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Abstract
Virtualization has become a standard part of many computer sys-
tems. A key part of virtualization is the all-powerful hypervisor
which manages the physical platform and can access all of its re-
sources, including memory assigned to the guest virtual machines
(VMs). Continuing releases of bug reports and exploits in the vir-
tualization software show that defending the hypervisor against at-
tacks is very difficult. In this work, we present hypervisor-secure
virtualization – a new research direction with the goal of protect-
ing the guest VMs from an untrusted hypervisor. We also present
the HyperWall architecture which achieves hypervisor-secure vir-
tualization, using hardware to provide the protections. HyperWall
allows a hypervisor to freely manage the memory, processor cores
and other resources of a platform. Yet once VMs are created, our
new Confidentiality and Integrity Protection (CIP) tables protect
the memory of the guest VMs from accesses by the hypervisor or
by DMA, depending on the customer’s specification. If a hypervi-
sor does become compromised, e.g. by an attack from a malicious
VM, it cannot be used in turn to attack other VMs. The protec-
tions are enabled through minimal modifications to the micropro-
cessor and memory management units. Whereas much of the pre-
vious work concentrates on protecting the hypervisor from attacks
by guest VMs, we tackle the problem of protecting the guest VMs
from the hypervisor.

Categories and Subject Descriptors C.0 [General]: System Ar-
chitectures

General Terms Security, Design

Keywords Computer Architecture, Cloud Computing, Security,
Virtualization, Hardware Security, Hypervisor, Trust Evidence, At-
testation, Confidentiality, Integrity

1. Introduction
We introduce the HyperWall architecture, which provides protec-
tions to guest VMs from attacks by a malicious hypervisor. We
are interested in the increasingly popular IaaS (infrastructure-as-a-
service) cloud computing model where the infrastructure provider,
such as the Amazon EC2 service [1], maintains physical servers
and leases VMs to the customers. While the infrastructure provider
provides the hardware and the virtualization software, the cus-
tomers provide their own guest operating system (OS) and appli-
cations to run inside the leased VMs.
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Cloud customers leasing VMs from an IaaS provider can have
a more flexible computing infrastructure while also reducing their
operational costs. However, adversarial parties or competitors can
lease VMs from the same provider. These competitors may then
have incentive to attack the hypervisor and use it to gain informa-
tion about other VMs.

Past work in this area concentrated on hardening the hypervi-
sors and protecting them from attacks. Even the hardened or mini-
mized hypervisors, however, have memory management function-
alities which they use to access the guest VM’s memory. If the hy-
pervisor is compromised, the management functions can be abused
to violate the confidentiality and integrity of the guest VMs. Our
work then aims to protect guest VMs from a compromised or ma-
licious hypervisor. We call this hypervisor-secure virtualization.

HyperWall’s key feature is the Confidentiality and Integrity Pro-
tection (CIP, pronounced ”sip”) tables, which are only accessible
by hardware; they protect all or portions of a VM’s memory based
on the customer’s specification. The customer can specify which
memory ranges require protection from accesses by the hypervisor
or DMA (Direct Memory Access). The tables essentially provide
for a hardware-controlled protection of memory resources.

In HyperWall, the hypervisor is able to fully manage the plat-
form, to start, pause or stop VMs or to change memory assignment.
To cross-check that the hypervisor is not behaving maliciously, our
architecture provides signed hash measurements to attest that the
customer’s initial VM image and specified protections were indeed
instantiated at VM launch. Furthermore, trust evidence can be gen-
erated during the VM’s lifetime to verify that the specified VM
protections have not been violated, or indicate how many attempts
at violating these protections have occurred. When the VM is ter-
minated, its protected memory is zeroed out by the hardware to pre-
vent leakage of data or code, and the hypervisor and DMA regain
full access rights to the VM’s memory.

HyperWall aims to extend a modern 64-bit shared-memory
multi-core and multi-chip system. By building on a base architec-
ture which supports virtualization, many elements can be re-used to
minimize the modifications required to support hypervisor-secure
virtualization. The main contributions of this work are:

• definition of hypervisor-secure virtualization,
• the HyperWall architecture which achieves hypervisor-secure

virtualization by using hardware to isolate a VM’s memory
from malicious hypervisor or DMA accesses, in page-sized
granularity as specified by the cloud customer, while allowing
a commodity hypervisor to fully manage the platform,

• introduction of a general-purpose mechanism for hardware pro-
tection of memory (and other resources) that scales with mem-
ory size, e.g., used in HyperWall for the CIP tables, and

• formulation of trust evidence mechanisms which provide the
cloud customer assurance that protections he or she specified
were installed and are being enforced.
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Table 1. Different hypervisors and OSes, their SLOC count and the com-
ponents which are part of their TCB.

Hypervisor [44] SLOC TCB
Xen-4.0 194K Xen, Dom0
VMware ESX 200K VM kernel
Hyper-V 100K Hyper-V, Windows Server
OS [25, 27, 34] SLOC TCB
Linux 2.6.23 13500K OS kernel
Window XP 40000K OS kernel
seL4 8K+ OS kernel

1.1 Excluding Hypervisor from TCB
Many of today’s security problems with virtualization solutions oc-
cur because of the size of the Trusted Computing Base (TCB). Ta-
ble 1 shows a number of hypervisors and OSes, their code size and
the components that are part of their TCB. While hypervisors are
two orders of magnitude smaller than commodity operating sys-
tems, they are still about an order of magnitude larger than seL4
[25], a formally verified micro-kernel. Hence, today’s hypervisors
are probably too large for formal verification for the foreseeable fu-
ture. Also, in spite of developers’ efforts to provide bug-free code,
a search on NIST’s National Vulnerability Database [7] shows a
number of bugs for both Xen [14] and VMware ESX [12]: 98 and
78 were listed, respectively, when a search was performed in the
summer of 2011. An example of a concrete attack on a hypervisor
found in the database is a vulnerability in Xen which allowed arbi-
trary commands to be executed in the control domain via a specially
crafted configuration file [3]. Because of difficulties in implement-
ing bug-free hypervisors, our work concentrates on protecting guest
VMs from a compromised hypervisor.

1.2 Enlisting Hardware Protections
We now discuss why software-only solutions may not be sufficient
to protect VMs. In a software-only approach, the hypervisor could
use encryption so that different views of the memory are presented
to different entities [20]. If the protection is in the hypervisor,
however, then the hypervisor has to be in the TCB. Exploits and
vulnerabilities which are being constantly discovered in real-life
hypervisors indicate that securing a commercial hypervisor is an
open issue. If the hypervisor is subverted, the protections can not
be ensured.

A number of minimized and hardened hypervisors have been
designed. Such systems, however, can still be misconfigured or
bypassed. For example, HyperSentry [15] shows how to use the
system management mode (SMM) to bypass the hypervisor for
introspection purposes, but such functionality can also be used for
malicious purposes.

Nested virtualization, e.g. the Turtles project [16], could be used
where there is an extra hypervisor layer below the main hyper-
visor. That software layer could be used for security and imple-
ment HyperWall-style protections. What is to prevent a malicious
attacker from slipping in an extra layer below the current lowest
layer?

Researchers have also demonstrated Ring -1 Hypervisor rootk-
its [38], Ring -2 SMM rootkits [47] or even Ring -3 Chipset-based
rootkits [41]. These rootkits cleverly use different functionalities of
hardware, highlighting the fact that software protections are vulner-
able since they can be subverted if attacked from below, i.e. by us-
ing the hardware. However, these rootkits are not due to any prob-
lems with hardware, rather they are due to the problem of having
protections in software while it is the hardware which is logically
the lowest level in the system.

By enlisting hardware protections, we also capitalize on hard-
ware having performance advantages over software. In addition,

changing functionality implemented by hardware or probing the
microprocessor chip to recover secrets are extremely difficult. Fur-
thermore, various vendors already modify hardware to improve vir-
tualization through extensions which are widely deployed in com-
modity microprocessors [2, 5]. Extensions in various hardware sub-
systems are also available today: the I/O MMU [13] or the SR-IOV
[9] extension for virtualizing PCI devices. This indicates that the
commercial vendors do not see the costs of modifying the hardware
for enhancing virtualization performance and security as outweigh-
ing the benefits of the modifications.

1.3 Hypervisor-Secure Virtualization
We have made a case for hardware protection of guest VMs from
compromised hypervisors in a position paper [40] which outlined
a broad research agenda, but no specific solutions. In this work,
we define hypervisor-secure virtualization as protection of a VM’s
secret code and data from an attacker with hypervisor-level privi-
leges, and provide a concrete architectural solution. The focus of
the protections is on the memory, as this is where code and data
resides, during a VM’s execution. Moreover, any keys for crypto-
graphically securing communications and persistent storage will
be placed by the VM in memory. By controlling which memory
regions the hypervisor or DMA can access, the confidentiality and
integrity of code, data and keys can be protected, thus protecting
VM runtime execution as well as its cryptographically-secured net-
work channels and storage.

The rest of the paper is organized as follows. Section 2 pro-
vides our threat model and assumptions. Section 3 describes the
HyperWall architecture and explains the details of how a Hyper-
Wall system operates. Our implementation and evaluation is pre-
sented in Section 4, and the security analysis in Section 5. Section
6 describes related work, and Section 7 concludes the paper.

2. Threat Model and Assumptions
Consistent with the definition of hypervisor-secure virtualization,
the HyperWall implementation aims to protect the confidentiality
and integrity of a VM’s code and data. The cloud customer is able to
specify which memory pages inside the guest VM require the pro-
tection. These protections are installed in hardware on the Hyper-
Wall system where the VM is to run and the hardware enforces the
protections. Throughout, however, a commodity hypervisor (with
minimal additions for handling our new hardware state) is able to
manage the platform. For example it can dynamically change the
physical to machine memory mapping.

Considering that we enlist hardware to provide the protections,
we assume that the hardware is trusted, is correctly implemented
and its functionality has not been tampered with. Some of the
”hardware” functionality may actually be implemented as code
or microcode stored in read-only memory (ROM). This is also
assumed to be correct.

It is not our goal to protect against bugs in the guest OS or
the applications. Our work aims to provide a customer with a
guarantee that running a VM in the cloud is as secure as running it
in the customer’s own facilities (if not more secure due to a cloud
provider’s ability to provide better physical security). It is up to
the customer to verify that the OS and applications do what the
customer expects. Also, we do not aim to provide protection from
attacks by the OS on applications. Verifying the security of guest
OS and applications are both assumed to be the responsibility of
the customer.

Preventing DoS (denial-of-service) attacks by the hypervisor on
a VM’s availability is not covered in this work. Moreover, the cloud
provider needs a method for terminating a VM if a customer does
not pay for the leased resources. However, confidentiality should
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still be protected – hardware zeroes out the state and memory so no
information is leaked when a VM is terminated.

We assume that the SMM, or similar remote management mode,
is disabled in the hardware so that new security mechanisms can-
not be bypassed. Incorporating security measures in SMM is an
orthogonal research problem. For example, the STM (SMM Trans-
fer Monitor) [42] has been designed for Intel microprocessors, but
this is not widely deployed.

Hardware attacks (e.g. snooping on the memory bus) are not in
the threat model. This assumption is consistent with the fact that the
IaaS providers have an incentive to secure their facilities and deter
insider attacks. Cloud providers can afford to physically secure the
servers, install monitoring equipment, etc., to prevent an intruder
from installing a hardware probe, for example.

We do not aim to protect against side channels such as those
due to a processor’s functional units, caches or I/O buses. Various
work has been done on minimizing such channels (e.g. dynamically
randomized caches [45]). Debug registers or performance counters
could be another avenue for hypervisor or malicious VMs to glean
information about a target VM. We do not protect against these
covert channels and side channels in our current work.

3. HyperWall Architecture
HyperWall’s objective is to protect guest VMs from a compromised
hypervisor. We use standard encryption techniques to protect con-
fidential code and data in persistent storage and during I/O and
networking. We also protect the processor state, e.g. the general-
purpose registers, when a VM is interrupted or suspended. The pro-
tection of memory, however, is achieved through the new hardware-
controlled isolation. The isolation approach incurs less overhead
than using a cryptographic approach (no extra decryption and hash-
ing overhead when VMs access memory). Also, memory read and
write paths do not need to be modified with extra cryptographic
hardware. Moreover, since hardware attacks are not considered,
encryption to hide contents of DRAM is not needed. Instead, the
isolation of the protected VM memory from hypervisor and DMA
access ensures its confidentiality and integrity.

The protections are accomplished through our architecture
which:

• enables cloud customer specification of desired confidentiality
and integrity protection policy (at page-sized granularity) to the
cloud provider’s HyperWall-enabled server,

• ties the protection policy to the VM initiated by the hypervisor
on the provider’s server,

• enables hardware enforcement of these policies through the
addition of minor modifications of existing hardware and the
re-use of existing commodity microprocessor features such as
TLBs (Translation Lookaside Buffers), DRAM (Dynamic Ran-
dom Access Memory), and the memory management units,

• enables the server to attest to the protections provided by the
hardware to the cloud customer, and

• performs hardware-controlled cleanup of a VM’s state and
memory upon termination so no information is leaked.

3.1 VM Protection Mechanisms
In order to protect a VM’s memory, we introduce new Confiden-
tiality and Integrity Protection (CIP) tables to protect both the con-
fidentiality and integrity of the VM’s data and code (for the regions
of memory which the customer requested to be protected).

The CIP tables are only accessible to the hardware; they store
mappings of hypervisor and DMA access rights to the machine
memory pages. These are used to enforce protections of the guest

Protected
pages:

Hardware-only
accessible memory

Saved
State

P2M
tables

Kenc
pre-CIPNext P2M

tables
Khash

Guest's
memory

CIP
tables

Protected
pages:

Figure 1. The main memory holds both the CIP tables (light gray) and
other memory ranges (dark gray) which are protected by the CIP tables.

VM’s memory. For each machine memory page, the CIP table
stores protection bits which are used to encode the protection in-
formation about the page. The page can be: not assigned to any
VM (not protected), assigned to a VM with hypervisor and DMA
access allowed, assigned to a VM with hypervisor access denied,
assigned to a VM with DMA access denied, or assigned to a VM
with no hypervisor nor DMA access.

The default setting that a customer specifies for a VM can be
to deny access to all pages, except for allowing the hypervisor or
DMA access to the I/O buffers in a VM. At system boot up time,
all bits in the CIP tables are zero, which gives the hypervisor and
DMA access to all of the DRAM.

We note that it is not possible to just add additional access rights
fields to the existing page tables because the hypervisor or the guest
OSes need full access to their respective tables to manage memory
mapping. Hence, a separate structure like our CIP tables is needed.
In addition, we provide DMA protection, as a malicious hypervisor
could configure a physical device to access the VM’s memory
through DMA and then read out that data from the device itself.
Finally, if a page is not explicitly protected, it is marked as assigned
to a VM but with hypervisor and DMA access allowed. This way a
compromised hypervisor cannot maliciously map a machine page
to two VMs so that an attacker VM could access a victim VM’s
memory.

CIP tables are consulted by a modified MMU (Memory Man-
agement Unit) in the microprocessor when hypervisor code is ex-
ecuting (or by logic in the I/O MMU on DMA accesses) to verify
that a memory location can be accessed. The CIP tables are updated
whenever a new VM is created or a memory assignment for a VM
is changed. The CIP tables update will end with an error (a VM
will not be started or new memory mapping will not be installed)
if there is detection of a new VM being assigned memory already
in use by other VM. The CIP tables are updated whenever a VM is
terminated so pages can be reclaimed.

3.1.1 CIP Tables
We designed the architecture to use a portion of physical memory
(DRAM) to store the CIP tables. This removes the need to add extra
hardware storage for CIP tables in the microprocessor chip. It also
allows the CIP table storage to be proportional to the amount of
installed DRAM. Moreover, an important benefit of our approach
of using DRAM memory for CIP tables is that it is a general-
purpose, scalable, hardware mechanism that can be applied to many
other uses.

When the computer boots up, the memory controller discovers
the amount of physical memory and proportionally a section of it
is reserved for CIP tables and made inaccessible to any software.
Consequently, the memory controller announces a smaller DRAM
size to the rest of the system. A single new register is needed in the
memory controller to keep track of the end of visible DRAM; this
register also marks the starting location of the CIP tables. The CIP
logic can query this register to obtain the location of the tables so it
can access them.
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Figure 1 shows the host physical memory of the system. The
part of the physical DRAM not accessible to any software is shaded
light gray at the right of the figure. This region holds the CIP tables
as well as an encryption key and a hash key, discussed below.

3.1.2 Protected Memory Regions
Other parts of DRAM are freely accessible unless they are pro-
tected by the CIP tables (sample protected regions for a VM are
shaded dark gray in Figure 1). When a guest VM is running, the
physical memory used by it is protected (as specified by the cus-
tomer). A VM’s memory does not have to be contiguous and the
hypervisor is free to assign host physical memory to VMs by any
algorithm, e.g. to avoid fragmentation.

Moreover, the CIP tables protect the memory which holds the
page tables mapping the physical to machine memory (marked
P2M tables) for the guest. During any memory mapping update,
both the old mapping (P2M tables) and the new mapping (marked
next P2M tables) are protected. A customer’s requested protections
are stored in the region marked pre-CIP. The pre-CIP specifies
which pages are to be protected (hypervisor or DMA access denied)
and which can be accessed by hypervisor or DMA. The pre-CIP
needs to be saved so that the original requested protections can be
checked each time the hypervisor attempts to update the guest’s
memory mapping.

The region marked Saved State in Figure 1 is shown to indicate
that whenever the VM is interrupted, the (encrypted) general pur-
pose registers, program counter, P2M page table pointer, and our
new HyperWall register state need to be saved. Saving of VM state
is already performed by today’s hypervisors, and we only require
that the code be updated to handle saving of the new state which
we define. The saving and restoring of the new state is needed so
that the CIP logic can verify the protections whenever the VM is
resumed. The memory region holding the (encrypted and hashed)
saved state is fully accessible to the hypervisor, e.g. so it can save
it on disk when the VM is suspended.

3.1.3 Cryptographic Keys
Our CIP protection strategy is isolation through hardware access
control, rather than through cryptographic methods; isolation is
used to bar the hypervisor or DMA from accessing a VM’s memory
(as specified by the customer). We do, however, use cryptography
to enable a customer to validate a genuine HyperWall server, to
protect VM-related processor state as the hypervisor manages the
VMs, and to protect communication between a VM and the external
world, as is often done today. Hence, we discuss the cryptographic
keys used in a HyperWall system.

The SKcpu is a private signing key burned into the micro-
processor chip and not accessible to any software (see Figure 2).
If a system has multiple chip packages, each will have a differ-
ent key. We envision that the hardware manufacturers would des-
ignate trusted certificate authorities which would sign the certifi-
cates of each chip’s SKcpu. Customers would obtain certificates
for the chips of the servers where their VMs will run from the cloud
provider. Customers would use the trusted certificate authority’s
public key to verify the certificates and thus whether the Hyper-
Wall hardware is genuine.

The Kenc and Khash are two keys used by the HyperWall
hardware and stored inside the protected memory (see Figure 1);
the keys are generated during each boot up cycle. They are used
whenever a VM is interrupted. Storing these keys in protected
shared DRAM memory (rather than in new registers in a core)
enables a VM to be paused on one core and resumed on a different
core, even in a different chip package on the same HyperWall
server.

Later we will also introduce a per-VM key, the PKvm, which
is generated inside each VM and should be unique to each VM
(e.g. by using a hardware random number generator instruction,
trng in Table 3, to ensure the hypervisor cannot orchestrate two
VMs generating the same key pair by controlling inputs which
affect collected randomness). This key should be stored inside the
memory region that is specified as private and off-limits both to the
hypervisor and to DMA.

3.2 Detailed Operation
We explain the reason for each of HyperWall’s new hardware fea-
tures as we describe its detailed operation at server boot up, VM ini-
tialization, VM interruption, VM runtime, and VM termination. For
reference, the hardware modifications are shown in Figure 2, while
Tables 2 and 3 give details about new registers and instructions. The
architectural features highlighted in Figure 2 will be summarized in
Section 3.4.

The HyperWall architecture is designed to incur most overhead
on starting a VM and to minimize the overhead as the VMs run.
Regular VM operation incurs no new overhead. There is overhead
only when the hypervisor interrupts the VM, updates the VM’s
memory mapping or itself makes a memory access. For this pur-
pose, we interpose on TLB updates to check the protections when
a new memory address is accessed. Consequently, a load or store
from the hypervisor only incurs new overhead if an address trans-
lation entry in the TLB is not found.

3.2.1 Initializing HyperWall Components
When the system boots up, the CIP logic queries the memory
controller to determine the start and end address of the protected
memory and issues commands (e.g. injects store instructions) to
write all 0s to the memory range. This memory becomes hardware-
only accessible. As initially there are no guest VMs running, this
invalidates all the entries in the CIP tables since no protection is
needed. In addition, the CIP logic generates encryption and hashing
keys (Kenc and Khash in Figure 1).

Once the HyperWall components are initialized, the regular
boot sequence continues. This includes the BIOS zeroing out the
memory which was not reserved by hardware (i.e. all memory
visible to software). There is no special boot up procedure for the
hypervisor.

3.2.2 Starting a VM
We assume that the initial kernel image and data sent to the IaaS
provider along with the requested protections are not confidential
and are visible in plaintext to the hypervisor. This allows the hyper-
visor to inspect the protections to make sure they match what the
customer requested. The customer also needs to provide a nonce
(NC, to prevent replay attacks) and the requested protections. A
new VM id (VID) is issued to identify this VM.

As part of the request, the VM will be assigned some devices
(e.g. network card or disk). The guest OS will access these devices
via memory pages shared with the hypervisor (if the device is emu-
lated in software) or DMA (if hardware device is used). Such pages
can simply be specified as allowing hypervisor and DMA access.
If more details are available about the virtualization environment
(emulated devices vs. dedicated hardware devices), the customer
can provide a more detailed protection request (e.g., allow only hy-
pervisor or only DMA access for the shared pages). We do not,
however, specify whether physical devices have to be dedicated to
VMs or emulated by the hypervisor. The VM simply expects a de-
vice and uses shared memory pages to access it.

Enabling the protections at VM start time requires a number of
steps. First, the guest OS kernel image has a certain memory layout
for its physical memory. The requested protections specify which
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Figure 2. New hardware additions, and hypervisor updates, needed to support the HyperWall architecture.

Table 2. New HyperWall registers.
Register Description (size)
SH state keyed hash (32 bytes)
NC customer’s request nonce (8 bytes)
SS initial state signature (128 bytes)
VID VM id (8 bytes)
RPP requested protections pointer (8 bytes)
IPH initial protections hash (32 bytes)
IMH initial memory hash (32 bytes)
VCNT violation count (8 bytes)
VMAD violation machine address (8 bytes)
VSIG VCNT & VGPA signature (128 bytes)

physical pages need to be protected. We call this specification the
pre-CIP, it is provided by the customer to the cloud provider.

Second, when the VM is created, the hypervisor also sets up a
mapping from the guest physical memory to the machine memory
in the P2M page tables. By specifying protections for the physical
memory and using the hypervisor’s assigned memory mapping to
obtain the corresponding machine pages requiring protections, we
allow the hypervisor to freely manage physical to machine memory
mapping.

Third, to enable the protections for a VM, the HyperWall ar-
chitecture intercepts the vmlaunch instruction and updates the CIP
tables with the new VM’s protections. When the vmlaunch is in-
tercepted, the CIP logic traverses the VM’s memory mapping (the
P2M tables). For each page referenced in the P2M tables, the hard-
ware reads the pre-CIP data to check if this page requires protec-
tion. Initially all pages are marked as not assigned in the CIP tables.
When the CIP logic detects that an un-assigned page is being as-
signed to a VM, the page’s state transitions into one of the assigned
states ( hypervisor and DMA access allowed, hypervisor access de-
nied, DMA access denied, or hypervisor and DMA access denied
– see Figure 4), depending on the pre-CIP data. If a page being as-
signed does not have a corresponding entry in the pre-CIP data, it
is automatically set to the state of ”assigned with hypervisor and
DMA access denied.” If a page is already assigned in the CIP ta-
bles, it can not be assigned to more VMs and any action on that
page, except freeing the page, will cause an error. If error is en-
countered at any time, the hardware rolls back any of the updates it
did to the protections for the requested VM (i.e. the CIP tables do

Table 3. New instructions for HyperWall.
Instruction Description
sign bytes Use CPU’s private key to sign specified data.
trng Access true random number generator.
vmlaunch Signal hardware that a new VM is launched.
vmresume Resume a VM.
vmterminate Signal hardware to terminate the VM.

not hold any information about the requested VM), the VM is not
started, and the vmlaunch instruction returns an error. The failed
vmlaunch instruction will be detected by the hypervisor so it can
attempt to remedy the problem (e.g. fix the memory mapping).

Fourth, if there has been no error during initialization, the hard-
ware generates the hash of the initial protections and the hash of
the initial memory contents (storing these in the new IPH and IMH
registers in Table 2), and updates the attestation measurement sig-
nature (SS register). This SS value is a signature over all the Hy-
perWall registers when the VM is created and uses the SKcpu key:

SS = SIGNSKcpu(NC||V ID||RPP ||IPH||IMH

||V CNT ||VMAD)
(1)

The NC is a nonce specified by the customer each time the
customer requests the HyperWall system to create a new VM or
do an attestation. The nonce is part of signatures and hashes and
ensures freshness. The VID is an identification number used to
uniquely identify each VM and is set when the VM is first created.
The RPP is a pointer to the memory location where the customer’s
original requested protections (the pre-CIP) are stored for future
reference. The VCNT and VMAD are used for trust evidence,
described later in Section 3.3, and are set to 0 when the VM is
created.

After the VM is launched the hypervisor will send this SS signa-
ture (along with the values of other HyperWall registers associated
with the VM, see Table 2) back to the customer to attest the VM
that was started. The nonce, NC, and initial protection and memory
hashes, IPH and IMH, can then be verified by the customer.

3.2.3 Runtime Protections Enforcement
Whenever the hypervisor runs and attempts to access some memory
there will be a TLB miss on a first access to a memory page due
to the lack of a translation entry in the TLB. Before the TLB
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is updated, the HyperWall mechanisms traverse the CIP tables
to check the access rights for the machine memory page. If no
restrictions are present, a TLB entry is added as usual and there
is no overhead on subsequent accesses. If there is a restriction,
the TLB entry is not added and a trap to the hypervisor occurs, to
signal the hypervisor that an illegal memory access was performed.
The hardware will also record this violation (VCNT and VMAD
in Table 2), and sign the violation record (VSIG in Table 2). The
hypervisor already knows what the protected regions are so the
trap conveys no new information, but allows it to make forward
progress. The TLB entries need to be flushed whenever the CIP
tables are updated to remove stale mappings. This can be performed
via a TLB shoot-down to the remaining cores from the processor
which updates the CIP tables. TLB shoot-down clears the entries in
the TLBs, essentially flushing the old data held there.

A malicious hypervisor could configure a physical device to
access the VM’s memory and then read out that data from the
device itself. To counter this in the HyperWall architecture, the I/O
MMU is also modified so that the CIP tables are consulted on DMA
accesses.

3.2.4 Interrupting and Resuming a VM
When the VM is interrupted and before the hypervisor begins to
run, the VM’s state needs to be protected: the general purpose
registers are encrypted by hardware and the hash of the registers
and the new HyperWall state is generated and stored in the SH
register (see Table 2). This is a keyed-hash (using Khash key)
generated by HyperWall hardware each time the VM’s execution
is interrupted, to help preserve the VM’s integrity.

The Khash key is stored in memory (c.f. Figure 1) and thus ac-
cessible to HyperWall hardware on each core so a VM interrupted
on one core can be resumed on any other core. Equation 2 describes
how SH is generated.

SH = HASHKhash(NC||SS||V ID||RPP ||IPH||IMH

||V CNT ||VMAD||V SIG||P2Mpointer

||PC||EKenc(GPregisters))
(2)

Then, the hypervisor can read out the registers and save them
for when the VM is to be resumed.

When the hypervisor wants to schedule the paused VM again,
it loads the saved state values back into the registers and calls
vmresume to resume the VM. The CIP logic intercepts the instruc-
tion call and performs the inverse of the tasks performed when the
VM was interrupted, i.e. it reads the saved hash of the VM state,
verifies the hash and decrypts the registers before resuming the
VM. The P2M pointer is included in the measurement so the hy-
pervisor cannot restart the VM with a different memory mapping.
A VM paused on one core can be resumed on any other core.

For hypercalls, whereby a guest OS requests some service from
the hypervisor, the general purpose registers can not be encrypted
(nor included in the SH hash). The guest OS uses the registers to
pass some arguments and may return results also in the registers
so the values will be different when the VM makes the call and
when it is resumed. The HyperWall hardware can detect the case
of a hypercall by comparing the trap number with the one associ-
ated with hypercalls (e.g. 0x100 on SPARC) and conditionally not
do the encryption. For device emulation, we assume that all data
copied between the hypervisor (or a driver VM emulating a device)
will be copied in the shared memory. When the VM is interrupted
to perform the device emulation, its register state will not need to
be updated by the hypervisor. Consequently hypercalls are the only
case when our hardware must not encrypt general purpose registers.

3.2.5 Runtime VM Management
During the lifetime of a VM, the hypervisor needs to perform a
number of tasks. Most prominent are: scheduling VMs on different
cores, memory management and VM migration.

Scheduling VMs requires the hypervisor to interrupt a VM, save
the state and at some later time restore the state and resume the
VM (on the same or different core). We have already discussed
how the VM is protected when it is interrupted. These protections
ensure that the sensitive code and data are protected when the VM
is paused and resumed.

Memory management tasks involve the hypervisor updating
the physical to machine memory mapping as VMs are created,
the memory allocation is changed or VMs are terminated. The
requested protections (the pre-CIP) are saved when the VM is
created and made unreadable by the hypervisor or DMA. The pre-
CIP data is consulted again whenever the memory mapping is
updated. Such an update is triggered when the hypervisor writes
the P2M pointer register with a new value. First, our hardware
mechanisms deny access to hypervisor or DMA (set the pages as
private) for the pages which occupy the next P2M tables (see Figure
1). Second, they traverse the new memory mapping in the next P2M
tables and, using pre-CIP data, they update the CIP tables with the
hypervisor-deny or DMA-deny protections for the machine pages
corresponding to the physical pages in the new mapping. Just as
when creating a mapping for the first time, if a page being assigned
to the VM (as specified in the next P2M) is already assigned to
some other VM in the CIP tables, the CIP table will not be updated
and the memory mapping update will terminate with error. If new
memory pages have been successfully assigned to the VM with
no errors, our hardware mechanisms traverse the previous P2M
mapping to remove from the CIP tables the memory pages not
used anymore by the VM so they can be reclaimed. If a removed
page was protected from hypervisor or DMA accesses, it is zeroed
out by hardware, so no information leaks out, before clearing the
protection bits. Finally, the machine memory pages where the old
memory mapping was stored (P2M tables in Figure 1) is released
back to the hypervisor, i.e., the protection bits in the CIP tables are
cleared.

Through the above memory management, the HyperWall allows
for the common technique of memory ballooning [43]. Memory
ballooning is a technique for reserving some pages of a VM’s
allocated memory that can then be dynamically given to this or
another VM when needed. Ballooning depends on the hypervisor’s
ability to dynamically change the memory mapping of a VM as
it runs – as described above. To prevent information leakage, any
(protected) memory reclaimed by the hypervisor will first be zeroed
out by HyperWall hardware. Zeroing does not cause problems since
before reclaiming memory in a VM, its balloon size is increased
causing the OS to save data in any pages that will be reclaimed, so
it is safe for hardware to zero them out.

To allow migration between different servers, we propose the
use of guest-assisted migration [22]. For OSes which do not support
such self-migration, we propose the use of a software shim to
perform the migration tasks. Guest-assisted migration can be used
for the majority, if not all, of the scenarios and the extra complexity
of adding migration support in HyperWall hardware does not seem
justified.

3.2.6 Communicating with Customer
Once the attestation measurements are verified, the customer
knows that the specified VM and protections were started, and the
VM’s memory is isolated from the hypervisor and DMA. Exter-
nal communication, however, still needs to be protected. To secure
communications between the customer and his leased guest VM, a
cryptographically-secured channel is set up using a modified SSL
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Figure 3. Establishing secure communication with the guest VM.

protocol. Note that this secure channel is between the VM (not
the server) and the customer’s machine. Hence, we generate a new
public-private key pair for this VM, after its memory is securely
isolated from the untrusted hypervisor and DMA.

The protocol is shown in Figure 3 with our modifications shown
in bold. With our modifications, the servers’s certificate and public
key, used in standard SSL exchange, are replaced by PKvm and
the output of our new sign bytes instruction. Initially, the VM
has no public key which could be used in standard SSL exchange
(recall that initial VM contents are sent in plain text so any key
would be visible to the hypervisor and thus not secure). However,
once the VM is started, its memory is off limits to the hypervisor,
so it can generate a public-private key pair, e.g. using the OpenSSL
library. Once the PKvm and its associated private key is generated,
the VM can use the sign bytes instruction to have the hardware
sign the PKvm key. The PKvm and the signature are sent back
in our modified SSL exchange. By using the hardware manufac-
turer’s certificate, the signature can be verified to have come from
a HyperWall server. The CPU privilege level (priv level), VM id
(VID), and the nonce (NC) are included in the signature to verify
that indeed the VM executed the instruction:

sign bytes(PKvm)

= SIGNSKcpu( PKvm || priv level || V ID || NC )
(3)

3.2.7 VM’s Persistent Storage
If confidential data or code is sent when a VM is created, there
would be a need to have hardware on the HyperWall-enabled server
for doing complex mutual authentication between the customer and
the hardware. Instead, the initial kernel image and protections are
visible in plaintext to the hypervisor. The customer sends a vanilla
VM image (with cryptographic libraries such as OpenSSL). The
CIP protections are then locked in for this VM. Once a secure
channel between the customer and the guest VM is established, the
software inside the protected VM can perform the mutual authen-
tication with the customer. Also, proprietary or confidential data or
code can then be sent to the VM. An encrypted disk image (or re-
mote storage) can be used to store the code or data, and the SSL
connection can be used to give the VM keys to decrypt the en-
crypted storage. Because the communication is protected and the
VM’s memory is isolated from the hypervisor, the hypervisor will
not be able to access the keys to decrypt the storage and see its
plaintext contents.

3.2.8 VM Termination
When the VM is terminated, its memory is reclaimed by issuing
our vmterminate instruction (see Table 3). The CIP logic inter-
cepts the call to this instruction and traverses the P2M page table
mapping to find all pages used by the VM. After each protected

page is zeroed out by hardware, its entry in the CIP table is cleared
so that this memory page can be freely accessed. If a hypervisor
fails to issue the vmterminate instruction, it will remain locked
out of the memory that has been assigned to the VM.

3.3 Trust Evidence
We propose trust evidence that can be used to provide a customer
with information he or she can use to verify the target system, the
VM that was started and the protections installed in hardware. Trust
evidence is composed of two parts: attestation of the initial VM and
the requested protections and attestation of the enforcement of the
protection.

3.3.1 Attesting Initial VM and Protections
When the VM is created, the HyperWall hardware generates the ini-
tial state signature, SS, as defined by Equation 1. This locks in the
initial VM state, and the hypervisor sends the values of the registers
(including IMH and IPH) as an attestation to the customer. This at-
tests that the requested VM started with the requested protections.
Given the hardware manufacturer’s certificate, the customer is able
to verify the signature and compare the register state to the expected
values. The measurement includes the initial memory hash to check
that the provided VM image was used. It also includes the initial
protections hash to check that the hypervisor did not alter the re-
quested protections as it inspected them. If all the values are as
expected, then a correct VM was started and the requested memory
regions are protected.

3.3.2 Attesting Runtime Protection Enforcement
The customer may also want to verify that the protections are being
enforced as the VM runs. For this purpose, HyperWall keeps track
of the count of memory access violations (VCNT in Table 2) and
the address where the last violation occurred (VMAD in Table 2).

To obtain the runtime attestation, the customer sends the VM id
to identify the VM, a nonce for freshness and a challenge. The chal-
lenge specifies the physical address that the hypervisor or DMA
should try to access so enforcement of protections can be verified.
Next, the hypervisor performs the challenge (e.g., attempts to ac-
cess the machine page which is mapped to the VM’s physical page).
If the access is in violation of protections, the hardware increments
the violation count (VCNT) and saves the address that caused the
violation (VMAD). At the same time, the VSIG signature is gener-
ated by the hardware using the SKcpu key:

V SIG = SIGNSKcpu(NC||V CNT ||VMAD) (4)

If there was no violation, the violation count and address are not
updated. Violation count, the address and signature form the trust
evidence which is read by the hypervisor and sent to the customer,
as the runtime attestation response.

This is one possible implementation of runtime attestation. By
comparing the challenge and the response, the customer can check
that the protections are enforced for the address specified in the
challenge. Given this base mechanism, a customer can design dif-
ferent schemes for verifying the whole VM’s protections: randomly
spot check the protections or fully scan all protected regions, for
example.

We point out that our trust evidence attests to the protections of
the VM requested by the customer; it is not a measurement of the
current state of the OS or hypervisor or the entire software stack
(as in the Trusted Platform Module’s attestation [11]). We provide
evidence that the protections of the VM used in the cloud are indeed
being enforced.
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3.4 Architecture Summary
Figure 2 shows the hardware modifications required to implement
HyperWall and highlights our re-use of existing commodity micro-
processor mechanisms.

New HyperWall registers ( A© in Figure 2) are introduced to
store protection information about the currently executing VM.
Table 2 lists these new registers for each processor core. These
registers are updated by hardware and can be saved and restored
by the hypervisor when it switches VMs. Two new instructions,
sign bytes and trng are added ( B©), while three existing ones
are modified (see Table 3 and description in previous section). A
hardware random number generator block is added to support the
trng instruction.

A cryptographic engine ( C©) is needed for performing encryp-
tion, decryption, hashing and signing (for which the SKcpu key
will be used). The bulk of the HyperWall logic is in a state machine
( D©) which is responsible for updating the CIP tables when a VM
is created or terminated. Moreover, the state machine ensures the
protections are maintained when the memory mapping for a guest
VM is updated. This is done by the hardware mediating updates to
the physical to machine (P2M) page mapping.

The TLB update logic ( E©) is expanded to consult the CIP tables
before inserting an address translation into the TLBs. To improve
performance, the access checks are done when the address trans-
lation is performed. The address translation is cached in the TLB
if there is no violation, and the CIP table check can be avoided in
the future. To prevent stale mappings, the TLBs need to be flushed
whenever the CIP tables are updated. Similarly to the address trans-
lation in the main processor, the I/O MMU ( F©) needs to have extra
logic to consult the CIP tables. The MMU ( G©) is updated with 1
extra register to mark where the protected memory region starts,
and CIP logic is added to walk the CIP tables on a hypervisor ac-
cess. We re-use a portion of DRAM ( H©) to store the CIP tables.

Although we introduce our modification only in the micropro-
cessor and consider the hypervisor untrusted; the hypervisor ( I©),
as the entity in charge of the platform, will need to interact with
our new architecture. In addition to the usual tasks, the hypervisor
needs to perform a few additional functions. It needs to save and
restore the new registers when VMs are interrupted and resumed
(as it does already with other state today). It needs to handle the
vmlaunch, vmresume, and vmterminate instructions to start, re-
sume, or terminate a VM respectively. It needs to read attestation
measurements from hardware registers. It needs to use a modified
procedure for updating the memory mapping during VM runtime
(i.e. swap old and new P2M tables rather than modify individual
entries in old P2M mapping).

The guest OSes ( J©) do not need explicit modification. The only
change is the possible inclusion of a library which makes use of
the new trng instruction. However, commodity Linux distributions
already are able to use hardware random number generators found
in computer chipsets (e.g. in Intel’s 82802 Firmware Hub [6]) so
no modification in such systems is needed. The software memory
manager found in the guest OSes should never map the sensitive
code or data such that it is located in the pages accessible to the
hypervisor. If only pages which are used as buffers between VM
and (emulated or read) devices are accessible to the hypervisor,
the manager will never map any data or code to these pages as
they are set to be used by the device drivers for those devices. If
only a small subset of pages is protected, however, then guest OS
modification may be needed so that sensitive data is never mapped
into unprotected pages.

3.4.1 New Register State
Table 2 shows per processor core registers which are used to man-
age VM protections. These have all been described in Section 3.2
(Detailed Operation).

3.4.2 New Instructions
New or modified instructions are listed in Table 3. We add unprivi-
leged sign bytes and trng instructions. The sign bytes is used
to sign the data at the requested address. In addition to the data,
the signature includes: current privilege level and the VID and NC
register values. All the data are concatenated and then signed with
the SKcpu key. The privilege level specifies whether user software,
OS, or hypervisor invoked the instruction. For user or OS invoca-
tion, the VID specifies the VM that invoked it (value is 0 for hy-
pervisor invocation). The NC is used to ensure freshness, e.g. the
customer requests the VM to sign some data and gives it the nonce
to use. The sign bytes is especially used when the PKvm is gen-
erated by a VM so that the customer can verify that PKvm indeed
came from their VM. The trng uses a hardware random number
generator and returns random bytes to the guest.

We make use of hyper-privileged instructions to start, resume
and terminate a VM. Some of these are already present in many
modern architectures (e.g. Intel’s x86 with virtualization exten-
sions). The vmlaunch signals the hardware that a new VM is
launched and causes HyperWall protections for that VM to be en-
abled. The vmterminate instruction causes all of the VM’s pro-
tected memory regions to be zeroed out by the hardware and their
entries in the CIP tables cleared so the memory can be reclaimed.
When a VM is interrupted the new HyperWall registers describing
that VM are saved; the vmresume instruction signals that the VM
is ready to be resumed, causing the hardware to check the integrity
of the restored HyperWall registers.

3.4.3 Cryptographic Routines
We have included the cryptographic routines as an extra hardware
unit in the microprocessor. This can be implemented as dedicated
circuits (as in our simulations), microcode or software routines in
on-chip ROM.

4. Simulation and Evaluation
4.1 Baseline Simulation
We have implemented HyperWall in an OpenSPARC T1 simulator.
OpenSPARC is an open-source 64-bit, multi-threaded, multicore
microprocessor from Sun Microsystems (now Oracle), modeled af-
ter their UltraSPARC commercial microprocessor. The whole mi-
croprocessor code (which can be synthesized to ASIC or FPGA),
the code for the hypervisor, as well as a set of simulators (Legion
and SAM) are available. We use the Legion simulator which is able
to simulate multiple cores, boot the hypervisor, and run multiple
VMs. HDL (hardware description language) code could be modi-
fied if the design is to be synthesized into a real chip or to obtain
power and area measurements.

We have modified the Legion simulator with the new Hyper-
Wall functionality. We utilize the PolarSSL [8] library to simulate

Table 4. Simulator Configuration
Component Parameter Value
System Total ITLB, DTLB 16 entries each

DRAM 32 GB
CPU cores 2

Each guest VM CPU cores 1
Memory, Disk 256MB, 2GB
Guest OS Ubuntu Linux 7.10
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the cryptographic operations. We have configured Legion to simu-
late 2 cores and run 2 VMs (one per core), see Table 4. Each guest
VM has 10 memory regions spanning 4GB of memory (e.g. RAM,
memory-mapped disk image, emulated console, etc.) and the pro-
tections are consequently specified for a 4GB region in our test
pre-CIP data.

For the performance evaluation we run the hypervisor, Ubuntu
OS and selected SPEC 2006 benchmarks on the simulator to obtain
instruction counts for various operations and events. We assume
conservatively 5 cycles per instruction (CPI=5) for memory load
and store instructions, CPI=1 for register-based functional instruc-
tions, and CPI=2 as average for all instructions to estimate cycle
counts. We simulate: SHA-256 for hash generation with 0.13 cy-
cles/byte [24], AES for encryption with 1.38 cycles/byte [28] and
1024-bit RSA digital signature which takes 283K cycles [36].

4.2 CIP Tables Implementation
There are many possible implementations for the CIP tables. We
chose a flat table with one entry per machine page. This has simple
addressing logic: the high-order bits of a machine page’s address
are used as an index into the CIP table.

Each CIP table entry is 4 bits. While 3 bits are enough for the
5 states currently defined per page as described in Section 3.1, we
opted for 4 bits, a power of 2, see Figure 4. The extra (reserved)
encodings can be used for future functionality. The first two bits of
each entry are used to detect if a page has been assigned to a VM or
not: 00 is unassigned, 11 is an assigned page that is private to a VM.
While 01 and 10 are reserved, one future use for these encodings
which we are investigating is for pages shared among VMs.

An alternative design is to use a dedicated hardware memory
structure for storing the CIP tables. This, however, would impact
scalability (having a dedicated hardware structure pre-determines
the maximum amount of memory which can be protected, prevent-
ing installation of more memory at a later time) and increase hard-
ware costs (having to add more hardware components). By using a
hardware-only accessible portion of DRAM, we reduce the costs by
using existing DRAM and provide scalability. At boot up time, the
memory size is discovered and proportionally a part of DRAM is
made hardware-only accessible and the tables are stored there. This
allows the system to reserve exactly the size of memory needed for
the tables; there is never a situation where some subset of memory
cannot be protected due to insufficient hardware CIP table entries,
nor are resources wasted by provisioning for the worst case. More-
over, the lost DRAM storage space is negligible (∼0.012% in our
evaluation).

Another alternative design for the CIP tables that we explored
is a page-table-like structure. This has the advantage that existing
page-table walking hardware could be reused. However, more than

Hardware-only accessible memory

//

//

...
Page0Pagej-1Pagej

Protection encoding:

0000 - page not in use, no protection
0001
 ...   (reserved) 
1011
1100 - assigned, HV and DMA access okay
1101 - assigned, no HV access
1110 - assigned, no DMA access
1111 - assigned, no HV or DMA access

Figure 4. One design of CIP tables which uses 4 protection bits
per page, all stored in hardware-only accessible memory.

Table 5. Worst-case Overhead of Accessing CIP Tables
Operation Original

System
Extra Memory
Accesses

total inst. total (change)
Startup (hypervisor boot) 58 M

Init. CIP tables 524 K (0.9%)
Check CIP 21 M (36%)

VM Launch (guest OS boot) 2686 M
Set CIP entries 2 M (<0.1%)

VM interrupt due to:
Scheduling ∼76 8 (10%)
TLB miss ∼35 5 (14%)

VM terminate - - -
Clear CIP entries 1 M

one memory access is needed for a CIP table lookup (e.g., 2 mem-
ory accesses for a 2-level page-table structure). Also, CIP tables are
located in fixed memory locations, and do not need the flexibility of
locating them in arbitrary memory locations like conventional page
tables. Hence, we chose the flat table structure for our CIP table
implementation.

The size of the CIP tables depends on the amount of installed
DRAM. For our implementation, we have chosen to simulate a
system with 32 GB of addressable memory, which requires 4MB
of storage (32GB→ 223 4KB pages ∗ 4 bits per page→ 4MB).

4.3 Storage Overhead
One benefit of storing CIP tables in DRAM is that the reserved
amount of memory depends on the size of DRAM. Assuming 4KB
pages and using 4 bits per page to describe the protections, 0.012%
(i.e. 4MB out of the 32GB) of DRAM is made accessible only to
the hardware and not usable by the rest of the system.

The new HyperWall registers in each microprocessor core sum
to a total of only 392 bytes. There is also need for an extra register
in the MMU to hold the start address of the hardware-only accessi-
ble memory region.

4.4 CIP Table Access Overhead
The worst case overhead of initializing the 4MB of CIP tables is
∼524K 64-bit accesses, which initialize the table entries by writing
all 0s. This overhead can be greatly reduced if there is support for
zeroing out whole blocks of memory at a time. Once the CIP tables
are initialized and the system begins to run, they are consulted (in
the worst case) on each hypervisor or DMA access. In this worst
case, each memory access causes 1 extra access to the CIP tables
to read the protections. In the average case, this will be much
less as once an address translation is placed in the TLB, the CIP
lookup does not need to be performed. Table 5 shows the worst
case overheads for the simulated system.

During hypervisor boot up there are ∼58M instructions exe-
cuted, of these 21M are memory instructions. Each memory in-
struction will cause in the worst case one extra access to read the
CIP tables, hence the overhead of 21M extra memory accesses.
During Ubuntu guest OS boot up, we observed ∼2686M instruc-
tions being executed, of these 2M were hypervisor memory ac-
cesses. Again, each hypervisor access in the worst case causes one
extra access due to reading CIP tables, hence the overhead of 2M
extra memory accesses. During regular OS execution, the OS of-
ten is interrupted by the hypervisor. For example, when a peri-
odic interrupt to allow the hypervisor to perform scheduling du-
ties happens, the hypervisor executes ∼76 instructions, of which 8
are memory accesses causing overhead of 8 extra memory accesses
(due to reading the CIP tables). During VM termination, the CIP
table entries need to be updated. In our simulation, the VMs are
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Table 6. Approximate Runtime Cycle Overheads
Operation Extra Overhead

Hardware Hypervisor
(cycles) (cycles)

VM Launch (5372 M cycles)
set CIP entry 10 (per page)
generate IMH 34900 K
generate IPH 140 K
generate SS 280 K
read SS 4

VM Interrupt
encrypt GPR 353
generate SH 84
save HyperWall regs. 21

VM Resume
restore HyperWall regs. 21
verify SH 84
decrypt GPR 353

Runtime Attestation
write NC 1
generate VSIG 280 K
read VSIG 4

VM Terminate
Zero VM memory 512 (per page)
Clear CIP entries 10 (per page)

assigned 4GB memory regions (1M pages) which requires 1M CIP
entries to be updated.

4.5 Runtime Overhead
During runtime, a HyperWall system also experiences overhead
due to cryptographic operations and updates of HyperWall regis-
ters. In addition, the hypervisor needs to perform new operations
to save and restore the HyperWall registers; issue instructions to
launch, interrupt, resume and terminate the VM; handle the attes-
tation operations and handle the modified memory mapping update
mechanisms. Recall, however, that the CIP tables are only con-
sulted when the hypervisor is running and that there is no extra
overhead for memory accesses from the guest OS or applications.
Table 6 summarizes the different overheads and breaks them up
into overheads incurred by hardware or by the hypervisor, while in
the text below we highlight some important points.

Upon VM launch, most of the overhead is in updating the
memory protection. We report overhead per protected page, which
needs to be multiplied by the number of protected pages and will
vary for each system. In our simulation setup, each VM occupies a
4GB space (memory, memory-mapped disk and memory-mapped
devices) which is 1M pages. There will also be extra work in the
cloud infrastructure to handle the protection specification and pass
it to the hypervisor; this overhead is not reported here.

For the hash generation we emulate a hardware implementation
of SHA-256 with 0.13 cycles/byte [30]. For our configuration (c.f.
Table 4), hashing 256MB of memory and the pre-CIP tables takes
about 35M cycles. One signature will take on the order of 280K
cycles if a recent speed-optimized 1024-bit RSA design is emulated
[36].

When a VM is interrupted, the overhead of encrypting the gen-
eral purpose registers (GPRs) will be incurred on all VM inter-
ruptions, except due to a hypercall (when the registers are not en-
crypted, so information can be passed to the hypervisor). Similarly,
during VM resume the decryption overhead will not be incurred if
the VM is returning from a hypercall. The encryption of the 32 64-
bit GPRs using a 1.38 cycles/byte AES implementation [28] takes
353 cycles. Generation of the signed hash, using a 0.13 cycles/byte
[30] implementation, of the GPRs (32 64-bit registers) and our new
state (392 bytes) requires hashing 648 bytes for a total of 84 cy-

cles. The reverse of these operations is performed to verify the state
when the VM is resumed.

For runtime attestation, there will also be extra work to deliver
the attestation result to the customer. This is a complex process
involving many software components, and the overhead is not re-
ported. However, much similar overhead is incurred today, for ex-
ample when the status of a VM executing in the cloud is reported
to the customer, so the overall percentage change should be small.

When a VM is terminated, the protected memory regions need
to be zeroed out by hardware and the CIP table entries removed.
We report numbers per page-sized (4KB) region. Because now the
hardware zeroes out the memory, the associated functionality can
be disabled in the hypervisor, so the extra overhead will be partially
compensated.

4.6 Impact on Memory Hierarchy Performance
Because there are extra accesses to the CIP tables, they will cause
the cache hit rate to decrease. The cache hit rate changes can be
used as a proxy for estimating performance impact.

To model the impact of the extra CIP table accesses on the sys-
tem performance, we extended the OpenSPARC Legion simulator
with a simulation of cache hierarchy. We simulate split L1 instruc-
tion and data caches, 4-way, 32KB each (there is one pair of caches
per core); and a unified 12-way 3MB L2 cache. The parameters
are set to match the OpenSPARC architecture. These are inclusive,
write-back caches with a simple round robin replacement policy.
We simulate the HyperWall state machine using the data cache to
cache the CIP table entries, and hence it impacts software perfor-
mance.

Our test runs included: booting the hypervisor, booting the
whole guest OS, and running selected SPEC 2006 benchmarks.
The cache hit rate changes were within 1 % in all cases. This
suggests that HyperWall’s impact should be minimal, but a more
detailed cache and memory simulation is needed to get more exact
estimates; this is part of our future work on optimizing a HyperWall
implementation.

5. Security Analysis
We now evaluate the security of the HyperWall system. Keep in
mind the goal of HyperWall is to protect the confidentiality and
integrity of a VM’s memory.

5.1 Protecting Confidentiality and Integrity
In any of today’s virtualization solutions, the hypervisor is able to
access all of a VM’s memory or disk images and violate confiden-
tiality and integrity of the code and data stored there. In Hyper-
Wall, the hypervisor has access to the initial guest VM image and
the requested protections sent by the customer. Any of this data
can be modified before the hardware is initialized and protections
locked in. This attack is averted by the use of hardware-based at-
testation and sending the signed measurements when the VM is
started. Moreover, during VM runtime, the customer can request
trust evidence and verify that it came from a genuine HyperWall
system (due to the hardware signature) and that the protections are
still correctly specified for hardware enforcement.

Also, when the VM is running, the hypervisor could intercept
communications between the customer and the VM. Initially, no
confidential data is sent, so this does not gain anything for the
attacker. Once the VM is started, customer to VM communication
is protected with the modified SSL protocol. The hypervisor, which
has no access to the decryption key, cannot break the SSL secure
channel and extract any data sent in the SSL tunnel after the VM
is running. The customer can also use this secure SSL tunnel to
send the key for the VM to access and decrypt its encrypted storage
where it can store proprietary code and confidential data.
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Because the VM contains memory regions off-limits to the hy-
pervisor or DMA, it can generate keys and keep them secure from
a compromised hypervisor or DMA. Such keys should be used for
hashing and encryption to protect the integrity and confidentiality
of swap space that the guest VM may use, for example. In Hyper-
Wall, all disk storage, except for the initial VM image, should be
encrypted and hashed.

5.2 Availability Considerations
HyperWall implementation of hypervisor-secure virtualization
does not provide availability protection for the guest VMs. The con-
fidentiality and integrity of the protected code and data, however,
is maintained even if an untrusted hypervisor performs a denial-
of-service (DoS) attack on the VM by suspending or terminating
it. The memory with the code and data is protected from hypervi-
sor or DMA access even if the VM is suspended and, moreover, it
is zeroed out by hardware when the VM is terminated so that no
information leaks out.

One reason we felt it was reasonable to leave out availability
protection is because the IaaS cloud provider must be able to stop
a VM anyway. In an IaaS hosted infrastructure cloud computing
scenario, customers lease the resources and pay for them. The
IaaS cloud provider (via using hypervisor mechanisms) needs to be
able to stop a VM if the customer is not paying for the resources.
Otherwise the customers could execute a DoS attack on the cloud
provider’s resources, or get to use the resources for free.

5.3 Other Security Concerns
One potential concern is the hypervisor’s lack of ability to fully in-
spect the memory contents for the guest VM, and thus perform se-
curity checking of the VM via introspection.. Allowing the hypervi-
sor to access a VM’s memory, however, is at odds with our assump-
tion of an untrusted hypervisor. But, the infrastructure provider can
still use network-based intrusion detection systems (IDS) to moni-
tor the network for any unusual activity that may hint at a malicious
VM. Also while still using the protections, a customer could use in-
VM monitoring and install a security agent that monitors the state
of the VM and reports back to the customer and the infrastructure
provider.

Another potential concern is a set of cooperating malicious hy-
pervisors which may start one copy of the VM on a genuine Hy-
perWall machine and a second copy on a different server and for-
ward the same data to both so that the second system leaks the
data or code. However, after receiving the attestation measure-
ment sent when the VM is started, the customer knows which ma-
chine the VM is executing on (due to the unique SKcpu). The
guest VM generates a public-private key pair and signs it using
the new sign bytes instruction to establish a secure connection
with the customer. When the customer receives and verifies the
signed PKvm key, he or she knows that it came from the same
server which properly attested. The copy of the VM on the non-
HyperWall machine will not have the keys needed to decrypt the
communication or decrypt the customer’s encrypted data or code.

The ability of the customer to verify the SKcpu opens up the
possibility of infrastructure mapping attacks [37] as now there
is an easy way to identify a particular server. While we do not
protect against such attacks in the current work, ideas from direct
anonymous attestation [17] could be used.

A different concern is that a malicious hypervisor could attempt
to assign memory pages to a victim VM that have already been
assigned to a hostile VM. If this was possible, the hypervisor access
and DMA access checks would be bypassed as memory protections
are not checked on VM access. This attack is not possible in
HyperWall. When a VM is created, the CIP tables are updated to
hold information about its pages. Even unprotected, but assigned,

pages are marked in the CIP tables (recall the CIP table entry 1100
encoding in our implementation). Consequently, all pages assigned
to a potentially hostile VM would be marked in the CIP tables.
When a hypervisor attempts to assign the same page to the victim
VM, the CIP logic detects that the page is already in use, CIP table
update terminates with error and the victim VM is not started.

All the above analysis assumes correctness of the underlying
hardware which implements our new mechanisms. Also, the proto-
cols used to transfer the data back to the customer need to work cor-
rectly. Consequently, our ongoing work looks at verification of the
various parts of the architecture as well as of the protocols. While
full formal verification of security architectures is an open research
issue, by verifying components and protocols we can significantly
raise the confidence in the HyperWall architecture.

6. Related Work
We summarize some past work on aspects of our architecture: hard-
ware support for isolation, attestation, using hypervisors to moni-
tor VMs, hardening or minimizing hypervisors, secure processor
architectures, and the homomorphic encryption approach. None of
this surveyed work met our goals of hypervisor-secure virtualiza-
tion with hardware support.

In the past, manufacturers such as IBM and Sun Microsystems
(now Oracle) have solutions which are used to partition physical
resources and enforce strong isolation between the VMs [4, 10].
They, however, include the management software in the TCB and
do not protect against compromised or malicious management soft-
ware which can snoop on or attack the VMs, as we do.

TPM has been deployed extensively in notebook PCs and can
be used for attestation of the software stack. For example, work by
Krautheim et al. [26] looks at extending the TPM to the cloud com-
puting environment. Also, Flicker [35] uses the TPM along with a
trusted hypervisor. While work which uses TPM can provide attes-
tation by creating a measurement chain of bootloader, hypervisor,
OSes, etc., we are able to provide attestation separately to each VM
and without inclusion of the untrusted hypervisor in the measure-
ments. Also, we introduced the runtime attestation of protection
enforcement not present in TPM-based systems.

The majority of hypervisor-related work has been done on us-
ing the hypervisors to inspect or monitor guest VMs (introspection)
and on hardening the hypervisors. Such work does not consider at-
tacks from the hypervisor on the VMs. Introspection schemes use
the hypervisor’s higher privilege to secure the guest VMs. One of
the first mentions of the idea was presented by Chen, et al. [19].
HookSafe [46] is a hypervisor-based system for detecting guest OS
rootkits. Also, KvmSec [33], an extension to Linux’s kernel virtual
machine, adds the ability to check the integrity of the guest VMs.
Such work on inspecting and monitoring guest VMs have a differ-
ent goal than HyperWall. In HyperWall, we consider attacks from
the hypervisor. Also, we aim to provide confidentiality and integrity
to the VM’s data and code from a potentially compromised hyper-
visor, rather than monitoring the VMs to discover any anomalies
when they have already been compromised.

The hardening and minimizing of hypervisors has also been ex-
plored. For example, Li, et al., [31] propose protecting the hyper-
visor kernel from an untrusted management OS while HyperSafe
[44] is a proposed prototype of a hypervisor which aims to pro-
tect a hypervisor’s code and data from unauthorized modification.
These and similar works modify the hypervisor’s code to make it
more resilient to attacks. They can be combined with HyperWall to
provide defense in depth to guard against any bugs or misconfigu-
rations in the hardened hypervisors.

Our earlier NoHype architecture [23] proposed removing the
hypervisor altogether. However, NoHype still has a small trusted
management software which can maliciously access a guest’s

Jakub Szefer and Ruby B. Lee, "Architectural Support for Hypervisor-Secure Virtualization,"  
in Proceedings of the International Conference on Architectural Support for Programming Languages 

and Operating Systems (ASPLOS), March 2012.

11



memory, if it is compromised. HyperWall also allows more func-
tionality than NoHype as it allows a hypervisor layer to run and
actively manage the VMs.

A number of research projects have looked at secure proces-
sor architectures and adding hardware support to protect software.
These include XOM [32], AEGIS [39], SP [29] and Bastion [18].
In Bastion, the hypervisor is trusted, and the others do not con-
sider hypervisors at all. Unlike HyperWall, these proposals do pro-
tect against hardware attacks, but these are much less likely in
physically-secured data centers for cloud computing.

Outside of hardware solutions, researchers have been exploring
fully homomorphic encryption [21]. Its main advantage is that
computation can be performed on encrypted data without revealing
what the data is. The disadvantage is the (currently) very low
performance and that only the data is protected, not the code. We
offer a solution which can be realized with small modifications to
today’s hardware and protects both code and data.

7. Conclusions and Future Work
We presented the HyperWall architecture which relies on new Con-
fidentiality and Integrity Protection (CIP) tables to protect the guest
VM’s memory from a compromised or malicious hypervisor. Hy-
perWall allows hypervisors to freely manage the memory, proces-
sor cores and other resources of the platform. Yet, once VMs are
created, CIP logic protects the memory of the guest VMs from a
potentially compromised hypervisor and from DMA. The Hyper-
Wall architecture is also able to provide trust evidence attestation
to the customer showing that the VM was started with the correct
protections, and the protections are being enforced during runtime,
in spite of a possibly malicious hypervisor. HyperWall can be espe-
cially useful in a setting such as IaaS clouds to enable customers to
have the confidentiality and integrity of their VM’s data and code
protected while enjoying the economic benefits of cloud comput-
ing. Our evaluation shows reasonably small overheads due to the
new mechanisms. Thus, HyperWall strikes a good balance between
security and performance.

Our ongoing and future work includes studying HyperWall ar-
chitecture’s interaction with performance counters and other state
which may leak information about the guest VM, protecting the
code and data when it is executed outside the microprocessor chip
(e.g. on GPUs), and providing nested protections where both the
whole VM and some applications inside it can be protected sep-
arately. We are also investigating verification of various parts of
the architecture as well as of the protocols. These issues suggest
that this paper may open up many interesting and important new
research topics in the new research direction that we have called
hypervisor-secure virtualization.
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