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Abstract:

This report describes an implementation of the Secret Protecting (SP) architecture
features in an SP-module in VHDL. It can be integrated with any processor core. In
this report, we integrate with the PAX cryptoprocessor designed at Princeton
University.
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1. SP module implementation

Overview

This is an implementation of the Secret Protecting (SP) [1][6] module that can
be added to any processor. SP is a small set of architectural features that can be
added to a processor, System-on-Chip (SOC) or multicore chip, to provide hardware-
anchored protection of sensitive data, together with a Trusted Software Module
(TSM). This implementation includes Authority-mode SP [1] and also User-mode SP
[6].

In this report the implementation of SP is added to the base ISA of the PAX
cryptoprocessor [3][4][5] designed at Princeton University. A detailed diagram of the
SP hardware [2] is given in the SP module in Figure 1. For more information about
the PAX cryptoprocessor and SecureCore project that incorporates SP architecture,
please refer to [7] and [8].

In this implementation, only Level 1 split caches (L1 Instruction cache and L1
Data cache) are implemented (see Figure 2), mainly for limited space reasons for
VHDL to FPGA implementations. Hence, two encryption/hashing engines (one for
instruction and one for data) are preferred due to possible contentions of using the
engine between CIC (code integrity checking) and secure_load / secure_store
instructions in the pipelined implementation. In a microprocessor, a Level 2 unified
cache is typically also present on-chip, hence only one encryption/hashing engine
would be required at the L2 cache to (off-chip) external memory interface. Since
Level 3 caches may also be present on-chip, the SP module is added to the last level
of on-chip cache, where a cache-miss would result in having to go off-chip.

The functions of the signals in Figure 1 are explained in Table 1. The s in the
signal names signifies a VHDL signal.
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Table 1: function descriptions of the signals in SP.

Signal name
mem_addr_s
instruction_addr_s
cpu_din from mem s
cpu d in d

d cache mem addr_ s
d cache mem addr out_s
data to mem s

data to mem out_ s
data mem out s
data mem out out s
rsl addr_int s
rs2_addr_int_s

trap_ s

interrupt addr write_ s

interrupt addr out_ s

interrupt hash set s

interrupt hash out s

interrupt hash in s

d cache_secure load s
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Instruction address from I-cache

Instruction address to instruction memory
Instruction from instruction memory
Instruction to I-cache

Data address from D-cache

Data address to data memory

Data from D-cache (store)

Data to data memory (store)

Data from data memory (10ad)

Data to D-cache (10ad)

Register index to read the register values upon a
software interrupt

Software interrupt

Resume from software interrupt

Write the return address into interrupt address
register upon a software interrupt

The value of return address in the interrupt
address register

Set the value of interrupt hash register

The value of the interrupt hash register

The hash value calculated from enc/hash engine to
be set into the interrupt hash register upon a
software interrupt

Register values from register file (used for trap,
drk.set and gr.get)

Signal for secure load from D-cache

Signal for secure store from D-cache

Signifies enter active authority CEM mode
Signifies exit active authority CEM mode

Lock DRK register

Set the value of DRK register

Select which part of the DRK register to be set

The value of pc+4 in the 1F-1D stage pipeline register



srh_get cem buffer_s srh.get to set CEM buffer register

cem buffer_set_s gr.get to set CEM buffer register

cem buffer_sel_s Select which part of the cem buffer to be set
(gr.get) and retrieved (gr.set)

gr_set_rd s The value to be set into general register of gr.set
ID_EX AUTH MODES_S Value of the CEM mode register

drk_s Value of the DRK register

Sl eriaa e e i L drk.derive to set the CEM buffer register
drk_derive_out_s The value of the derived key of drk.derive

cem buffer_s The value of the CEM buffer register

srh_s The value of the SRH register

The signals between SP and the processor are illustrated in Figure 2.
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<
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30 data_to_mem_out_s
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data_to_cpu_s

Figure 2: signals between SP and the processor.

SP instructions encoding

SP introduces 18 new instructions, 11 for authority-mode and 7 for user-mode
SP. Table 2 shows the encoding for PAX specifically; other encoding can be used to a
different processor.
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Table 2: SP instructions encoding (the functions of user-mode are currently not implemented).

SP mode Instruction Opcode
Class

Authority
mode 000001 = i

Master Root drk.derlve 010101 N/A
Secres /CEM  Rsl, Rs2

Access 000010

srh.set

EETEN ST
000001 sel = 001
EETENEEETTE
000011 sel = 011
s et =00 |
000101 sel = 101
cosiis et = a0 |
000111 sel = 111
EITENEEETTE
001001 = 001
cotons et = uo |
001011 sel = 011
TN ST
001101 sel = 101
EETENEEETTE
001111 sel = 111

end cem.a 000010

011001

secure_ store

Rd, Rs, imm
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Secrets

Initialize dmk.set 010100 001000
dmk.lock 010000
umk.set 100000

Virtualization cem save.u 001000

cem restore.u 001001

TSM code/data alignment

Since the CIC encryption/hashing engine is placed between external memory
and the leve-1 cache, only a cache miss will trigger the engine to check the integrity
of secure code/data. If a secure code/data has been brought into the cache before
CEM mode is active, that particular code/data will not be checked by the engine.
Two possible solutions can solve this issue. The first one is to flush the cache line
after CEM becomes active and bring back the cache line into the cache again, so that
it is checked by the engine. However, this approach will require non-secure
code/data that co-exists with secure code/data in the same cache line to be included
in the calculation of hash, which is unnecessary. The second approach is to force
alignment of secure code/data to the line size of instruction cache, so that the
execution of first secure code/data will automatically trigger a cache miss and bring
in a cache line of secure code/data. For the current implementation, we force flush

for secure data while force alignment for secure code.

A requirement for TSM code resulting from the forced alignment is that the
compiler has to make sure that begin cem is always placed at the last word of a
cache line, so that the following TSM code will miss in the cache and automatically
be checked by CIC. Whether or not the TSM code is called as a function or inserted
inline with the application code does not compromise the security of TSM code as
long as the above requirement is met.
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2. Integration of PAX and SP

PAX top level diagram
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Figure 3: pipeline implementation of PAX.
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SP encoding in PAX

SP instructions are encoded into empty slots of appropriate categories of PAX
instruction sets. Table 3 shows the encodings for SP instructions with the PAX ISA.

Similar encodings of SP instructions can be done for other processors.

Table 3: SP-PAX instruction encoding table.

CALL 00 00 01 ORi 10 00 11
Begin CEM 00 00 10 XORi 10 01 o00
End CEM SLLi 10 01 01
LDZ 00 01 00 SRAI 10 01 10
LDK 00 01 01 ShRP 10 10 10
RET 00 01 10 BGU 10 11 00
TRAP 00 01 11 BGEU 10 11 01
RESUME BG 10 11 10
CEM save 00 10 00 BGE 10 11 11

CEM restore

AND 11 00 00
Secure load 01 00 01 OR
LW 01 00 10 XOR
LD8 01 00 11 NOT
DRK set 01 01 00 ADDw
DRK lock SUBw
DMK set PERM.1 11 00 10
DMK lock BEQ 11 01 10
UMK set BNE 11 01 11
DRK derive 01 01 o1 Bfmul.lo 11 00 01
Secure store 01 10 o1 Bfmul.hi
SW 01 10 10 Shuffle.lo 11 10 10
SW8 01 10 11 Shuffle.hi
SRH get 01 11 00 Rev
SRH set ptw 11 10 11
GR get 01 11 10 ptr.x.ctr 11 11 00
GR set ptr.s.ctr

ptr.o
SUBI 10 00 01 pti 11 11 01
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ADDi 10 00 00
ANDi 10 00 10
PAX design file changes

LD16 11 11 10
ST16 11 11 11

Several parts of PAX have to be modified to incorporate the introduction of SP

components. The changes of design files of PAX are listed in Table 4.

Table 4: modifications to PAX design files
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INTERRUPT ADDR WRITE

TRAP

RESUME

SECURE_LOAD
SECURE_STORE
ENGINE FUNC

SRH SET
SRH_GET CEM BUFFER
GR_SEL

CEM BUFFER SET
DRK_SET

DRK_SET SEL
DRK_LOCK_EN

CEM USER EN

CEM AUTH EN

CEM USER DIS

CEM AUTH DIS

d cache stall

ID EX engine func
ID EX secure load
ID EX secure store
EX MEM ENGINE FUNC
EX MEM SECURE LOAD
EX MEM SECURE_ STORE
gr set out

d cache stall

engine func

Write-enable for interrupt address register

Specify a trap instruction

Specify a resume instruction

Specify a secure load instruction
Specify a secure store instruction
Specify the enc/hash engine function
Specify a srh_set instruction

Specify a srh_get instruction

sel signal used for gr.get and gr.set
enable write signal for CEM buffer
Specify a drk_set instruction

sel signal used for drk_set

Specify a drk_lock instruction

Specify abegin cem.u instruction
Specify abegin cem.a instruction
Specify a end cem.u instruction
Specify a end cem. a instruction
Pipeline stall signal from data cache
ENGINE FUNC in pipeline stage 1D Ex
secure load in pipeline stage 10 _EX
secure store in pipeline stage 1D Ex
ENGINE FUNC in pipeline stage Ex MEM
secure load in pipeline stage Ex MEM
secure store in pipeline stage Ex MEM
Extra signal for writing into registers
Pipeline stall signal from data cache

ENGINE_ FUNC from decoder



secure_load SECURE_LOAD from decoder

secure_store SECURE_STORE from decoder

d cache stall Pipeline stall signal from data cache

constant FROM GR_SET Add an extra control signal to EX Mux

d cache stall Pipeline stall signal from data cache

cache busy Signal to indicate instruction fetch stall due
to cache access time

SP components design files

This section describes the design files added by introducing SP components into
PAX.

Table 5: SP design files.

multiplexer to select which part of CEM buffer for gr.set.sel
Rd

implements CEM buffer register

implements CEM mode register

implements DRK register

implements enc/hash engine for data cache

implements enc/hash engine for instruction cache
implements interrupt address register

implements interrupt hash register

implements SRH register

Level-1 cache design files

This section describes the design files added by introducing level-1 instruction
and data cache into PAX. The first two files that deal with bit-vector arithmetic are
used for the internal data format in the caches. Bit-vectors and std_logic vectors in

VHDL are essentially the same except simulation purposes.

Table 6: level-1 cache design files.

Function body of bit-vector arithmetic
Function declaration of bit-vector arithmetic
Define cache write strategy types (write-back or write-through)

Behavior model of data cache
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Entity declaration of data cache

Implements the package body of d1x types
Defines subtypes of signals of different width
Behavior model of instruction cache

Entity declaration of instruction cache

Defines the types of the widths of memory bus

The cache model is a modified version of Peter J. Ashenden [9]. The current
setup is outlined in the following table:

Table 7: cache parameters for both instruction and data cache for PAX- 128.

32 KB

64 Bytes

1 (direct-mapped)

Write through

1 cycle

16 cycles (data cache)

4 cycles (instruction cache)
20 ns

3. Simulation

Testing SP functionality

We use the test assembly code given below to test the correct operations of SP
components.

Test assembly code

pc Instruction Comments

@ put initial constants in registers and memory location for later

0 addi rl, r0, #0xAB @ rl = 0xAB (171)

1 addi r2, r0, #0x56 @ r2 = 0x56 (86)

2 loadi.k.1l r8, #0x1234

3 loadi.k.0 r8, #0x5678 @ r8 = 0x12345678

4 store.l1l6 r8, r0, #0x04 @ mem[0x04] = 0x12345678 (3054198906)

@ setting up the DRK and lock the DRK register

5 drk.set.0 rl, r0O @ drk = 0OxAB (171)

15 |



6 drk.lock @ this is simulating machine bootup

@ start CEM section

7 begin cem.a
8 Nop
9 call #0x22 @ call TSM code

@ end CEM section
10 end cem.a

@ some memory accesses to verify the values stored in memory locations

11 load rl4, r0, #0x04 @ r1l4 = 0x12345678 (305419896)
12 load rl1l3, r0, #0x08 @ rl3 = Ox5E (94)

13 secure_ store r2, r0, #0x08 @ mem[0x08] = Ox5E (94)

@ S

@ Start of TSM code

@ setting up some register values for later

32 addi r3, r0, #0x99 @ r3 = 0x99 (153)

33 addi r4, r0, #0x33 @ r4d = 0x33 (51)

@ do a secure store to memory to put the encrypted value

34 secure store r2, r0, #0x08 @ mem[0x08] = 0x5E (94) (0x5E = 0x56 xor 0x08)
35 store.l6 r8, r0, #0x05 @ mem[0x05] = 0x12345678 (305419896)

@ ask for a derived key

36 drk.derive r2, r0 @ cem buffer = 0xFD (253)

@ drk xor r2 = OxAB xor 0x56 = 0xFD
37 xor r8, rl, r2 @ r8 = 0xFD (253)
38 addi r9, r0, #0x22 Q@ r9 = 0x22 (34) (dummy instruction)
39 addi rl0, r0, #0x55 @ r10 = 0x55 (85) (dummy instruction)

@ test the functions of gr.get and gr.set
40 gr.get.0 r3, r4 @ cem buffer =
0x9900000000000000000000000000000033
@ =52063202138903584909896314937060536352819
41 gr.set.l rll @ rl1l = 0x99 (153)
@ do secure load and normal load to the same memory location and expect to get
different values, one decrypted and one encrypted
42 secure load rl2, r0, #0x08 @ rl2 = 0x56 (86) (0x56 = O0x5E xor 0x08)
43 load rl4, r0, #0x08 @ rld = Ox5E (94)
44 load rl1l5, r0, #0x05 @ rl5 = 0x12345678 (305419896)
@ test the srh.set and srh.get

45 srh.set @ srh = 0x9900000000000000000000000000000033
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@ =52063202138903584909896314937060536352819
46 gr.get.0 r0, x0 @ cem buffer = 0x00
47 srh.get @ cem buffer =
0x9900000000000000000000000000000033
@ =52063202138903584909896314937060536352819
@ test the trap and resume instructions
48 Trap
49 nop x 6
55 drk.set.0 rl0, rO @ trying to set drk = 0x55 (85) but illegal
56 nop x 6
62 Resume
63 nop x 12
75 Ret
@End of TSM code

@ S
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Simulation of AES-128 with new I-cache and D-cache

We also tested our PALMS-group’s optimized AES-128 software program [5].
This ran correctly with the new SP module and cache additions, including the
initialization of the AES tables and cache-misses in the new l-cache and D-cache

(which were not present in the earlier PAX simulations).

In the AES startup phase, there was a 29.5% overhead due to the I-cache misses
in fetching of the AES code into the empty I-cache, and the D-cache misses for AES
execution. This demonstrates the correct functioning of the new caches, since the

previous PAX simulations was equivalent to all cache hits.

In the steady-state AES phase, each round of AES took 2 cycles with no cache

misses, as before.

4. Future work

Writing Applications

Writing an application with PAX assembly code without any compiler support
would be difficult. Possible solutions include writing a small application with key
storage structure using C code and translating the compiled assembly into PAX
assembly.

Register spilling

Proper compiler support has to be added to make sure any secure data stored
in the registers cannot be spilled out to memory during TSM execution. Otherwise,
the security provided by CEM would be broken and secrets potentially leaked out of
the processor.

HMAC of secure data

Unlike secure code, secure data cannot put the hash at the end of a cache line
in that the hash would include the entire cache line. Possible solutions include
storing the hash in the “other half” of the memory address space [6], such that each
read from a secure data would require two memory reads, one for the data and
another for the hash of the data.

Encryption/Hashing engine

The current implementations of the encryption/hashing engines are simple
XORs With either the memory addresses for secure code/data or with DRK for DRK

derive. This is because we are not interested in an optimal encryption/hashing
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design for this project. Future work would include an engine that does AES or some
other cipher/s and hash function/s. Note that since PAX does AES a lot faster than
most special purpose AES engines, it is possible to use PAX as SP’s
encryption/hashing engine. It would require the code for HMAC, encryption or
decryption to be stored in a particular area of the PAX memory, so that when SP
requires encryption/hashing the control would jump to the code that handles them.
If PAX were also acting as the main processor running the application in a single-core
processor chip, this would disrupt the application’s execution and incur overhead to
manage the switch between the application’s code and encryption/hashing.
However, in a multi-core chip, PAX-SP can serve as an on-chip input-output
processor that does security processing.
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