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ABSTRACT
We propose Secure Pick Up (SPU), a convenient, lightweight, in-
device, non-intrusive and automatic-learning system for smartp-
hone user authentication. Operating in the background, our system
implicitly observes users’ phone pick-up movements, the way they
bend their arms when they pick up a smartphone to interact with
the device, to authenticate the users.

Our SPU outperforms the state-of-the-art implicit authentica-
tion mechanisms in three main aspects: 1) SPU automatically learns
the user’s behavioral pattern without requiring a large amount of
training data (especially those of other users) as previous methods
did, making it more deployable. Towards this end, we propose a
weighted multi-dimensional Dynamic Time Warping (DTW) algo-
rithm to effectively quantify similarities between users’ pick-up
movements; 2) SPU does not rely on a remote server for providing
further computational power, making SPU efficient and usable even
without network access; and 3) our system can adaptively update
a user’s authentication model to accommodate user’s behavioral
drift over time with negligible overhead.

Through extensive experiments on real world datasets, we de-
monstrate that SPU can achieve authentication accuracy up to 96.3%
with a very low latency of 2.4 milliseconds. It reduces the number
of times a user has to do explicit authentication by 32.9%, while
effectively defending against various attacks.
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1 INTRODUCTION
Mobile devices such as smartphones and tablets are rapidly beco-
ming ourmeans for entering the Internet and online social networks.
They also store sensitive and personal information, such as email
addresses or bank account information of users. The hardware of
today’s mobile devices is quite capable with multi-core gigahertz
processors, and gigabytes of memory and solid-state storage. Their
relatively low cost, ease of use and ‘always on’ connectivity provide
a suitable platform for many day-to-day tasks involving financial
transactions and sensitive data, making mobile devices attractive
attack targets (e.g., see attacks against the Apple iOS and Google
Android platforms in [24]).

Passwords are currently one of the most common forms for
user authentication in mobile devices. However, they suffer from
several weaknesses. Passwords are vulnerable to guessing attacks
[2, 14, 22, 39, 40] or password reuse [7]. The usability issue is also a
serious factor, since users do not like to have to enter, and reenter,
passwords [32, 35]. A recent study in [5] shows that 64% of users
do not use passwords or PINs as an authentication mechanism on
their smartphones.

Recently, more and more smartphones are equipped with finger-
print scanners, making authentication through fingerprints quite
popular. However, such mechanisms also suffer from several weak-
nesses. It is possible to trick the scanner by using a gelatin print
mold over a real finger. In addition, the response time for the fin-
gerprint scanner to unlock the smartphone is often more than one
second [27], degrading the usability of fingerprint-based authenti-
cation.

Other biometric-based authentication mechanisms (e.g., via face
and keystroke dynamics) are also unreliable and vulnerable to for-
gery attacks [36, 37]. For instance, an attacker can obtain a photo
of the targeted user (e.g., via Facebook) and present it in front of
the camera to spoof face recognition on smartphones. Furthermore,
these authentication mechanisms require frequent user participa-
tion, hindering their deployment in real world scenarios. Hence, it is
important to design secure and convenient authentication methods
for smartphone users, the topic of this paper.

Behavior-based authentication mechanisms are recently propo-
sed to implement convenient and implicit authentication which
does not require frequent user participation and can reduce the
user’s efforts (e.g., the number of times) needed to unlock their
smartphones. Behavior-based authentication is increasingly gaining
popularity since mobile devices are often equipped with sensors
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such as accelerometer, gyroscope, magnetometer, camera, microp-
hone, GPS and so on. Implicit authentication relies on a distin-
guishable behavioral pattern of the user, which is accomplished
by building the users’ profiles [4, 6, 9, 10, 15–20, 26, 29, 32, 38, 43].
If a newly-detected user behavior is consistent with the behavior
profile stored in the smartphone, the device will have high confi-
dence that no explicit authentication action is required. Otherwise,
if the newly-detected behavior deviates significantly from the sto-
red behavior profile, alternative explicit authentication mechanisms
should be triggered, such as requiring the user to enter a password,
PIN or checking his/her fingerprint.

Existing behavior-based authentication systems exploit machine
learning techniques to achieve good security performance [4, 10,
18, 19, 38, 43]. However, these systems have several limitations
for real world user authentication: 1) they need a large amount of
training data (including other users’ data) to learn an authentication
classifier, which may violate users’ privacy and thus hinder users’
motivation to utilize these systems; 2) their training process is
usually computationally complicated, which requires additional
computational services, e.g., cloud computing, thus requiring users
to trust the remote server and always have network connection; 3)
their system updating process for capturing the user’s behavioral
drift over time is also quite complex.

Other behavior-based authentication mechanisms exploit spe-
cific contexts of users’ behavior, e.g., how do users walk [26], and
how do users answer a phone call [6], for authentication. However,
their corresponding experiments require users to follow restricted
patterns for authentication, e.g., walk straight ahead at the same
speed [26] or answer a call when the phone is on a table in front of
a user [6]. These constraints are unrealistic for extracting effective
behavior patterns of users, making these systems impractical for
real world authentication.

To address these issues, we propose a lightweight, in-device,
non-intrusive and automatic-learning authentication system, called
Secure Pick Up (SPU), which can be broadly deployed in real world
mobile devices. Our system aims to utilize a simple and general
behavioral pattern of smartphone users, the way people bend their
arms when they pick up a phone to interact with the device, to
implicitly authenticate the users. For a smartphone that installs
our SPU application, the device starts extracting a user’s pick-up
pattern from his/her arm movements when picking up a phone, and
then the system determines whether the current user is legitimate
or not. If the user’s current behavior conforms to the established
behavior profile stored in the smartphone, the user passes the au-
thentication and can have access to the smartphone. If the user’s
current behavior deviates from the established behavior profile,
the device would present explicit authentication challenges, e.g.,
input of a password, PIN or fingerprint. If these backup explicit
authentication mechanisms pass, the user is allowed access to the
smartphone and the user’s profile stored in the smartphone is upda-
ted consequently; otherwise, the user is denied access. This paper
aims to answer the question of whether we could build and de-
ploy such a model in a practical, convenient and secure manner on
today’s mobile devices. Our key contributions include:

• We design a behavior-based implicit authentication system, SPU,
by exploiting users’ behavioral patterns recorded by smartphone

sensors when they bend their arms to pick up a phone. SPU can
automatically learn a user’s behavioral pattern in an accurate, ef-
ficient and stealthy manner. Furthermore, SPU does not require a
large amount of training data of other users as previous work did,
making our system easier to deploy in real world applications.

• Our system (including the profile updating process) can be imple-
mented efficiently and entirely on personal smartphones. It does
not require any additional computational services, e.g., cloud
computing. To the best of our knowledge, it is the first using only
a device’s resources for implicit authentication, making SPU effi-
cient and usable even without network access. For instance, our
system can adaptively update the user’s authentication model
over time with rather low overhead, consuming negligible power
of 2%.

• We propose an effective Dynamic Time Warping (DTW) algo-
rithm to quantify similarities between users’ pick-up patterns.
More specifically, we modify the traditional DTW algorithm and
propose a weighted multi-dimensional DTW technique to accom-
modate the multiple dimensions of sensor data in our setting, and
to further improve authentication performance. Extensive expe-
rimental results verify the effectiveness of our method which
can achieve high accuracy up to 96.3% in 2.4 milliseconds. Furt-
hermore, we demonstrate that SPU can reduce a user’s efforts
by 32.9% to unlock his/her smartphone providing a more user-
friendly experience and encouraging more users to protect access
to their devices.

• Finally, our system is robust to various types of attackers, inclu-
ding the serious ones that observe victims’ behaviors many times.
For instance, our SPU can achieve 0% false acceptance rate (FAR)
and 18% false rejection rate (FRR) for authenticating smartphone
users under the worst case mimicry attacks (educated attacks).

2 SYSTEM DESIGN
Themain objective of our SPU system is to increase the convenience
for smartphone users by reducing their efforts (e.g., the number of
times) to unlock the smartphone while guaranteeing their security
through preventing unauthorized access to the smartphone. We
now describe the threat model, design goals, key ideas and system
architecture for SPU.

2.1 Threat Model
Compared to personal computers, smartphones are more easily lost
or stolen, giving attackers more opportunity to obtain the sensitive
data stored in the smartphones. We assume that the attackers have
physical access to the smartphone and can even monitor and mimic
the user’s pick-up behavior. Therefore, they can launch mimicry
attacks, to impersonate the legitimate user’s behavior. Specifically,
we consider three different levels of attacks as follows.

• Random Attack (RA): With no prior knowledge of the user’s pick-
up behavior, a RA attacker randomly picks up the smartphone
and wishes to pass the authentication system. This is equivalent
to a brute force attack against text-based password schemes.

• Context-Aware Attack (CAA): In a context-aware attack, an ad-
versary knows the place where the user picks up his/her smartp-
hone, but has not observed how the user does it.
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• Educated Attack (EA): In an educated attack, an adversary has
observed how and where the user picks up his/her smartphone.

In our SPU system, we consider a single-user model, which is
in line with current smartphone usage scenarios. For multi-user
models, our system can be generalized in a straightforward manner
to incorporate multiple profiles (e.g., family members, guests) for
progressive authentication as discussed in [21, 25]. Furthermore,
we assume the availability of low-cost sensors in mobile devices for
detecting a user’s presence and behavior. Indeed, the sensors used
in our implementation are the accelerometer and gyroscope, which
are widely available in today’s mobile devices. As more sensors
become pervasive, they can easily be folded into our system.

2.2 Design Goals
Our system is designed to increase the convenience of smartp-
hone users while guaranteeing their security, through implicitly
authenticating the users in an unobtrusive manner. Furthermore,
the whole authentication process should be implemented stealthily
and efficiently. Overall, our design goals for the SPU system are:

• Accurate: the authentication system should not incorrectly au-
thenticate a user.

• Rapid Enrollment and Updating: creating new user accounts or
updating pick-up profiles for existing users should be quick.

• Rapid Authentication: the response time for the authentication
system must be short, for the system to be usable in reality.

• Implicit: the authentication system should neither interrupt user-
smartphone interactions nor need explicit user participation
during the authentication process.

• Unobtrusive: the authentication system should be completely
unobtrusive and should not invade the user’s privacy; the user
should be comfortable when using our system.

• Light-weight: the authentication system should not require in-
tensive computations.

• Device only: the authentication system should work efficiently
and entirely on mobile devices only even without network access.
It should not depend on auxiliary training data of other users or
additional computational capabilities, e.g., cloud computing.

2.3 Key Ideas
Our SPU system is designed to achieve all the design goals in
Section 2.2. To increase the convenience for users and detect unaut-
horized access to the smartphone as soon as possible, it is required
that we authenticate the users when they start using the smartp-
hone. Therefore, we consider using the users’ armmovements when
they pick up their smartphones as a distinguishable behavior to
authenticate the users. Our key idea stems from the observation
that users’ behavioral patterns are different from person to per-
son when they start using their smartphones, from the time they
pick up the phone to the time they press the home button or power
button. More specifically, we extract the ‘pick-up signal’ from the
user’s arm movements measured by sensors (accelerometer and
gyroscope) embedded in the smartphone.

To extract users’ pick-up movements, we first define a particular
user action and call it a ‘trigger-action’. Here, we utilize the ‘wake
up’ signal of a smartphone such as pressing the home button or
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Figure 1: A realworld instance of a user’s pick-upmovement.
When a wake up signal is detected (home button or power
button is pressed in the sleep mode) corresponding to the
end point tend , we backtrack the sensor measurements to
find the begin point tbeдin after detecting a flat signal lasting
a period of tf .

power button in the sleep mode, as the trigger action 1. Whenever a
trigger-action is performed, we extract the pick-up signal from the
measurements of the accelerometer and gyroscope (described be-
low). That is to say, our system authenticates the user only when the
smartphone is triggered to wake up from the sleep mode. Note that
there is no necessity to authenticate the user when the smartphone
is locked.

Figure 1 shows a real world instance for the extracted signal
stream that describes a user’s pick-up movements from measure-
ments collected by the accelerometer. When our system detects
the home button signal or power button signal during the sleep
mode, we record the time as the end of the pick-up signal tend ,
and back-track the accelerometer measurements to construct the
pick-up signal. If we detect a flat signal lasting for a time period of
tf , we consider the end time of the flat signal as the beginning of
the pick-up signal tbeдin as shown in Figure 1.

In order to backtrack the pick-up signal, we need to record the en-
tire time-series measurements of the accelerometer and gyroscope,
while the smartphone is in the sleep mode. In Section 6, we will
show that this sensor measurement process is efficient, only costing
an additional 2% in power consumption of the smartphone.

Note that we only consider authenticating pick-up movements
from a stable state in our SPU system. We will show in Section 5.2
that this type of pick-up movement (from a stable state) constitutes
the most important pick-up characteristic of users.

After extracting the pick-up signal, we propose a weighted multi-
dimensional Dynamic Time Warping algorithm to effectively quan-
tify similarities between users’ pick up movements for authenti-
cation (detailed process will be discussed in Section 4.2.2). More
specifically, we modify the traditional DTW algorithm to accom-
modate the multi-dimensional sensor data in our setting, to further
improve authentication performance.

We will show the distinguishable properties of users’ pick-up
patterns in Section 5. We will show that the pick-up signals are still
distinguishable even under impersonation attacks in Section 5.3.

1In our experiments, we used the home button or power button as the ‘trigger-action’.
Our method can be easily integrated with new trigger-actions, e.g., the automatic
wake-up feature in the iphone 7.
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Figure 2: The flowchart of our SPU system.

Furthermore, our SPU system can significantly reduce users’ efforts
to unlock their smartphones as will be discussed in Section 5.4.

Unlike previous work, our SPU does not require a large amount
of training data for learning a complex authentication classifier,
and any additional computational capability of cloud servers, the-
refore more users would be motivated to use our system. In addi-
tion, our system can be easily combined with the state-of-the-art
re-authentication systems [15, 16, 19, 38] to further improve the
security of the smartphone.

2.4 System Architecture
Our system is designed for today’s smartphones which are equipped
with rich sensing capabilities. It could also be generally applied to
tablets and other types of wearable devices such as smartwatches.
Figure 2 shows the flowchart of our SPU system. System operation
is in four phases:

Enrollment: When a user first enrolls in our SPU system, he/she
is asked to pick up his/her smartphone in the same way as in his/her
normal life. Our system then establishes the user’s pick-up profile
by extracting the pick-up signal and storing it in the smartphone.

Extracting pick-up signals: Our system keeps monitoring and
recording the measurements of the accelerometer and gyroscope
when the smartphone is in the sleep mode until it is picked up.
We extract the pick-up signals from these sensor measurements in
the enrollment phase and afterwards (detailed process discussed in
Section 2.3).

Authentication: After extracting the pick-up signal, we com-
pare the new incoming measurements (signal) with the user’s
pick-up profile stored in the smartphone by utilizing our proposed
weighted multi-dimensional DTW technique (will be discussed in
Section 4.2.2).

Post-Authentication: If the pick-up signal is authenticated as
coming from the legitimate user, this testing passes and the current
user can access the information and resources in the smartphone.
Otherwise, the smartphone would request an explicit authentica-
tion, e.g., password, PIN or fingerprint, from the current user. We
emphasize, however, that the desired response to such situations
is a matter of policy. Furthermore, the stored user’s profile will be

updated to accommodate the user’s behavioral drift if the correct
explicit authentication is provided. Otherwise, no access to the
smartphone is allowed.

3 DATA COLLECTION
3.1 Sensor Selection
There are various built-in sensors in today’s smartphones, from
which we aim to choose a small set of sensors that can accurately
represent a user’s pick-up behavioral pattern. In this paper, we
consider the following two sensors that are commonly embeded in
current smartphones: the accelerometer and the gyroscope [11].

These two sensors represent different levels of information about
the user’s behavior, and are often called a 6-axis motion detector.
The accelerometer records larger motion patterns of users such
as how they move their arms or walk [26], while the gyroscope
records fine-grained motions of users such as how they hold the
smartphone [42]. Furthermore, these sensors do not require the
user’s permission when requested by mobile applications [12], ma-
king them useful for background monitoring as in our implicit
authentication systems.

3.2 Dataset Collection
We utilize the open-source Android system as our implementation
platform. We develop an Android application to implement SPU
on Andriod smartphones. Note that our methods are not limited to
this platform and can be easily applied to other platforms such as
the Apple iOS platform on an iPhone.

In our experiments, each data sample is a time-series measure-
ment collected by the accelerometer and gyroscope, which captures
the user’s behavioral pattern when picking up the smartphone. In
our user study, we consider three experimental scenarios and des-
cribe the detailed settings for each experiment as follows. All the
participants were shown the app that is installed in their phones.
All of the participants volunteered to participate in our experiments.
There is no security breach on users’ data in smartphones since we
collect data and do the authentication attempts offline.

The first experiment was conducted under a lab setting, aiming
to provide fundamental intuition for our SPU system. We collected
sensor data from 24 users whose detailed demographics are descri-
bed in Section 5.1. We asked each user to pick up the smartphone in
6 different places while sitting or standing 2. For each scenario, we
collected 10 samples of the pick-up movement for each user, under
the 12 situations (6 places × 2 user states). Therefore, we collected
2, 880 (i.e., 24 × 12 × 10) pick-up samples in total. We will describe
the detailed analysis for the first experiment in Section 5.1.

The second experiment was conducted under a more realistic
setting which is designed to verify the effectiveness of our SPU
system in real world applications. The same 24 users were invited
to install our application on their own smartphones and use them
freely in their normal lives for a week. From the collected data, we
extracted 3, 115 pick-up movement samples for these users. We will
analyze the overall authentication performance of our system in
real world scenarios in Section 5.2.
22 places are at a user’s right hand side, another 2 places are in front of the user, and
another 2 places are at a user’s left hand side. In each of these three directions, one
place is close while the other place is far.
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Our third experiment was designed to analyze the security per-
formance of SPU in defending against multiple attacks (e.g., imper-
sonation attacks) as discussed in Section 2.1. In this experiment, we
randomly select 6 out of the 24 users as victims and randomly select
12 out of the other 18 users (different from the victims) as adversa-
ries. The experimental setting is the same as the first experiment.
The only difference is that the adversaries are trying to mimic the
victims under different levels of prior knowledge. Specifically, these
adversaries perform the three attacks in Section 2.1 respectively,
and the detailed attack processes are described as follows:
• RandomAttack (RA): The random attacker tries to use the victim’s

smartphone without knowing any information about the victim.
In total, we collected 12 × 6 × 10 = 720 samples3 of the pick-up
signals under the random attack.

• Context-Aware Attack (CAA): We provided a context-aware at-
tacker who is informed of the place where the victim picked up
the smartphone. Note that these attackers have not observed
how the victim picked up the smartphone. We also collected 720
pick-up samples under the context-aware attack.

• Educated Attack (EA): The victim user’s behavior was recorded
by a VCR and is clearly visible to the attacker. The attacker was
asked to watch the video and mimic the victim’s behavior to
the best of his/her ability. In total, we also collected 720 pick-up
samples under the educated attack.
We will discuss the security analysis for the third experiment in

Section 5.3.

4 SPU AUTHENTICATION ALGORITHMS
We now describe the design of our authentication algorithm which
aims to achieve the design goals in Section 2.2.

Previous implicit authentication algorithms exploit machine le-
arning techniques to achieve good authentication performance
[4, 10, 18, 19, 26, 38, 43]. However, we identify characteristics that
the smartphone implicit authentication exhibits that are not well
aligned with the requirements of machine-learning techniques.
These include: 1) lack of training data especially those of other
users; 2) fundamental limitations in computation capabilities for
the training process and the updating process.

To overcome these challenges, we aim to design an implicit,
lightweight and in-device authentication algorithm by matching
the new incoming pick-up signal with the pick-up profile stored
in the smartphone, instead of the complicated machine learning
techniques of previousmethods. Furthermore, the time duration of a
pick-upmovement varies across time and across users, and typically
is within the range of 0.5 to 4 seconds. Therefore, our matching
process should also automatically cope with time deformations and
different speeds associated with time-dependent sensor data.

Towards these goals, we consider using the dynamic time war-
ping technique [23] to carefully measure the distance between two
time-series sensor data which may vary in time or speed. In DTW,
the sequences are warped in a nonlinear fashion to match each
other. It has been successfully applied to compare different speech
patterns in automatic speech recognition and other applications in
the data mining community. Furthermore, we propose an effective
3In our experiments, we considered 12 attackers, 6 victims and 10 repeated iterations
for each user’s pick-up movement.

weighted multi-dimensional DTW to accommodate our setting
where the collected sensor data are of multiple dimensions, thus
taking the different distinguishing power of each sensor dimension
into consideration.

4.1 Data Pre-processing
Our system keeps monitoring and collecting the measurements
of the accelerometer and gyroscope in the background, while the
smartphone is in sleep mode. When the wake up signal (e.g., home
button or power button is pressed in the sleep mode) is detected,
our SPU records the time as the ending of the pick-up signal and
back-tracks the collected data to find the beginning of the pick-up
signal, as described earlier in Section 2.3.

4.2 DTW-based Authentication Algorithm
4.2.1 One-Dimensional DTW. DTW is a well-known technique

to find the optimal alignment between two given (time-dependent)
sequencesX := (x1,x2, . . . ,xN ) of lengthN ∈ N andY := (y1,y2, . . . ,yM )

of lengthM ∈ N under certain restrictions. While there is a surfeit
of possible distance measures for time-series data, empirical evi-
dence has shown that DTW is exceptionally difficult to beat. Ding
et al. in [8] tested the most cited distance measures on 47 different
datasets, and no method consistently outperforms DTW. Therefore,
in our system, we utilize DTW to measure the distance between
users’ pick-up signals.

DTW calculates the distance of two sequences using dynamic
programming [1]. It constructs an N -by-M matrix, where the (i, j)-
th element is the minimum distance (called local distance) between
the two sequences that end at points xi and yj respectively. An
(N ,M)-warping path p = (p1,p2, · · · ,pL) is a contiguous set of ma-
trix elements which defines an alignment between two sequences
X and Y by aligning the element xnl of X to the element yml of
Y . The boundary condition enforces that the first elements of X
and Y as well as the last elements of X and Y are aligned to each
other. The total distance dp (X ,Y ) of a warping path p between X
and Y with respect to the local distance measure d is defined as
dp (X ,Y ) =

∑L
l=1 d(xnl ,yml ). Therefore, the DTW for one dimensi-

onal time-series data can be computed as

DTW1(X ,Y ) = mindp (X ,Y ) (1)

4.2.2 Multi-dimensional DTW. Different from the popular one-
dimensional signal (such as speech signal), each pick-up signal in
our setting is multi-dimensional (6 dimensions in total including
3 dimensions for accelerometer and 3 dimensions for gyroscope),
which is a practical challenge for applying the DTW algorithm
to our system. In order to address this challenge, we develop a
weighted multi-dimensional DTW by carefully analyzing the dis-
tinguishing powers of different sensor dimensions.

Baseline Approach: We first consider an existing approach to
process multi-dimensional signals [33] with DTW as the baseline
approach. Consider two k-dimensional time-series signals X :=
[X1,X2, . . . ,Xk ] and Y := [Y1,Y2, . . . ,Yk ], where Xi and Yi are
one dimensional time-series signals for each i . Assuming that each
dimensional signal is independent of each other, the DTWalgorithm
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(g) Gyroscope x :original signal
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(h) Gyroscope y :original signal
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(i) Gyroscope z :original signal
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(j) Gyroscope x :signal after DTW
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(k) Gyroscope y :signal after DTW
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(l) Gyroscope z :signal after DTW

Figure 3: The visualization of pick-up signals extracted from the accelerometer and gyroscope on three different dimensions.
We randomly select two pick-up signals from the same user (red solid and blue dashed dark lines) and a pick-up signal from
another user (green light lines). We observe that the distance between two pick-up signals corresponding to the same user is
smaller than that from a different user, which lays the foundation for our implicit authentication algorithm. We also observe
that different dimensions of sensors may have different powers to distinguish users. For instance, the accelerometer is better
than gyroscope in matching the same user’s pick-up signals and differentiating different user’s patterns, which demonstrates
the necessity of our proposed weighted multi-dimensional DTW algorithm.
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under the multiple dimensions setting can be computed as the
average over each dimension where

DTWk (X ,Y ) =
1
k

k∑
i=1

DTW1(Xi ,Yi ) (2)

Weighted Multi-dimensional DTW: However, the above ba-
seline approach considers each dimensional signal as contributing
equally to the final matching performance, which is an unrealistic
assumption. In real world scenarios as in our settings, different
dimensions corresponding to different sensors may have varying
degrees of influence on thematching performance, since they reflect
different levels of a user’s behavioral characteristics. Therefore, we
propose our weighted multi-dimensional DTW for discriminating
the distinguishing powers of different sensor dimensions as:

DTWk (X ,Y ) =
k∑
i=1

wiDTW1(Xi ,Yi ) (3)

wherewi is the weight for the i-th dimensional signal.
Figure 3 further demonstrates the various distinguishing po-

wer for each sensor dimension. We randomly select two pick-up
signals corresponding to the same user and one pick-up signal cor-
responding to another user and compute the distance between these
signals after implementing the one-dimensional DTW according
to Eq. 1. From Figure 3, we observe that the distance between two
pick-up signals corresponding to the same user is much smaller
than that from a different user, which lays the basic foundation
for our implicit authentication algorithm. We also observe that the
accelerometer is more powerful than the gyroscope in matching
the same user’s pick-up signals and differentiating different users’
pick-up signals, which demonstrates the empirical necessity of our
proposed weighted DTW algorithm. The reason is that a user’s pick-
up movement is dominated by the translation which is relevant to
the accelerometer, while the rotation relevant to the gyroscope is
less significant.

We further analyze the weights for each dimension of accelero-
meter and gyroscope by varying their weights from 0.1 to 0.9 on
the axis of x ,y, z with summation equal to one. We observe that
when each dimension corresponding to the same sensor is equally
weighted, the overall authentication performance is the best (with
highest authentication accuracy). In addition, we also vary the weig-
hts from 0.1 to 0.9 on the accelerometer and the gyroscope with
summation equal to one. We observe that the best performance
(highest authentication accuracy) is achieved when the ratio bet-
ween the weight of the accelerometer and that of the gyroscope is
0.6 to 0.4. Our observations further demonstrate that the accele-
rometer is more informative than the gyroscope in improving the
authentication performance.

In summary, our SPU system realizes implicit, lightweight and
in-device authentication for smartphone users, which consists of
sensor data collection, pick-up signal extraction andweightedmulti-
dimensional DTW processing. If the distance (computed by our
multi-dimensional DTW) between two time-series signals is close
enough (less than a threshold θ ), the user passes the authentica-
tion and can have access to the smartphone. The detailed process
for selecting a proper distance threshold θ will be described in
Section 5.2.1.

Male

14

Female

10

Gender

Male Female

20-30

46%

30-40

21%

40-50

21%

50-60

12%

Age

20-30 30-40 40-5020-30 30-4040-50 50-6020-3030-40 40-50

14 Males

10 Females

Male Female

Figure 4: The demographics of users in our experiments.

4.3 System Updating
The updating process in previous authentication mechanisms usu-
ally involves retraining the authentication classifiers, which is com-
putationally complicated and typically requires additional compu-
ting power such as the use of cloud computing. In comparison, we
develop an efficient and lightweight updating process to accommo-
date the user’s pick-up behavioral drift over time.

Our system would automatically update the user’s profile in
the device whenever the user fails the implicit authentication but
successfully passes the subsequent explicit authentication. Our
updating process is implemented by averaging the currently stored
pick-up profile and the newly-detected pick-up signal. The key
challenge for this updating process is that the previous profile and
the newly-detected instance may not be of the same length. To solve
this problem, we utilize our multi-dimensional DTW algorithm to
first scale the two signals to the same length and then average
them to obtain the updated user’s profile for future authentication.
We will show the effectiveness of our system updating process in
Section 5.2.

5 EXPERIMENTS
To verify the effectiveness of our SPU system, we carefully analyze
our collected data (as discussed in Section 3.2) and evaluate the
authentication performance of SPU under different experimental
scenarios and different system parameters. More specifically, the
objectives for our experimental analysis are: 1) to provide empirical
confirmation of our system that people’s armmovements while they
pick up the smartphone can be utilized as a distinguishable behavi-
oral pattern for authentication, as will be discussed in Section 5.1;
2) to investigate the overall authentication performance of SPU
under real world usage scenarios, as will be discussed in Section 5.2;
3) to understand the influence of different system parameters on
our system, as will be discussed in Section 5.2.1; 4) to verify the
effectiveness of our system updating process (recall Section 4.3), as
will be discussed in Section 5.2.2; 5) to demonstrate the robustness
of our system in defending against various impersonation attacks,
as will be discussed in Section 5.3; 6) to verify the necessity of
combining the accelerometer and gyroscope in our system, as will
be discussed in Section 5.4.

5.1 Fundamental Intuition for Our System
Our first experiment was conducted under a lab setting (as described
in Section 3.2), aiming to demonstrate the fundamental intuition
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Figure 5: The heat map of applying weighted multi-dimensional DTW to our dataset. The average DTW distances between
different pick-up signals in 12 contexts is collected for all 24 users from (a) the same user, and (b) different users. We can see
that the DTW distances from the same user are much lower than that from different users, thus verifying the fundamental
intuitions of our proposed algorithm.

and empirical confirmation for our SPU system. In this experiment,
we asked each of the 24 users to pick up his/her smartphone in 6
different places while sitting or standing and repeat each movement
for 10 iterations. Figure 4 shows the demographics of the 24 users in
our experiments. The average age of the participants is 34.3 years
old while the median is 31 years old. There are 14 males and 10
females.

After extracting the pick-up signals according to Section 2.3, we
measure the distance between any two pick-up instances by exploi-
ting the weighted multi-dimensional DTW technique as described
in Section 4.2.2. In our algorithm, the weights for the accelerometer
signal and the gyroscope signal are selected as 0.6 and 0.4 respecti-
vely, and each of the 3 dimensions of the same sensor is weighted
equally (recall analysis in Section 4.2.2).

Figure 5(a) shows the average DTW distances of any two in-
stances of pick-up signals corresponding to the same user. Both
the x-axis and y-axis represent the 12 different pick-up scenarios
(6 different places and 2 user states, i.e., sitting or standing). Lig-
hter squares represent smaller DTW distances. In Figure 5(a), we
observe the smallest DTW distances along the diagonal squares
since they represent the distances between two pick-up signals
corresponding to the same place and user state. By comparing the
diagonal squares and the non-diagonal squares in Figure 5(a), we
know the DTW distances across different pick-up scenarios do not
vary drastically, demonstrating the robustness of our system under
different context scenarios.

Figure 5(b) shows the average DTW distances of any two instan-
ces of pick-up signals corresponding to different users. From Figure
5, we observe that the DTW distances between pick-up signals
corresponding to the same user are much lower than that between
different users, which lays the fundamental intuition for our system
that utilizes users’ pick-up movements as distinguishable behavio-
ral patterns for authentication.

5.2 Realistic Usage Scenario
Our second experiment was conducted under a more realistic set-
ting, where the same 24 users (shown in Figure 4) were invited to

install our SPU application on their own smartphones and use them
freely in their normal lives for a week (7 days)4.

From the collected data, we extracted 3, 115 pick-up signals ac-
cording to Section 2.3. That is to say, we can detect 18.54 (i.e.,
3115/7/24) pick-up samples for each user per day (with standard
deviation 10.54). We also recorded the number of times users unlock
their smartphones, which is 8, 736 in a week. Therefore, the average
number of times each user unlocks his/her smartphone is 52 (i.e.,
8736/7/24) per day (with standard deviation 27.31).

Note that our system does not detect all the movements when
the users try to unlock their smartphones, since we only extract
pick-up signals starting from a stable state. In our experiment, we
can detect 35.6% (i.e., 18.54/52, which correspond to the pick-up
signals starting from a stable state) of users’ pick-up movements
when they try to unlock their smartphones. Therefore, we can save
more than one third of the time that users need to unlock their
smartphones explicitly. Furthermore, we also compute the DTW
distance between other types of pick-up signals (e.g., picking up the
smartphone from a bag or from a pocket) to investigate whether
there are other pick-up patterns of users that can be utilized for
authentication. Our observations show that the distance between
other types of pick-up signals (not from a stable state) correspon-
ding to the same user is very large, demonstrating that other types
of pick-up signals can not be utilized as distinguishable patterns
for user authentication. Therefore, the pick-up movements star-
ting from a stable state which are extracted by our SPU system,
constitute the most important pick-up characteristics of users. Our
following experimental analysis are implemented on these detected
pick-up movement samples.

5.2.1 Determining the Distance Threshold. A significant chal-
lenge in implementing our system is how to select a proper value for
the distance threshold θ between the newly-detected pick-up signal
and the stored pick-up profile of the user, which is an important
system parameter to balance the trade-off between the usability
of our system and the security of smartphone users. A smaller θ
provides higher security, while a larger θ would result in better
usability.
4We also let them use our application for another week for evaluating our system
updating mechanism as discussed in Section 5.2.2.
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Figure 6: (a) FAR, FRR and (b) accuracy, varying with diffe-
rent distance threshold θ . We observe that when θ = 3.1, the
FRR is 0% and FAR is less than 10%. When θ = 2.8 the FRR is
7.6% and FAR is 0%, resulting in an authentication accuracy
higher than 96.3%. Therefore, θ can tradeoff the usability of
our system (lower FRR) and users’ security (lower FAR)

Here, we utilize false acceptance rate (FAR) and false rejection
rate (FRR) as metrics to quantify the authentication performance of
our system. FAR is the fraction of other users’ data that is misclas-
sified as the legitimate user’s. FRR is the fraction of the legitimate
user’s data that is misclassified as other users’ data. For security
protection, a large FAR is more harmful to the smartphone users
than a large FRR. However, a large FRR would degrade the conve-
nience of using our system. Therefore, we aim to investigate the
influence of the distance threshold θ in balancing FAR and FRR, in
order to choose a proper θ for our system.

Figure 6(a) shows the FAR and FRR with varying values of the
distance threshold θ . We observe that FAR is less than 10% and FRR
is 0% when θ = 3.1. The FAR drops to 0% and FRR increases to 7.6%
when θ = 2.8. Therefore, θ is a trade-off between the usability of
our system (lower FRR) and the security of smartphone users (lower
FAR). In Figure 6(b), we observe that the authentication accuracy
is higher than 96.3% when θ is around 2.8. Combining Figure 6(a)
and Figure 6(b), we choose θ = 2.8 in our experiments from now
on and in our published system, aiming at minimizing FAR and
maximizing the security of the smartphone users.

5.2.2 Incorporating the System Updating Process. In order to
verify the effectiveness of our system updating process as described
in Section 4.3, we let the same 24 users use their smartphones freely
for another week. More specifically, we randomly divided the users
into two groups. The 12 users in the first group installed our SPU
application which incorporates the updating process, while the
other group installed another version of SPU without the updating
process. After careful analysis, we observed that the users in the first
group needed to explicitly unlock their smartphones (at the same
time, their pick-up profiles would be updated in the SPU system)
17 times per day on average. For the other group without system
updating, the users needed to explicitly unlock their smartphones
35 times per day on average. We can see that incorporating the
system updating process can further reduce 52% of times for users to
unlock the smartphones. These observations show the effectiveness
of our system updating process and the advantage of our system in
increasing smartphone users’ convenience.
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Figure 7: The FAR and FRR of SPU under various imperso-
nation attacks.

5.3 Security Analysis
In our third experimental setting as described in Section 3.2, we
aim to evaluate how robust our SPU system is in defending against
various types of impersonation attackers (random attack, context-
aware attack and educated attack).

For each of the three attacks, we computed FAR and FRR curves
under different distance thresholds θ as shown in Figure 7, based on
which we have the following observations: 1) SPU can effectively
defend against random attacks. Here, ‘random’ attack indicates
a brute force attack where the attacker picks up the smartphone
randomly without knowing any information about the victim. 2)
When the distance threshold θ = 2.5, the FAR becomes 0% for all the
three attacks and the corresponding FRR is 18%. Note that the FRR
curve for the three attacks are the same since it evaluates the ratio
that the victim is rejected by our system, which is irrelevant to the
attacker’s capability. 3) Furthermore, the user can defend against
different levels of attacks by adjusting the distance threshold θ .
These results suggest that our SPU system is more robust against
random (brute force) attacks than other types of impersonation
attacks (context-aware attacks and educated attacks) since these
advanced attackers usually have access to partial information about
the user’s pick-up movements (recall Section 2.1 and Section 3.2).

In summary, SPU can defend against most realistic attacks ro-
bustly and effectively. Even with a strong attacker (i.e., an insider
attacker), our system performs gracefully.

5.4 Further Experiments
We further demonstrate the necessity and advantages of combi-
ning the common sensors, acclerometer and gyroscope, in our SPU
system. In Table 1, we observe that using the combination of accele-
rometer and gyroscope can achieve better performance than using
each sensor individually, with the authentication accuracy up to
96.3%. Furthermore, our SPU can reduce the number of explicit
authentications a user must do by 32.9% (i.e., 35.6% × (1 − 7.6%))
on average, where 35.6% is the ratio of detected pick-up signals
(recall Section 5.2) and 7.6% is the FRR by using the combination of
accelerometer and gyroscope.

Next, we went a step further to investigate whether our SPU
system could benefit from more sensors than just the accelerometer
and gyroscope. More specifically, we analyze the authentication
performance of SPU when incorporating the measurements of a
magnetometer and its combinations with the accelerometer and
gyroscope. We consider the magnetometer since we can construct
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Table 1: The authentication accuracy by using accelerometer and
gyroscope with distance threshold θ = 2.8.

Accuracy FAR FRR
Accelerometer 90.9 % 6.4% 11.8%
Gyroscope 85.2 % 13.7% 15.2%
Acc+Gyr 96.3 % 0% 7.6%

Table 2: The authentication accuracy by using three motion sen-
sors with distance threshold θ = 2.8.

Accuracy FAR FRR
Magnetometer 36.7% 54.4% 62.4%

Acc+Mag 67.2% 37.2% 48.7%
Gyr+Mag 54.8% 41.9% 57.1%

All three sensors 72.5% 27.6% 34.4%

the popular 9-axis motion detector of the smartphone by combi-
ning the 3-axis measurements of magnetometer with the 3-axis
measurements of each of accelerometer and gyroscope. An inte-
resting observation shown in Table 2 is that incorporating the
magnetometer into our SPU system does not improve the overall
authentication accuracy - in fact, it degrades the authentication
accuracy! Using more sensors is not always better! The reason is
that the magnetic field is rather sensitive to the direction of the
smartphone, which makes it vary significantly when the same user
picks up the smartphone in different directions - thus degrading
the overall authentication performance.

These observations substantiate our choice of using only the
accelerometer and gyroscope in our system.

6 OVERHEAD ANALYSIS
We now evaluate the system overhead of SPU on personal smartp-
hones to demonstrate the applicability of our system in real world
scenarios. In our source code, the DTW algorithm is implemented
in the C language by using the Native Development Kit (NDK) in
Android 5.1. We test our system on a Google Nexus5 with 2.3GHz,
Krait 400 processor, 16GB internal storage and 2GB RAM, using
Android 5.1.

6.1 Power Consumption
There are four different testing scenarios: 1) Phone is locked and
SPU is off; 2) Phone is locked and SPU keeps running; 3) Phone is
under use and SPU is off; 4) Phone is under use and SPU is running.

For cases 1) and 2), the test time is 12 hours each. We charge the
smartphone battery to 100% and check the battery level after 12
hours. The average difference of battery charged level from 100% is
reported in Table 3. For cases 3) and 4), the phone under use means
that the user keeps unlocking and locking the phone. During the
unlocked time, the user keeps typing notes. The period of unlocking
and locking is two minutes and the test time in total is 60 minutes.

Table 3 shows the result of our power consumption test on
battery usage. We find that in cases 1) and 2), the SPU-on mode
consumes 1.8% more battery power than the SPU-off mode each
hour. We believe the extra cost in battery consumption caused by
SPU will not affect user experience in daily use. For cases 3) and 4),

Table 3: The power consumption under four different scenarios.

Scenario Power
Consumption

1) Phone locked, SPU off 1.1%
2) Phone locked, SPU on 2.9%
3) Phone unlocked periodically, SPU off 1.5%
4) Phone unlocked periodically, SPU on 3.5%

Figure 8: Cumulative distribution function of decision-
making time in SPU. We can find that more than 90% of
decision-making processes can be completed within 2 milli-
seconds and all the processes can be finished within 2.4mil-
liseconds.

SPU consumes 2% more battery power performing 30 SPU implicit
authentications in one hour, which is also an acceptable cost for
daily usage.

6.2 Response Time
Figure 8 shows the cumulative distribution function of decision-
making time in SPU authentication. We find that more than 90% of
the decision-making computations can be completed within 2 milli-
seconds and all can be finished within 2.4 milliseconds. This result
shows that the latency caused by the SPU system for authentication
is low enough to be user-friendly and reasonable for normal usage.

7 RELATEDWORK
User authentication is one of the most important issues in smartp-
hone security. Password-based authentication approaches are based
on possession of secret information, such as passwords or PINs.
Biometric-based approaches make use of distinct personal features,
such as fingerprint or iris patterns. Behavior-based authentication
identifies a user based on his/her behavioral pattern that is observed
by the smartphone. Compared with the password-based and the
biometric-based authentication, the behavior-based authentication
is more convenient for smartphone users with good resilience to
forgery attacks.

7.1 Password-based Authentication
The objective of most password-based authentication mechanisms,
e.g., PIN or passwords, is to secure the phone from unwanted access.
However, these methods require frequent participation of the user.
This often leads to interruptions to the smartphone user, e.g. conti-
nuously prompting him/her with some challenges. As a result, many
smartphone users tend to completely remove such authentication
methods [35]. Our SPU system can overcome these weaknesses,
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which increases the convenience for smartphone users while gua-
ranteeing their security, as shown in Section 5.

7.2 Biometric-based Authentication
Biometric-based authentications study static physical features of
humans. Currently, there are many different physiological biome-
trics for authentication, such as face patterns, fingerprints [13], and
iris patterns [28]. Biometric-based authentication systems involve
an enrollment phase and an authentication phase. A user is enrol-
led by providing his/her biological data such as fingerprint or iris
pattern. The system extracts these patterns from the provided data
and stores the extracted patterns for future reference. During the
authentication phase, the system compares the observed biological
data against the stored data to authenticate a user.

However, biometric-based authentications also require frequent
user participation, and hence is also an explicit authentication me-
chanism. For example, fingerprint authentication always requires
the user to put his/her finger on the fingerprint scanner. On average,
the response time is longer than 1 second [27], which is also much
longer than the 2.4 milliseconds of our SPU system. Hence, unlike
our implicit SPU authentication, these biometric-based approaches
requiring user compliance are not as convenient as our SPU system.

7.3 Behavior-based Authentication
Another thread of authentication research measures the behavioral
patterns of the user, where a user is identified based on his/her
behavioral patterns, such as hand-writing pattern [10, 38], gait [26]
and GPS location patterns [4].

With the increasing development of mobile sensing technology,
collecting measurements through sensors built within the smartp-
hone and other devices is now becoming not only possible, but quite
easy through, for example, Android sensor APIs. Mobile sensing
applications, such as the CMU MobiSens[41], run as services in the
background and can constantly collect sensors’ data from smartp-
hones. Sensors can be either hard sensors (e.g., accelerometers) that
are physically-sensing devices, or soft sensors that record infor-
mation of a phone’s running status (e.g., screen on/off). Therefore,
sensor-based implicit authenticationmechanisms have become very
popular and applicable for behavior-based authentication.

In [4], an n-gram geo-based model is proposed for modeling a
user’s mobility pattern. They use the GPS sensor to detect abnormal
activities (e.g., a phone being stolen) by analyzing a user’s location
history, and their algorithm can achieve 86.6% accuracy. However,
the access to GPS require users’ permissions, and cannot be done
implicitly.

Nickel et al. [26] exploited a user’s walking pattern to authen-
ticate a smartphone user by using the k-NN algorithm. Conti et
al. [6] utilized the user’s movement of answering a phone call to
authenticate a smartphone user. Shrestha et al.[34] utilized a tap-
ping pattern to authenticate a user when the user does an NFC
transaction. However, their experiments had strict restrictions on
the users’ behavior where the users have to walk or answer a phone
call following a specific script (e.g., walk straight ahead at the same
speed [26] or answer the phone which is on a table in front of a
user [6]). These restrictions are impractical for a real use.

Users’ behavior on a touch screen is one of the most popular rese-
arch directions in behavior-based authentication [3, 10, 19, 31, 38].
Trojahn et al. [38] developed a mixture of a keystroke-based and a
handwriting-based method to realize authentication by using the
screen sensor. Their approach has achieved 11% FAR and 16% FRR.
Frank et al. [10] studied the correlation between 22 analytic features
from touchscreen traces and classified these features using k-NN
and SVM. Li et al. [19] proposed another behavior-based authenti-
cation method where they exploited five basic movements (sliding
up, down, right, left and tapping) and their related combinations,
as the user’s behavioral pattern features, to perform authentication.
However, touch screen based authentications may suffer from a
simple robotic attack [30].

SenSec [43] constantly collects data from the accelerometer, gy-
roscope and magnetometer, to construct gesture models while the
user is using the device. SenSec has shown that it can achieve 75%
accuracy in identifying owners and 71.3% accuracy in detecting the
adversaries. Lee et al. [18] monitored the users’ general behavioral
patterns and utilized SVM techniques for user authentication. Their
results show that the authentication accuracy can be higher than
90% by using a combination of sensors. However, these methods
require a large amount of privacy sensitive training data from other
users, and significant external computation power for learning the
behavior models, unlike our in-device SPU authentication method.

In fact, almost all the existing behavior-based authentication
mechanisms [4, 10, 18, 19, 26, 38, 43] heavily rely on a powerful
remote server to share the tasks and take a relatively long time
to complete the authentication process. In comparison, our SPU
is a lightweight, in-device, non-intrusive and automatic-learning
authentication system, which would increase the convenience for
smartphone users while enhancing their security.

8 DISCUSSION AND FUTUREWORK
Our SPU system increases the convenience for smartphone users
while enhancing their security. We will make SPU open source soft-
ware, suitable for extensions with future research and experiments.

Future research can include more context-detection techniques
to detect fine-grained pick-up patterns for users and embed it with
SPU to further increase the convenience and security for smartp-
hone users.

Users’ pick-up patterns may vary when they are using other
types of devices, e.g., tablets or smartwatches. It would be an in-
teresting future direction to extend SPU to these mobile devices.
Furthermore, the combination of multiple devices may possibly
provide better authentication performance for the SPU system.

9 CONCLUSION
We proposed a novel system, Secure Pick Up (SPU), to implicitly
authenticate smartphone users in a lightweight, in-device, non-
intrusive and automatic-learning manner. Unlike previous work,
SPU does not require a large amount of training data (especially
those of other users) or any additional computational power from
a remote server, which makes it more deployable and desirable for
many users.

Our key insight is that the user’s phone pick-up pattern is distin-
guishable from others, using smartphone sensor measurements. We
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propose a weighted multi-dimensional dynamic time warping algo-
rithm to effectively measure the distance between pick-up signals
in order to determine the legitimate user versus others.

Extensive experimental analysis shows that our system achieves
authentication accuracy up to 96.3% with negligible system over-
head (2% power consumption). Furthermore, our evaluation shows
that SPU can reduce by 32.9% the number of explicit authenticati-
ons a user must do, and can defend against various impersonation
attacks effectively. Overall, SPU offers a novel feature in the design
of today’s smartphone authentication and provides users with more
options in balancing the security and convenience of their devices.
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