and sup is
the supremum function (i.e., returning the maximum value).
Superscripts M and R denote the monitored samples and
reference samples, respectively. nM and nR are the number
of monitored samples and reference samples.

DnM, nR = sup
x
| FM

nM(x)− FR
nR(x) | (1)

Dα
nM, nR =

√
nM + nR

nM × nR

√
−0.5× ln(

α

2
) (2)

Null hypothesis for KS test. We establish the null hy-
pothesis that currently monitored samples are drawn from
the same distribution as the reference samples. Benign per-
formance contention with non-attacking, co-tenant VMs will
not alter the probability distribution of the Protected
VM’s monitored samples significantly, so the KS statistic
is small and the null hypothesis is held. Equation 2 intro-
duces α: We can reject the null hypothesis with confidence
level 1−α if the KS statistic, DnM, nR , is greater than prede-
termined critical values Dα

nM, nR . Then, the cloud provider
can assume, with confidence level 1−α, that a memory DoS
attack exists, and trigger a mitigation strategy.

While monitored samples, XM
i , are simply collected at

runtime, reference samples, XR
i , ideally should be collected

when the Protected VM is not affected by other co-located
VMs. The technical challenge here is that if these samples
are collected offline, we need to assume the memory access
statistics of the VM never change during its life time, which

is unrealistic. If samples are collected at runtime, all the
co-locating VMs need to be paused during sample collec-
tion, which, if performed frequently, can cause significant
performance overhead to benign, co-located VMs.

Pseudo Isolated Reference Sampling. To address this
technical challenge, we use execution throttling to collect the
reference samples at runtime. The basic idea is to throt-
tle down the execution speed of other VMs, but maintain
the Protected VM’s speed during the reference sampling
stage. This can reduce the co-located VMs’ interference
without pausing them.

Execution throttling is based on a feature provided in In-
tel Processors called duty cycle modulation [7], which is de-
signed to regulate each core’s execution speed and power
consumption. The processor allows software to assign “duty
cycles” to each CPU core: the core will be active during
these duty cycles, and inactive during the non-duty cycles.
For example, the duty cycle of a core can be set from 16/16
(no throttling), 15/16, 14/16, ..., down to 1/16 (maximum
throttling). Each core uses a model specific register (MSR),
IA32_CLOCK_MODULATION, to control the duty cycle ratio: bit
4 of this MSR denotes if the duty cycle modulation is en-
abled for this core; bits 0-3 represent the number of 1/16 of
the total CPU cycles set as duty cycles.

In execution throttling, the execution speed of other VMs
will be throttled down and very little contention is induced
to the Protected VM. As such, reference samples collected
during the execution throttling stage are drawn from a quasi
contention-free distribution.

Figure 8a illustrates the high-level strategy for monitor-
ing Protected VMs. The reference samples are collected
during the reference sampling periods (WR), where other
VMs’ execution speeds are throttled down. The monitored
samples are collected during the monitored sampling peri-
ods (WM), where co-located VMs run normally, without ex-
ecution throttling. KS tests are performed right after each
monitored sample is collected, and probability distribution
divergence is estimated by comparing with the most recent
reference samples. Monitored samples are collected peri-
odically at a time interval of LM , and reference samples
are collected periodically at a time interval of LR. We can
also randomize the intervals LM and LR for each period to
prevent the attacker from reverse-engineering the detection
scheme and scheduling the attack phases to avoid detection.

If the KS test results reject the null hypothesis, it may
be because the Protected VM is in a different execution
phase with different memory access statistics, or it may be
due to memory DoS attacks. To rule out the first possi-
bility, double checking automatically occurs since reference
samples are re-collected and updated after a time interval of
LR. If deviation of the probability distribution still exists,
attacks can be confirmed.

5.2 Mitigation Method
The cloud provider has several methods to mitigate the

attack. One is VM migration, which can be achieved ei-
ther by reassigning the vCPUs of a VM to a different CPU
socket, when the memory resource being contended is in
the same socket (e.g., LLC), or by migrating the entire VM
to another server, when the memory resource contended is
shared system-wide (e.g., memory bus). However, such VM
migration can not completely eliminate the attacker VM’s
impact on other VMs.

PROTECTED VM

Co-located VM1

Co-located VM2

Co-located VM3

WR

LR

WM

LM

Execution Throttling Reference sampling Monitored sampling

Co-located VM4

(a) Monitoring the Protected VM.

PROTECTED VM

Co-located VM1

Co-located VM2

Co-located VM4

Execution Throttling Reference sampling Monitored sampling

Attack VM

(b) Identifying co-located VM3 as the attacker VM.

Figure 8: Illustration of monitoring the Protected VM (a) and identifying the attack VM (b). The blue “4” means the null
hypothesis is accepted; while the red “8” means the null hypothesis is rejected.

An alternative approach is to identify the attacker VM,
and then employ execution throttling to reduce the execu-
tion speed of the malicious VM, while meanwhile the cloud
provider conducts further investigation and/or notifies the
customer of the suspected attacker VM of observed resource
abuse activities.

Identifying the attacker VM. Once memory DoS at-
tacks are detected, to mitigate the threat, the cloud provider
needs to identify which of the co-located VMs is conduct-
ing the attack. Here we propose a novel approach to iden-
tify malicious VMs based on selective execution throttling
in a binary search manner : First, half of the co-located
VMs keep normal execution speed while the rest of VMs are
throttled down during reference sampling periods (Figure
8b, 2nd Reference Sampling period). If in this case, ref-
erence samples and monitored samples are drawn from the
same distribution, then there are malicious VMS among the
ones not throttled down during the reference sampling pe-
riod. Then, we select half of the remaining VMs to be in the
normal speed while all the other VMs are throttled, to col-
lect the next reference samples. In Figure 8b, this is the 3rd
Reference Sampling period, where only VM4 is not throt-
tled. Since the subsequent monitored samples have a differ-
ent distribution compared to this Reference Sample, VM4 is
benign and VM3 is identified as the attack VM. Note that
if there are multiple attacker VMs on the server, we can use
the above procedure to find one VM each time and repeat
it until all the attacker VMs are found. By organizing this
search for the attacker VM or VMs as a binary search, the
time taken to identify the source of memory contention is
O (log n), where n is the number of co-tenant VMs on the
Protected VM’s server.

5.3 Implementation
We implemented a prototype system of our proposed de-

fense on OpenStack (Juno) using the KVM hypervisor, which
is the default setup for OpenStack. Other virtualization
platforms, such as Xen and HyperV, can also be used. On
each server, the memory access statistics are monitored us-
ing Performance Monitoring Units (PMU), which are com-
monly available in most modern processors. A PMU pro-
vides a set of performance counters to count hardware-related
events. In our implementation, we used the linux kernel API
perf_event to measure the memory access statistics for the
number of LLC accesses per sampling period. Each CPU
core uses the IA32_CLOCK_MODULATION MSR to control the
duty cycle ratio. We used the wrmsr instruction to modify
the MSR and control execution throttling.

In our implementation, the parameters involved in refer-
ence and monitored sampling are as follows: WR = WM =
1s, LM = 2s, LR = 30s. These values were selected to strike
a balance between the performance overhead due to execu-
tion throttling and detection accuracy. In each sampling
period, n = 100 samples were collected, with each collected
during a period of 10ms. We chose 10ms because it is short
enough to provide accurate measurements, and long enough
to return stable results. In the KS tests, the confidence level,
1− α, was set as 0.999, and the threshold to reject the null
hypothesis is Dα = 0.276 (given α = 0.001). If 4 consecutive
KS statistics larger than 0.276 are observed (the choice of 4
is elaborated in Sec. 5.4), it is assured that the Protected
VM’s memory access statistics have been changed. Then to
confirm that such changes are due to memory DoS attacks,
reference samples will be refreshed and the malicious VM
will be identified.

5.4 Evaluation
Our lab testbed comprised three servers. A Dell R210II

Server (equipped with one quad-core, 3.30GHz, Intel Xeon
E3-1230v2 processor with 8MB LLC) was configured as the
cloud controller in OpenStack. Two Dell PowerEdge R720
Servers (one has two six-core, 2.90GHz Intel Xeon E5-2667
processors with 15MB LLC, the other has one eight-core,
2.90GHz Intel Xeon E5-2690 processor with 20MB LLC)
were deployed to function as VM hosting servers.

Detection accuracy. We deployed a Protected VM
sharing a cloud server with 8 other VMs. Among these
8 VMs, one VM was an attacker VM conducting a multi-
threaded LLC cleansing attack with 4 threads (Sec. 3.1), or
an atomic locking attack (Sec. 3.2). The remaining 7 VMs
were benign VMs running common linux utilities. The Pro-
tected VM runs one of the web, database, memcached
or load-balancer applications in the Magento application
(Sec. 4.2). The experiments consisted of four stages; the
KS statistics of each of the four workloads during the four
stages under the two types of attacks are shown in Figure 9.

In stage I, the Protected VM runs while the attacker is
idle. The KS statistic in this stage is relatively low. So we
accept the null hypothesis that the memory accesses of the
reference and monitored samples follow the same probabil-
ity distribution. In stage II, the attacker VM conducts the
LLC cleansing or atomic locking attacks. We observe the
KS statistic is much higher than 0.276. The null hypothe-
sis is rejected, signaling detection of potential memory DoS
attacks. In stage III, the cloud provider runs three rounds
of reference resampling to pinpoint the malicious VM. Re-

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

D

t (s)

W e b
I I I I I I I V

D

t (s)

D a t a b a s e
I I I I I I I V

D

t (s)

M e m c a c h e d
I I I I I I I V

D

t (s)

L o a d - b a l a n c e r
I I I I I I I V

(a) LLC cleansing attack

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

D

t (s)

W e b
I I I I I I I V

D

t (s)

D a t a b a s e
I I I I I I I V

D

t (s)

M e m c a c h e d
I I I I I I I V

D

t (s)

L o a d - b a l a n c e r
I I I I I I I V

(b) Atomic locking attack
Figure 9: KS statistics of the Protected VM for detecting and mitigating memory DoS attacks.

source contention mitigation is performed in stage IV: the
cloud provider throttles down the attacker VM’s execution
speed. After this stage, the KS statistic falls back to normal
which suggests that the attacks are mitigated.

We also evaluated the false positive rates and false nega-
tive rates of two different criteria for identifying a memory
access anomaly: 1 abnormal KS statistic (larger than the
critical value Dα) or 4 consecutive abnormal KS statistics.
Figure 10a shows the true positive rate of LLC cleansing
and atomic locking attack detection, at different confidence
levels 1−α. We observe that the true positive rate is always
one (thus zero false negatives), regardless of the detection
criteria (1 vs 4 abnormal KS tests). Figure 10b shows the
false positive rate, which can be caused by background noise
due to other VMs’ executions. This figure shows that using
4 consecutive abnormal KS statistics significantly reduces
the false positive rate.

9 4 %

9 6 %

9 8 %

1 0 0 %

1 0 2 %

tru
e p

os
itiv

e r
ate

 c h e c k i n g 1 s a m p l e
 c h e c k i n g 4 s a m p l e s

 0 . 9 0 . 9 5 0 . 9 7 5 0 . 9 9 0 . 9 9 5 0 . 9 9 9
C o n f i d e n c e l e v e l (1 - a)

K S s t a t i s t i c , (D a)0 . 1 7 0 . 1 9 0 . 2 1 0 . 2 3 0 . 2 4 0 . 2 8

(a) True positive

0 %

5 %

1 0 %

1 5 %

2 0 %

2 5 %

fal
se

 po
sit

ive
 ra

te

 0 . 9 0 . 9 5 0 . 9 7 5 0 . 9 9 0 . 9 9 5 0 . 9 9 9

K S s t a t i s t i c , (D a)

C o n f i d e n c e l e v e l (1 - a)
 c h e c k i n g 1 s a m p l e
 c h e c k i n g 4 s a m p l e s

0 . 1 7 0 . 1 9 0 . 2 1 0 . 2 3 0 . 2 4 0 . 2 8

(b) False positive

Figure 10: Detection accuracy.

Effectiveness of mitigation. We evaluated the effective-
ness of execution throttling based mitigation. The Pro-
tected VM runs the cloud benchmarks from the Magento
application while the attacker VM runs LLC cleansing or
atomic locking attacks. We chose different duty cycle ratios
for the attacker VM. Figures 11a and 11b show the nor-
malized performance (response latency for web and load-
balancer; throughput for database and memcached) of the
Protected VM with different throttling ratios, under LLC
cleansing and atomic locking attacks, respectively. The x-
axis shows the duty cycle (x × 1/16) given to the co-located
VMs, going from no throttling on the left to maximum throt-
tling on the right of each figure. The y-axis indicates that
the Protected VM’s latency becomes y times as long as

the one without attack (for web and load-balancer), or its
throughput becomes 1/y as small as the one without attack
(for database and memcached). We can see that a smaller
throttling ratio can effectively reduce the attacker’s impact
on the victim’s performance. When the ratio is set as 1/16,
the victim’s performance degradation caused by the attacker
is kept within 12% (compared to 23% ∼ 50% degradation
with no throttling) for LLC cleansing attacks. It is within
14% for atomic locking attacks (compared to 7× degradation
with no throttling).

Latency increase and mitigation. We chose a latency-
critical application, the Magento E-commerce application as
the target victim. One Apache web server was selected as
the Protected VM, co-locating with an attacker and 7
benign VMs running linux utilities. Figure 12 shows the re-
sponse latency with and without our defense. The detection
phase does not affect the Protected VM’s performance
(stage I), since the PMU collects monitored samples with-
out interrupting the VM’s execution. In stage II, the attack
occurs and the defense system detects the Protected VM’s
performance is degraded. In stage III, attacker VM identi-
fication is done. After throttling down the attacker VM in
stage IV, the Protected VM’s performance is not affected
by the memory DoS attacks. The latency during the attack
in Phase II increases significantly, but returns to normal af-
ter mitigation in Phase IV.

We also evaluated the performance overhead of co-located
VMs due to execution throttling in the detection step. We
launched one VM running one of the eight SPEC2006 or
PARSEC benchmarks. Then we periodically throttle down
this VM every 10s, 20s or 30s. Each time throttling lasted
for 1s (the same value for WR and WM used earlier). The
normalized performance of this VM is shown in Figure 13.
We can see that when the server throttles this VM every
10s, the performance penalty can be around 10%. However,
when the frequency is set to be 30s (our implementation
choice), this penalty is smaller than 5%.

6. RELATED WORK

6.1 Resource Contention Attacks
Cloud DoS attacks. [25] proposed a DoS attack which can
deplete the victim’s network bandwidth from its subnet. [15]
proposed a network-initiated DoS attack which causes con-

1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

1 . 0
1 . 1
1 . 2
1 . 3
1 . 4
1 . 5

1234567891 01 11 21 31 41 5

W e b

t h r o t t l i n g r a t i o (* 1 / 1 6)
1 6 1234567891 01 11 21 31 41 51 61234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6

D a t a b a s e

t h r o t t l i n g r a t i o (* 1 / 1 6)
M e m c a c h e d

t h r o t t l i n g r a t i o (* 1 / 1 6)

L o a d - b a l a n c e r

t h r o t t l i n g r a t i o (* 1 / 1 6)
(a) Throttling LLC cleansing attacks

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

W e b

t h r o t t l i n g r a t i o (* 1 / 1 6)

D a t a b a s e

t h r o t t l i n g r a t i o (* 1 / 1 6)
M e m c a c h e d

t h r o t t l i n g r a t i o (* 1 / 1 6)

L o a d - b a l a n c e r

t h r o t t l i n g r a t i o (* 1 / 1 6)

1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6

1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6 1234567891 01 11 21 31 41 51 6

(b) Throttling atomic locking attacks
Figure 11: Normalized performance of the Protected VM with throttling of memory DoS attacks (lower is better).

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 01 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0

lat
en

cy
 (m

s)

t (s)

 w / o d e f e n s e
 w / d e f e n s e

I I I I I I I V

(a) LLC cleansing attack

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

lat
en

cy
 (m

s)

t (s)

 w / o d e f e n s e
 w / d e f e n s e

I I I I I I I V

(b) Atomic locking attack
Figure 12: Request latency of Magento Application

m c f
g o b m k

o m n e t p p a s t a r
s o p l e x l b m

c a n n e a l

s t r e a m c l u s t e r0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e 1 0 s 2 0 s 3 0 s

Figure 13: Performance overhead of co-located VMs due to
monitoring.

tention in the shared Network Interface Controller. [21] pro-
posed cascading performance attacks which exhaust hyper-
visor’s I/O processing capability. [14] exploited VM migra-
tion to degrade the hypervisor’s performance. Our work is
different as we exploit failure of isolation in the hardware
memory subsystem (which has not been addressed by cloud
providers), and not attacks on networks or hypervisors.

Cloud resource stealing attacks. [32] proposed resource-
freeing attack, where a malicious VM can steal one type of
resource from the co-located victim VM by increasing this
VM’s usage of other types of resources. [45] designed a CPU
resource attack where an attacker VM can exploit the boost
mechanism in the Xen credit scheduler to obtain more CPU
resource than paid for. Our attacks do not steal extra cloud
resources. Rather, we aim to induce the maximum perfor-
mance degradation to the co-located victim VM targets.

Hardware resource contention studies. [19] studied the
effect of trace cache evictions on the victim’s execution with
Hyper-Threading enabled in an Intel Pentium 4 Xeon pro-
cessor. [34] explored frequently flushing shared L2 caches on
multicore platforms to slow down a victim program. They
studied saturation and locking of buses that connect L1/L2

caches and the main memory [34]. [27] studied contention
attacks on the schedulers of memory controllers. However,
due to advances in computer hardware design, caches and
DRAMs are larger and their management policies more so-
phisticated, so these prior attacks may not work in modern
cloud settings.

Timing channels in clouds. Prior studies showed that
shared memory resources can be exploited by an attacker to
extract crypto keys from the victim VM using cache side-
channel attacks in cloud settings [24, 42, 43], or to trans-
mit information, using cache operations [31, 36] or bus ac-
tivities [35] in covert channel communications between two
VMs. Unlike side-channel attacks our memory DoS attacks
aim to maximize the effects of resource contention, while re-
source contention is an unintended side-effect of side-channel
attacks. To maximize contention, we addressed various new
challenges, e.g., finding which attacks cause greatest resource
contention (exotic bus locking versus memory controller at-
tacks), maximizing the frequency of resource depletion, and
minimizing self-contention. To the best of our knowledge,
we are the first to show that similar attack strategies (en-
hanced for resource contention) can be used as availability
attacks as well as confidentiality attacks.

6.2 Eliminating Resource Contention
VM performance monitoring. Public clouds offer per-
formance monitoring services for customers’ VMs and ap-
plications, e.g., Amazon CloudWatch [2], Microsoft Azure
Application Insights [10], Google Stackdriver [5], etc.. How-
ever, these services only monitor CPU usage, network traffic
and disk bandwidth, but not low-level memory usage. To
measure a VM’s performance without contention for refer-
ence sampling, past work offer three ways: (1) collecting
the VM’s performance characteristics before it is deployed
in the cloud [17,44]; (2) measuring the performance of other
VMs which run similar tasks [29,41]; (3) measuring the Pro-
tected VM while pausing all other co-located VMs [20,38].
The drawback of (1) and (2) is that it only works for pro-
grams with predictable and stable performance character-
istics, and does not support arbitrary programs running in
the Protected VM. The problem with (3) is the signifi-
cant performance overhead inflicted on co-located VMs. In
contrast, we use novel execution throttling of the co-located
VMs to collect the Protected VM’s baseline (reference)
measurements with negligible performance overhead. While

execution throttling has been used to achieve resource fair-
ness in prior work [18,40]; using it to collect Reference sam-
ples at runtime is, to our knowledge, novel.

QoS-aware VM scheduling. Prior research propose to
predict interference between different applications (or VMs)
by profiling their resource usage offline and then statically
scheduling them to different servers if co-locating them will
lead to excessive resource contention [17, 38, 44]. The un-
derlying assumption is that applications (or VMs), when
deployed on the cloud servers, will not change their resource
usage patterns. Unfortunately, these approaches fall short in
defense against malicious applications, who can reduce their
resource uses during the profiling stage, then run memory
DoS attacks when deployed, thus evading these QoS schedul-
ing mechanisms.

Load-triggered VM migration. Some studies propose
to monitor servers’ resource usage (LLC miss rate, mem-
ory bandwidth) in real-time, and migrate VMs to different
servers when the server is overloaded [13, 46]. These ap-
proaches aim to dynamically balance the workload among
multiple servers to achieve an optimal resource allocation.
While they work well for performance optimization of a set
of fully-loaded servers, they fail to detect resource contention
caused by carefully-crafted attacks from a single malicious
VM. Atomic locking attacks just lock one or two cache lines,
and adaptive LLC attacks only affect a small number of LLC
cache sets of the victim VM. They will not cause large LLC
misses or memory bandwidth of the whole system that trig-
gers load-based contention detection.

Performance isolation. While cloud providers can offer
single-tenant machines to customers with high demand for
security and performance, disallowing resource sharing by
VMs will lead to low resource utilization and thus is at odds
with the cloud business model. Another option is to parti-
tion memory resources to enforce performance isolation on
shared resources (e.g., LLC [6, 16, 23], or DRAM [27, 28]).
These works aim to achieve fairness between different do-
mains and provide fair QoS. However, they cannot effec-
tively defeat memory DoS attacks. For cache partitioning,
software page coloring methods [23] can cause significant
wastage of LLC space, while hardware cache partitioning
mechanisms have insufficient partitions (e.g., Intel Cache
Allocation Technology [6] only provides four QoS partitions
on the LLC). Furthermore, LLC cache partitioning methods
cannot resolve atomic locking attacks.

To summarize, existing solutions fail to address memory
DoS attacks because they assume benign applications with
non-malicious behaviors. Also, they are often tailored to
only one type of attack so that they cannot be generalized
to all memory DoS attacks, unlike our proposed defense.

7. CONCLUSIONS
We presented memory DoS attacks, in which a malicious

VM intentionally induces memory resource contention to
degrade the performance of co-located victim VMs. We
proposed several advanced techniques to conduct such at-
tacks, and demonstrate the severity of the resulting perfor-
mance degradation. Our attacks work on modern memory
systems in cloud servers, for which prior attacks on older
memory systems are often ineffective. We evaluated our at-
tacks against two commonly used applications in a public
cloud, Amazon EC2, and show that the adversary can cause

significant performance degradation to not only co-located
VMs, but to the entire distributed application.

We then designed a novel and generalizable method that
can detect and mitigate all known memory DoS attacks.
Our approach collects the Protected VM’s reference and
monitored behaviors at runtime using the Performance Mon-
itor Unit. This is done by establishing a pseudo isolated
collection environment by using the duty-cycle modulation
feature to throttle the co-resident VMs for collecting Refer-
ence samples. Statistical tests are performed to detect differ-
ing performance probability distributions between Reference
and Monitored samples, with desired confidence levels. Our
evaluation shows this defense can detect and defeat memory
DoS attacks with very low performance overhead.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback.

This work was supported in part by the National Science
Foundation under grant NSF CNS-1218817.

9. REFERENCES
[1] Ab - the apache software foundation.

http://httpd.apache.org/docs/2.2/programs/ab.html.

[2] Amazon CloudWatch.
https://aws.amazon.com/cloudwatch/.

[3] Amazon virtual private cloud.
https://aws.amazon.com/vpc/.

[4] AMD architecture programmer’s manual, volume 1:
Application programming.
http://support.amd.com/TechDocs/24592.pdf.

[5] Google Stackdriver.
https://cloud.google.com/stackdriver/.

[6] Improving real-time performance by utilizing cache
allocation technology. http://www.intel.com/content/
www/us/en/communications/
cache-allocation-technology-white-paper.html.

[7] Intel 64 and IA-32 architectures software developer’s
manual, volume 3: System programming guide. http:
//www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[8] Magento: ecommerce software and ecommerce
platform. http://www.magento.com/.

[9] memtier benchmark.
https://github.com/RedisLabs/memtier benchmark.

[10] Microsoft Azure Application Insights. https://azure.
microsoft.com/en-us/services/application-insights/.

[11] Sysbench: a system performance benchmark.
https://launchpad.net/sysbench/.

[12] Welcome to the httperf homepage.
http://www.hpl.hp.com/research/linux/httperf/.

[13] J. Ahn, C. Kim, J. Han, Y.-R. Choi, and J. Huh.
Dynamic virtual machine scheduling in clouds for
architectural shared resources. In USENIX Conference
on Hot Topics in Cloud Computing, 2012.

[14] S. Alarifi and S. D. Wolthusen. Robust coordination of
cloud-internal denial of service attacks. In Intl. Conf.
on Cloud and Green Computing, 2013.

[15] H. S. Bedi and S. Shiva. Securing cloud infrastructure
against co-resident DoS attacks using game theoretic
defense mechanisms. In Intl. Conf. on Advances in
Computing, Communications and Informatics, 2012.

http://httpd.apache.org/docs/2.2/programs/ab.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/vpc/
http://support.amd.com/TechDocs/24592.pdf
https://cloud.google.com/stackdriver/
http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
http://www.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.magento.com/
https://github.com/RedisLabs/memtier_benchmark
https://azure.microsoft.com/en-us/services/application-insights/
https://azure.microsoft.com/en-us/services/application-insights/
https://launchpad.net/sysbench/
http://www.hpl.hp.com/research/linux/httperf/

[16] H. Cook, M. Moreto, S. Bird, K. Dao, D. A.
Patterson, and K. Asanovic. A hardware evaluation of
cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness. In
Intl. Symp. on Computer Architecture, 2013.

[17] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
scheduling for heterogeneous datacenters. In Intl.
Conf. on Architectural Support for Programming
Languages and Operating Systems, 2013.

[18] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt.
Fairness via source throttling: A configurable and
high-performance fairness substrate for multi-core
memory systems. In Architectural Support for
Programming Languages and Operating Systems, 2010.

[19] D. Grunwald and S. Ghiasi. Microarchitectural denial
of service: Insuring microarchitectural fairness. In
ACM/IEEE Intl. Symp. on Microarchitecture, 2002.

[20] A. Gupta, J. Sampson, and M. B. Taylor. Quality
time: A simple online technique for quantifying
multicore execution efficiency. In IEEE Intl. Symp. on
Performance Analysis of Systems and Software, 2014.

[21] Q. Huang and P. P. Lee. An experimental study of
cascading performance interference in a virtualized
environment. SIGMETRICS Perf. Eval. Rev., 2013.

[22] P. Jamkhedkar, J. Szefer, D. Perez-Botero, T. Zhang,
G. Triolo, and R. B. Lee. A framework for realizing
security on demand in cloud computing. In Conf. on
Cloud Computing Technology and Science, 2013.

[23] T. Kim, M. Peinado, and G. Mainar-Ruiz.
Stealthmem: System-level protection against
cache-based side channel attacks in the cloud. In
USENIX Security Symp., 2012.

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee.
Last-level cache side-channel attacks are practical. In
IEEE Symp. on Security and Privacy, 2015.

[25] H. Liu. A new form of DoS attack in a cloud and its
avoidance mechanism. In ACM Workshop on Cloud
Computing Security, 2010.

[26] F. J. Massey Jr. The Kolmogorov-Smirnov test for
goodness of fit. Journal of the American statistical
Association, 1951.

[27] T. Moscibroda and O. Mutlu. Memory performance
attacks: Denial of memory service in multi-core
systems. In USENIX Security Symp., 2007.

[28] S. P. Muralidhara, L. Subramanian, O. Mutlu,
M. Kandemir, and T. Moscibroda. Reducing memory
interference in multicore systems via application-aware
memory channel partitioning. In ACM/IEEE Intl.
Symp. on Microarchitecture, 2011.

[29] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and
R. Bianchini. Deepdive: Transparently identifying and
managing performance interference in virtualized
environments. In USENIX Conf. on Annual Technical
Conference, 2013.

[30] N. Poggi, D. Carrera, R. Gavalda, and E. Ayguade.
Non-intrusive estimation of QoS degradation impact
on e-commerce user satisfaction. In IEEE Intl. Symp.
on Network Computing and Applications, 2011.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. In ACM Conf.
on Computer and Communications Security, 2009.

[32] V. Varadarajan, T. Kooburat, B. Farley,
T. Ristenpart, and M. M. Swift. Resource-freeing
attacks: Improve your cloud performance (at your
neighbor’s expense). In ACM Conf. on Computer and
Communications Security, 2012.

[33] V. Varadarajan, Y. Zhang, T. Ristenpart, and
M. Swift. A placement vulnerability study in
multi-tenant public clouds. In USENIX Security
Symp., 2015.

[34] D. H. Woo and H.-H. S. Lee. Analyzing performance
vulnerability due to resource denial-of-service attack
on chip multiprocessors. In Workshop on Chip
Multiprocessor Memory Systems and Interconnects,
2007.

[35] Z. Wu, Z. Xu, and H. Wang. Whispers in the
hyper-space: High-speed covert channel attacks in the
cloud. In USENIX Security Symp., 2012.

[36] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen,
and R. Schlichting. An exploration of L2 cache covert
channels in virtualized environments. In ACM
Workshop on Cloud computing security, 2011.

[37] Z. Xu, H. Wang, and Z. Wu. A measurement study on
co-residence threat inside the cloud. In USENIX
Security Symp., 2015.

[38] H. Yang, A. Breslow, J. Mars, and L. Tang.
Bubble-flux: Precise online QoS management for
increased utilization in warehouse scale computers. In
ACM Intl. Symp. on Computer Architecture, 2013.

[39] T. Zhang and R. B. Lee. CloudMonatt: An
architecture for security health monitoring and
attestation of virtual machines in cloud computing. In
ACM Intl. Symp. on Computer Architecture, 2015.

[40] X. Zhang, S. Dwarkadas, and K. Shen. Hardware
execution throttling for multi-core resource
management. In USENIX Annual Technical
Conference, 2009.

[41] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: Cpu performance
isolation for shared compute clusters. In ACM
European Conf. on Computer Systems, 2013.

[42] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM side channels and their use to extract
private keys. In ACM Conf. on Computer and
Communications Security, 2012.

[43] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-tenant side-channel attacks in PaaS clouds. In
ACM Conf. on Computer and Communications
Security, 2014.

[44] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang.
Smite: Precise QoS prediction on real-system smt
processors to improve utilization in warehouse scale
computers. In IEEE/ACM Intl. Symp. on
Microarchitecture, 2014.

[45] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram.
Scheduler vulnerabilities and coordinated attacks in
cloud computing. In IEEE Intl. Symp. on Network
Computing and Applications, 2011.

[46] S. Zhuravlev, S. Blagodurov, and A. Fedorova.
Addressing shared resource contention in multicore
processors via scheduling. In Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, 2010.

APPENDIX
A. CODES OF EXOTIC ATOMIC ATTACKS

Listings 1 and 2 show the codes for issuing unaligned and
uncached atomic operations. The two programs keep con-
ducting the addition operation of a constant (x) and a mem-
ory block (block_addr) (line 5 – 11). The lock prefix indi-
cates this operation is atomic (line 7). In Listing 1, we set
this memory block as unaligned (line 4). In Listing 2, we
added a new system call to set the page table entries of the
memory buffer as cache disabled (line 2).

Listing 1: Attack using unaligned atomic operations

1 char *buffer = mmap(...);
2

3 int x = 0x0;
4 int *block_addr = (int *)(buffer+CACHE_LINE_SIZE-1);
5 while (1) {
6 __asm__(
7 "lock; xaddl %%eax, %1\n\t"
8 :"=a"(x)
9 :"m"(*block_addr), "a"(x)

10 :"memory");
11 }

Listing 2: Attack using uncached atomic operations

1 char *buffer = mmap(...);
2 syscall(__NR_UnCached, (unsigned long)buffer);
3 int x = 0x0;
4 int *block_addr = (int *)buffer;
5 while (1) {
6 __asm__(
7 "lock; xaddl %%eax, %1\n\t"
8 :"=a"(x)
9 :"m"(*block_addr), "a"(x)

10 :"memory");
11 }

	Introduction
	Background
	Threat Model and Assumptions
	Hardware Memory Resources

	Memory DoS Attacks
	LLC Cleansing Attack
	Exotic Atomic Locking Attack
	Less Severe Memory Contention

	Case Studies in Amazon EC2
	Attacking Distributed Applications
	Attacking E-Commerce Websites

	Proposed Defense
	Detection Method
	Mitigation Method
	Implementation
	Evaluation

	Related Work
	Resource Contention Attacks
	Eliminating Resource Contention

	Conclusions
	Acknowledgments
	References
	Codes of Exotic Atomic Attacks

