
Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

PLX 1.1 ISA Reference

February 2002

PLX is a small, general-purpose, subword-parallel instruction set architecture (ISA) designed at
Princeton University, Department of Electrical Engineering. PLX was designed to be a simple yet
high-performance ISA for multimedia information processing.

PLX History

• The design goals and architecture for PLX were specified by Prof. Ruby B. Lee of
Princeton University.

• PLX version 0.1 was encoded, documented and implemented as a class project for the
ELE-572 Class during Spring 2001, by Princeton graduates R. Adler '01 and G. Reis '01.

• This version of PLX was then completely re-done, with numerous additions and deletions
of instructions and features, and re-encoded by R.B. Lee and A.M. Fiskiran.

• PLX 1.0 was released in September 2001.
• PLX 1.1 was released in February 2002. The changes include addition and deletion of

some instructions and an improved predication scheme.

PLX Architectural Highlights

PLX is a RISC architecture designed for high-performance multimedia information processing.

PLX specifies 32 general-integer registers, numbered R0 through R31. For a given PLX
implementation, the register size can be 32, 64 or 128 bits. The default size is 64 bits. No ISA
changes are required to scale the datapath down to 32 bits or up to 128 bits. However, for word
size and datapaths of 128 bits, some features are incomplete. Of the 32 general-integer registers,
R0 is hardwired to 0, therefore it always returns 0 when read. Writing a value to R0 has no effect.
GR31 is the implied link register for jmp.reg (jump register) and jmp.reg.link (jump register
and link) instructions.

PLX is a fully subword-parallel ISA. Subword parallelism has been shown to be critical for
achieving high-performance in multimedia applications. Subword sizes in PLX can be 1,2,4 or 8-
bytes. The size of the largest subword for a given PLX implementation is limited by the datapath
width of that implementation.

PLX uses 32-bit instructions, which are classified under 5 major instruction formats.

All PLX instructions are predicated. There are eight 1-bit predicate registers, numbered P0
through P7, forming a predicate register set of 1 byte long. There are 16 of these 1-byte predicate
register sets, however only one of them is active at a given time. The active predicate register set
is changed in software. In the active predicate register set, P0 is hardwired to 1, therefore, the
instructions predicated on P0 always execute. This definition of predication is novel to PLX.

Currently, PLX does not have floating-point instructions, but this is viewed as a necessary future
addition.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

Program Flow Exceptions

Memory Alignment and Unaligned Address Trap

PLX enforces aligned memory accesses. This requires the following:

• Because PLX instructions are 4-bytes long, they need to be aligned at 4-byte boundaries.
The least-significant byte of any instruction needs to be at an address whose two least
significant bits are zero (xxx…xxx00). The remaining three bytes of the instruction will be
at the next three addresses (xxx…xxx11, xxx…xxx10 and xxx…xxx01).

• Load and store instructions that read or write 4-byte data can only access data aligned at

4-byte boundaries. In a load instruction, the least significant byte of the data will be
loaded from an address whose two least significant bits are zero (xxx…xxx00). The
remaining three bytes of the data will be loaded from the following three addresses
(xxx…xxx11, xxx…xxx10 and xxx…xxx01). In a store instruction, the least significant byte
of the data will be stored to an address whose two least significant bits are zero
(xxx…xxx00). The remaining three bytes of the data will be stored to the following three
addresses (xxx…xxx11, xxx…xxx10 and xxx…xxx01).

• Load and store instructions that read or write 8-byte data can only access data aligned at

8-byte boundaries. In a load instruction, the least significant byte of the data will be
loaded from an address whose three least significant bits are zero (xxx…xxx000). The
remaining seven bytes of the data will be loaded from the following seven addresses
(xxx…xxx111 through xxx…xxx001). In a store instruction, the least significant byte of the
data will be stored to an address whose three least significant bits are zero
(xxx…xxx000). The remaining seven bytes of the data will be stored to the following
seven addresses (xxx…xxx111 through xxx…001).

If an unaligned memory access attempt is made, this raises an Unaligned Address Trap and the
program control is returned to the operating system.

Illegal Instruction Trap

The PLX instructions are 32-bits in length but not all of the 232 possibilities will correspond to a
legal instruction. Some of the opcodes are reserved for future instructions, and therefore cannot
be used. Even when an opcode may be valid, the subop or the immediate fields may have some
restrictions on the values that can go in them. As an example, consider the loadi.z.pos
instruction in a 32-bit PLX implementation. The 17th bit in the instruction can never be a one in
this case, since this would correspond to pos field values of two and three, which are not
possible in a 32-bit datapath. Therefore, any loadi.z.pos instruction with the 17th bit encoded
as a one would be an illegal instruction. Whenever an the encoding of an instruction is illegal
(either because the opcode is unused or reserved, or because some other field of the instruction
has a value that is disallowed), this raises an Illegal Instruction Trap and the program control is
returned to the operating system.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

PLX Instructions (grouped by functionality)

Program Flow Control Instructions

jmp Jump
jmp.link Jump and Link
jmp.reg Jump Register
jmp.reg.link Jump Register and Link

trap Trap

Compare Instructions and Predication

changepr Change Predicate Register Set
changepr.ld Change Predicate Register Set and Load

cmp.rel Compare
cmp.rel.pw0 Compare Parallel Write Zero
cmp.rel.pw1 Compare Parallel Write One

cmpi.rel Compare Immediate

testbit Test Bit

Memory Access Instructions

loadi.z.pos Load Immediate

load.sw Load
load.sw.update Load Update
loadx.sw Load Indexed
loadx.sw.update Load Indexed Update

store.sw Store
store.sw.update Store Update

ALU Instructions (Immediate)

addi Add Immediate
andi And Immediate
ori Or Immediate
subi Subtract Immediate
xori Xor Immediate

Shift and Bit Field Instructions (Immediate)

slli Shift Left Logical Immediate
srai Shift Right Arithmetic Immediate
srli Shift Right Logical Immediate
shrp Shift Right Pair

extract Extract
deposit Deposit

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

ALU Instructions

padd.sw Parallel Add
padd.sw.u Parallel Add Unsigned Saturation
padd.sw.s Parallel Add Signed Saturation

paddincr Parallel Add Increment
psub.sw Parallel Subtract
psub.sw.u Parallel Subtract Unsigned Saturation
psub.sw.s Parallel Subtract Signed Saturation

psubdecr.sw Parallel Subtract Decrement

pavg.sw Parallel Average
pavg.sw.raz Parallel Average Round Away From Zero
psubavg.sw Parallel Subtract Average

and And
andcm And Complement
or Or
xor Xor
not Not

pcmp.sw.eq Parallel Compare Equal To
pcmp.sw.gt Parallel Compare Greater Than

pmax.sw Parallel Maximum
pmin.sw Parallel Minimum

pshiftadd.sw.l Parallel Shift Left and Add
pshiftadd.sw.r Parallel Shift Right and Add

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

Multiply Instructions

pmul.odd Parallel Multiply Odd
pmul.odd.u Parallel Multiply Odd Unsigned
pmul.even Parallel Multiply Even
pmul.even.u Parallel Multiply Even Unsigned

pmulshr.sa Parallel Multiply and Shift Right Logical
pmulshr.sa.a Parallel Multiply and Shift Right Arithmetic

Shift Instructions

pshift.sw.l Parallel Shift Left Logical
pshift.sw.r Parallel Shift Right Logical
pshift.sw.ra Parallel Shift Right Arithmetic

Shift Instructions (Immediate)

pshifti.sw.l Parallel Shift Immediate Left Logical
pshifti.sw.r Parallel Shift Immediate Right Logical
pshifti.sw.ra Parallel Shift Immediate Right Arithmetic

Subword Permutation Instructions

mix.sw.l Mix Left
mix.sw.r Mix Right

mux.sw.rev Mux Reverse
mux.sw.mix Mux Mix
mux.sw.shuf Mux Shuffle
mux.sw.alt Mux Alternate
mux.sw.brcst Mux Broadcast

perm Permute

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

PLX Instructions (in alphabetical order of major mnemonics)

addi Add Immediate
and And
andcm And Complement
andi And Immediate
changepr Change Predicate Register Set
cmp Compare
cmpi Compare Immediate
deposit Deposit
extract Extract
jmp Jump
load Load
loadi Load Immediate
loadx Load Indexed
mix Mix
mux Mux
not Not
or Or
ori Or Immediate
padd Parallel Add
paddincr Parallel Add Increment
pavg Parallel Average
pcmp Parallel Compare
perm Permute
pmax Parallel Maximum
pmin Parallel Minimum
pmul Parallel Multiplication
pmulshr Parallel Multiply Shift Right
pshift Parallel Shift
pshiftadd Parallel Shift Add
pshifti Parallel Shift Immediate
psub Parallel Subtract
psubavg Parallel Subtract Average
psubdecr Parallel Subtract Decrement
shrp Shift Right Pair
slli Shift Left Logical Immediate
srai Shift Right Arithmetic Immediate
srli Shift Right Logical Immediate
store Store
subi Subtract Immediate
testbit Test Bit
trap Trap
xor Xor
xori Xor Immediate

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

PLX Instruction Reference

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

Formatting Used in Instruction Descriptions

padd

Parallel Add

Format: 4a (P) padd.sw Rd,Rs1,Rs2 1,2,4,8
 4a (P) padd.sw.u Rd,Rs1,Rs2 1,2,4,8
 4a (P) padd.sw.s Rd,Rs1,Rs2 1,2,4,8

Description: Rs1 and Rs2 are added, and the result is written to Rd.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Padd.sw uses modular arithmetic, padd.sw.u uses unsigned
saturation, and padd.sw.s uses signed saturation during the
add.

Instruction name

Major instruction mnemonic

Instruction format

Predicate register field

Instruction mnemonic

Operands (register and immediate fields)

Subword sizes (bytes)

Instruction description

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

addi

Add Immediate

Format: 2 (P) addi Rd,Rs1,imm13

Description: Imm13 is sign extended and added to Rs1. The result is

written to Rd.

and

And

Format: 4a (P) and Rd,Rs1,Rs2

Description: Rs1 and Rs2 are anded. The result is written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

andcm

And Complement

Format: 4a (P) andcm Rd,Rs1,Rs2

Description: Rs1 and the complement of Rs2 are anded. The result is

written to Rd.

andi

And Immediate

Format: 2 (P) andi Rd,Rs1,imm13

Description: Imm13 is zero extended and anded with Rs1. The result is

written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

changepr

Change Predicate Register Set

Format: 5b (P) changepr imm4
 5b (P) changepr.ld imm4,imm8

Description: In changepr, the active predicate register set is changed to

the predicate register set specified by imm4.

In changepr.ld, the active predicate register set is changed
to the predicate register set specified by imm4, and imm8 is
written to this predicate register set.

cmp

Compare

Format: 5a (P) cmp.rel Rs1,Rs2,Pd1,Pd2

Description: Rs1 and Rs2 are compared with each other according to the

relation specified in the rel field (see table below for a listing
of possible rel values).

If the relation is true, the value 1 is written to Pd1, and its
complement, 0, is written to Pd2. If the relation is false, the
value 0 is written to Pd1, and its complement, 1, is written to
Pd2.

rel Relation Sign of a and b
eq a == b N/A
ne a != b N/A
lt a < b Signed
le a <= b Signed
gt a > b Signed
ge a >= b Signed
ltu a < b Unsigned
leu a <= b Unsigned
gtu a > b Unsigned
geu a >= b Unsigned

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

cmp

Compare Parallel Write

Format: 5a (P) cmp.rel.pw0 Rs1,Rs2,Pd1,Pd2
 5a (P) cmp.rel.pw1 Rs1,Rs2,Pd1,Pd2

Description: Rs1 and Rs2 are compared with each other according to the

relation specified in the rel field. (See the table in the
description of the cmp instruction.)

For cmp.rel.pw0, the instruction works as follows:
If the relation is true, the value 0 is written to Pd1, and its
complement, 1, is written to Pd2. If the relation is false,
nothing is written to Pd1 or Pd2. Multiple cmp.rel.w0
instructions can be executed in the same cycle, targeting
the same predicate registers, since only 0 can be written
(concurrently) to Pd1, and only 1 can be written
(concurrently) to Pd2.

For cmp.rel.pw1, the instruction works as follows:
If the relation is true, the value 1 is written to Pd1, and its
complement, 0, is written to Pd2. If the relation is false,
nothing is written to Pd1 or Pd2. Multiple cmp.rel.w1
instructions can be executed in the same cycle, targeting
the same predicate registers, since only 1 can be written
(concurrently) to Pd1, and only 0 can be written
(concurrently) to Pd2.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

cmpi

Compare Immediate

Format: 5b (P) cmpi.rel Rs1,imm8,Pd1,Pd2

Description: Rs1 is compared to sign-extended imm8 according to the

relation specified in the rel field. (See the table in the
description of the cmp instruction.)

If the relation is true, the value 1 is written to Pd1 and its
complement, 0, is written to Pd2. If the relation is false, the
value 0 is written to Pd1 and its complement, 1, is written to
Pd2.

deposit

Deposit

Format: 3 (P) deposit Rd,Rs1,imm7,imm6

Description: Right-aligned bit field of length imm6 from Rs1, is written to

Rd, starting at location specified by imm7. Remaining bits of
Rd are unchanged.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

extract

Extract

Format: 3 (P) extract Rd,Rs1,imm7,imm6

Description: Bit field of length imm6 of Rs1, starting at a location

specified by imm7, is written right-aligned to Rd. High order
bits of Rd are cleared.

jmp

Jump

Format: 0 (P) jmp imm23
 0 (P) jmp.link imm23
 1 (P) jmp.reg Rd
 1 (P) jmp.reg.link Rd

Description: In jmp, imm23 is added to the current PC. The result

becomes the new PC.

In jmp.link, PC + 4 is written to GR[31]. The previous value
of GR[31] is destroyed. Then, imm23 is added to the PC.
The result becomes the new PC.

In jmp.reg, Rd is added to the current PC. The result
becomes the new PC.

In jmp.reg.link, PC + 4 is written to GR[31]. The previous
value of GR[31] is destroyed. Then, Rd is added to the PC.
The result becomes the new PC.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

load

Load

Format: 2 (P) load.sw Rd,Rs1,imm13 4,8
 2 (P) load.sw.update Rd,Rs1,imm13 4,8

Description: The data in a memory location is loaded into register Rd.

The size of the loaded data is indicated in the sw field, and
can be 4 or 8 bytes. The addressing mode is displacement
mode, where the effective address is calculated as
Rs1+imm13. The base address register, Rs1, can be
updated with the new address, using post-modify, i.e., for
load.sw.update, the memory address used to fetch the data
is given by Rs1, then Rs1 is replaced with (Rs1+imm13).
Memory addresses must be aligned, otherwise an
Unaligned Address Trap occurs.

The instruction works as follows:
For load.4, if (Rs1+ imm13) is not equal to 0 in mod 4, then
Unaligned Address Trap occurs. Otherwise Rd is loaded
with the 4 bytes from M[Rs1+imm13].

For load.8, if (Rs1+imm13) is not equal to 0 in mod 8, then
Unaligned Address Trap occurs. Otherwise Rd is loaded
with the 8 bytes from M[Rs1+ imm13].

For load.4.update, if Rs1 is not equal to 0 in mod 4, then
Unaligned Address Trap occurs. Otherwise Rd is loaded
with the 4 bytes from M[Rs1], and Rs1 is replaced with
(Rs1+imm13).

For load.8.update, if Rs1 is not equal to 0 in mod 8, then
Unaligned Address Trap occurs. Otherwise Rd is loaded
with the 8 bytes from M[Rs1], and Rs1 is replaced with
(Rs1+imm13).

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

loadi

Load Immediate

Format: 1 (P) loadi.z.pos Rd,imm16
 1 (P) loadi.k.pos Rd,imm16

Description: The loadi.z.pos instruction writes imm16 into one of four

different positions in the lower 64-bits of register Rd,
clearing the rest of Rd to zeros. (For 32-bit PLX
implementations, pos=2 and pos=3 result in an Illegal
Instruction Trap.) The pos field is specified by bits 16 and 17
in the instruction, giving 4 possible 16-bit field positions in
Rd:

• For Loadi.z.0, bits 0-15 of Rd is replaced with imm16,

the other bits of Rd are cleared to zeros.
• For Loadi.z.1, bits 16-31 of Rd is replaced with imm16,

the other bits of Rd are cleared to zeros.
• For Loadi.z.2, bits 32-47 of Rd is replaced with imm16,

the other bits of Rd are cleared to zeros.
• For Loadi.z.3, bits 48-64 of Rd is replaced with imm16,

the other bits of Rd are cleared to zeros."

The loadi.k.pos instruction writes imm16 into one of four
different positions in the lower 64-bits of register Rd,
keeping the rest of Rd unchanged. (For 32-bit PLX
implementations, pos=2 and pos=3 result in an Illegal
Instruction Trap.) The pos field is specified by bits 16 and 17
in the instruction, giving 4 possible 16-bit field positions in
Rd:

• For Loadi.k.0, bits 0-15 of Rd is replaced with imm16,

the other bits of Rd are left unchanged.
• For Loadi.k.1, bits 16-31 of Rd is replaced with imm16,

the other bits of Rd are left unchanged.
• For Loadi.k.2, bits 32-47 of Rd is replaced with imm16,

the other bits of Rd are left unchanged.
• For Loadi.k.3, bits 48-64 of Rd is replaced with imm16,

the other bits of Rd are left unchanged.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

loadx

Load Indexed

Format: 4a (P) loadx.sw Rd,Rs1,Rs2 4,8
 4a (P) loadx.sw.update Rd,Rs1,Rs2 4,8

Description: The data in a memory location is loaded into register Rd.

The size of the loaded data is indicated in the sw field, and
can be 4 or 8 bytes. The addressing mode is indexed mode,
where the effective address is calculated as Rs1+ Rs2. The
base address register, Rs1, can be updated with the new
address, using post-modify, i.e., the memory address used
to fetch the data is given by Rs1, then Rs1 is replaced with
(Rs1+Rs2). Memory addresses must be aligned, otherwise
an Unaligned Address Trap occurs.

The instruction works as follows:
For loadx.4, if (Rs1+Rs2) is not equal to 0 in mod 4, then
Unaligned Address Trap occurs. Otherwise, Rd is loaded
with the 4 bytes from M[Rs1+Rs2].

For loadx.8, if (Rs1+Rs2) is not equal to 0 in mod 8, then
Unaligned Address Trap occurs. Otherwise, Rd is loaded
with the 8 bytes from M[Rs1+Rs2].

For loadx.4.update, if Rs1 is not equal to 0 in mod 4, then
Unaligned Address Trap occurs. Otherwise Rd is loaded
with the 4 bytes from M[Rs1], and Rs1 is replaced with
(Rs1+Rs2).

For loadx.8.update, if Rs1 is not equal to 0 in mod 8, then
Unaligned Address Trap occurs. Otherwise Rd is loaded
with the 8 bytes from M[Rs1], and Rs1 is replaced with
(Rs1+Rs2).

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

mix

Mix

Format: 3 (P) mix.sw.l Rd,Rs1,Rs2 1,2,4
 3 (P) mix.sw.r Rd,Rs1,Rs2 1,2,4

Description: Even or odd-indexed subwords are selected alternately from

Rs1 and Rs2, and written to Rd.

Subword size is indicated in the sw field, and can be 1,2 or
4 bytes.

In mix.sw.l, odd-indexed subwords are selected alternately
from Rs1 and Rs2, and written to Rd. The first subword of
Rd is the first subword of Rs1.

In mix.sw.r, even-indexed subwords are selected alternately
from Rs1 and Rs2 are written to Rd. The first subword of Rd
is the second subword of Rs1.

mix.2.l Rd,Rs1,Rs2

mix.2.r Rd,Rs1,Rs2

Rs1

Rs2

Rd

Rs1

Rs2

Rd

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

mux

Mux

Format: 4b (P) mux.sw.rev Rd,Rs1 1
 4b (P) mux.sw.mix Rd,Rs1 1
 4b (P) mux.sw.shuf Rd,Rs1 1
 4b (P) mux.sw.alt Rd,Rs1 1
 4b (P) mux.sw.brcst Rd,Rs1 1,2

Description: A permutation is performed on the subwords of Rs1 and the

result is written to Rd.

Mux.sw.rev reverses the order of the subwords of Rs1.

Mux.sw.mix divides Rs1 into left and right halves, then a mix
operation is performed on these two halves of Rs1.

Mux.sw.shuf divides Rs1 into left and right halves, then a
shuffle operation is performed on these two halves of Rs1.

Mux.sw.alt divides Rs1 into left and right halves, then an
alternate operation is performed on these two halves of Rs1.

Mux.sw.brcst writes the least-significant subword of Rs1 to
all subwords of Rd.

mux.1.rev Rd,Rs1 mux.1.mix Rd,Rs1

Rs1

Rd

Rs1

Rd

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

mux.1.shuf Rd,Rs1 mux.1.alt Rd,Rs1

mux.1.brcst Rd,Rs1

Rs1

Rd

Rs1

Rd

Rs1

Rd

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

not

Not

Format: 4a (P) not Rd,Rs1

Description: Rs1 is complemented. The result is written to Rd.

or

Or

Format: 4a (P) or Rd,Rs1,Rs2

Description: Rs1 and Rs2 are ored. The result is written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

ori

Or Immediate

Format: 2 (P) ori Rd,Rs1,imm13

Description: Imm13 is zero extended and ored with Rs1. The result is

written to Rd.

padd

Parallel Add

Format: 4a (P) padd.sw Rd,Rs1,Rs2 1,2,4,8
 4a (P) padd.sw.u Rd,Rs1,Rs2 1,2,4,8
 4a (P) padd.sw.s Rd,Rs1,Rs2 1,2,4,8

Description: Rs1 and Rs2 are added, and the result is written to Rd.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Padd.sw uses modular arithmetic, padd.sw.u uses unsigned
saturation, and padd.sw.s uses signed saturation during the
add.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

paddincr

Parallel Add Increment

Format: 4a (P) paddincr.sw Rd,Rs1,Rs2 1,2,4,8

Description: Rs1 and Rs2 are added, and their sum is incremented by

one. The result is written to Rs2. Modular arithmetic is used.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pavg

Parallel Average

Format: 4a (P) pavg.sw Rd,Rs1,Rs2 1,2
 4a (P) pavg.sw.raz Rd,Rs1,Rs2 1,2

Description: Averages of the subwords from Rs1 and Rs2 are written to

Rd.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

In pavg.sw, unsigned subwords from Rs1 and Rs2 are
added, and the sums are shifted right by one bit. The
highest order bit becomes the carryout of the add operation.
The shifted results are written to Rs2. The least-significant
bit of each result subword is the or of the two least-
significant bits of the shifted sums.

In pavg.sw.raz (raz stands for round away from zero),
unsigned subwords from Rs1 and Rs2 are added, and the
sums are incremented by one. The incremented sums are
then shifted right by one bit. The highest order bit becomes
the carryout of the add operation. The shifted results are
written to Rs2. The least-significant bit of each result
subword is the least-significant bit of the shifted sums.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pcmp

Parallel Compare

Format: 4a (P) pcmp.sw.eq Rd,Rs1,Rs2 1,2,4,8
 4a (P) pcmp.sw.gt Rd,Rs1,Rs2 1,2,4,8

Description: In pcmp.eq, subwords from Rs1 and Rs2 are tested for

equality.

In pcmp.ge, signed subwords from Rs1 are tested for being
greater-than the signed subwords of Rs2.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

If the comparison condition is true, then corresponding
subword of Rd is set to all ones, otherwise it is set to all
zeros.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

perm

Permute

Format: 4a (P) perm Rd,Rs1,Rs2 2

Description: A permutation is performed on the 2-byte subwords of Rs1

and the result is written to Rd.

All possible permutations can be performed, with or without
repetitions of subwords. The permutation is specified by the
bits read from Rs2.

(If Rs1 has n subwords, this requires nlogn bits to specify a
permutation. These bits are read from the low-order nlogn
bits of Rs2.)

perm Rd,Rs1,Rs2

Rs1

Rd

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pmax

Parallel Maximum

Format: 4a (P) pmax Rd,Rs1,Rs2 1,2

Description: The greater of the subwords from Rs1 and Rs2 is written to

Rd.

Subwords are treated as signed values.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

pmin

Parallel Minimum

Format: 4a (P) pmin Rd,Rs1,Rs2 1,2

Description: The lesser of the subwords from Rs1 and Rs2 is written to

Rd.

Subwords are treated as signed values.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pmul

Parallel Multiply

Format: 4a (P) pmul.odd Rd,Rs1,Rs2 2
 4a (P) pmul.odd.u Rd,Rs1,Rs2 2
 4a (P) pmul.even Rd,Rs1,Rs2 2
 4a (P) pmul.even.u Rd,Rs1,Rs2 2

Description: In pmul.odd, odd indexed signed 16-bit subwords from Rs1

and Rs2 are multiplied, and the 32-bit products are written
to Rd.

In pmul.odd.u, odd indexed unsigned 16-bit subwords from
Rs1 and Rs2 are multiplied, and the 32-bit products are
written to Rd.

In pmul.even, even indexed signed 16-bit subwords from
Rs1 and Rs2 are multiplied, and the 32-bit products are
written to Rd.

In pmul.even.u, even indexed unsigned 16-bit subwords
from Rs1 and Rs2 are multiplied, and the 32-bit products
are written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pmulshr

Parallel Multiply Shift Right

Format: 4a (P) pmulshr.sa Rd,Rs1,Rs2 2
 4a (P) pmulshr.sa.a Rd,Rs1,Rs2 2

Description: In pmulshr.sa, unsigned 16-bit subwords from Rs1 and Rs2

are multiplied. Each product is then logically shifted to the
right by sa bits, where sa can be 0,8,15, or 16. The lower
halves of the shifted products are written to Rd.

In pmulshr.sa.a, signed 16-bit subwords from Rs1 and Rs2
are multiplied. Each product is then arithmetically shifted to
the right by sa bits, where sa can be 0,8,15, or 16. The
lower halves of the shifted products are written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pshift

Parallel Shift

Format: 4a (P) pshift.sw.l Rd,Rs1,Rs2 2,4,8
 4a (P) pshift.sw.r Rd,Rs1,Rs2 2,4,8
 4a (P) pshift.sw.ra Rd,Rs1,Rs2 2,4,8

Description: Subwords of Rs1 are shifted and the result is written to Rd.

Subword size is specified in the sw field, and can be 2,4 or 8
bytes.

In pshift.sw.l, subwords of Rs1 are logically shifted to the left
by Rs2 bits.

In p.shift.sw.r, subwords of Rs1 are logically shifted to the
right by Rs2 bits.

In, pshift.sw.ra, subwords of Rs1 are arithmetically shifted to
the right by Rs2 bits.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

pshiftadd

Parallel Shift and Add

Format: 4a (P) pshiftadd.sa.l Rd,Rs1,Rs2 2
 4a (P) pshiftadd.sa.r Rd,Rs1,Rs2 2

Description: In pshiftadd.sa.l, signed 2-byte subwords of Rs1 are shifted

left by sa bits, where sa can be 1, 2, or 3. The result is
added to Rs2 using signed saturation arithmetic. The result
is written to Rd.

In pshiftadd.sa.r, signed 2-byte subwords of Rs1 are shifted
right by sa bits, where sa can be 1, 2, or 3. The result is
added to Rs2 using signed saturation arithmetic. The result
is written to Rd.

pshifti

Parallel Shift Immediate

Format: 4b (P) pshifti.sw.l Rd,Rs1,imm5 2,4,8
 4b (P) pshifti.sw.r Rd,Rs1,imm5 2,4,8
 4b (P) pshifti.sw.ra Rd,Rs1,imm5 2,4,8

Description: In pshifti.sw.l, subwords of Rs1 are logically shifted to the

left by imm5 bits.

Subword size is specified in the sw field, and can be 2,4 or 8
bytes.

In pshifti.sw.r, subwords of Rs1 are logically shifted to the
right by imm5 bits.

In pshifti.sw.ra, subwords of Rs1 are arithmetically shifted to
the right by imm5 bits.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

psub

Parallel Subtract

Format: 4a (P) psub.sw Rd,Rs1,Rs2 1,2,4,8
 4a (P) psub.sw.u Rd,Rs1,Rs2 1,2,4,8
 4a (P) psub.sw.s Rd,Rs1,Rs2 1,2,4,8

Description: Rs2 is subtracted from Rs1. The result is written to Rd.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Psub uses modular arithmetic, psub.u uses unsigned
saturation, and psub.s uses signed saturation during the
subtract.

psubavg

Parallel Subtract Average

Format: 4a (P) psubavg.sw Rd,Rs1,Rs2 1,2

Description: Unsigned Rs2 is subtracted from unsigned Rs1. The

differences are shifted right by one bit. The highest order bit
becomes the carryout of the subtract operation. The shifted
results are written to Rsd. The least-significant bit of each
result subword is the or of the two least-significant bits of the
shifted differences.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

psubdecr

Parallel Subtract Decrement

Format: 4a (P) psubdecr.sw Rd,Rs1,Rs2 1,2,4,8

Description: Rs2 is subtracted from Rs1, and the difference is

decremented by one. The result is written to Rd. Modular
arithmetic is used.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

shrp

Shift Right Pair

Format: 4c (P) shrp Rd,Rs1,Rs2,imm8

Description: Rs1 and Rs2 are concatenated and logically shifted to the

right by imm8 bits. The lower-order half of the shifted result
is written to Rd. (Most-significant bit of imm8 is ignored for
64-bit processors; most-significant two bits of imm8 are
ignored for 32-bit processors.)

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

slli

Shift Left Logical Immediate

Format: 2 (P) slli Rd,Rs1,imm13

Description: Rs1 is shifted to the left by imm13 bits. If imm13 is greater

than the word size, then only the low-order bits of imm13
are used as the shift amount. The vacated bits are filled with
zeroes. The result is written to Rd.

srai

Shift Right Arithmetic Immediate

Format: 2 (P) srai Rd,Rs1,imm13

Description: Rs1 is shifted to the right by imm13 bits. If imm13 is greater

than the word size, then only the low-order bits of imm13
are used as the shift amount. The vacated bits are filled with
the sign bit. The result is written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

srli

Shift Right Logical Immediate

Format: 2 (P) srli Rd,Rs1,imm13

Description: Rs1 is shifted to the right by imm13 bits. If imm13 is greater

than the word size, then only the low-order bits of imm13
are used as the shift amount. The vacated bits are filled with
zeroes. The result is written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

store

Store

Format: 2 (P) store.sw Rd,Rs1,imm13 1,2,4,8
 2 (P) store.sw.update Rd,Rs1,imm13 1,2,4,8

Description: The data in register Rd is stored to a memory location. The

size of the stored data is indicated in the sw field, and can
be 1,2,4 or 8 bytes. The addressing mode is displacement
mode, where the effective address is calculated as
Rs1+imm13. The base address register, Rs1, can be
updated with the new address, using post-modify, i.e., for
store.sw.update, the memory address used to store the data
is given by Rs1, then Rs1 is replaced with (Rs1+imm13).
Memory addresses must be aligned, otherwise an
Unaligned Address Trap occurs.

The instruction works as follows:
For store.sw, if (Rs1+ imm13) is not equal to 0 in mod sw,
then Unaligned Address Trap occurs. Otherwise sw least
significant bytes of Rd are stored to M[Rs1+imm13].

For store.sw.update, if Rs1 is not equal to 0 in mod sw, then
Unaligned Address Trap occurs. Otherwise sw least
significant bytes of Rd are stored to M[Rs1], and Rs1 is
replaced with (Rs1+imm13).

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

subi

Subtract Immediate

Format: 2 (P) subi Rd,Rs1,imm13

Description: Imm13 is sign extended and subtracted from Rs1. The

result is written to Rd.

testbit

Test Bit

Format: 5b (P) testbit Rs1,imm8,Pd1,Pd2

Description: The bit specified by imm8 is selected from Rs1. If this bit is

1, the value 1 is written to Pd1, and its complement, 0, is
written to Pd2. If the bit is 0, then the value 0 is written to
Pd1, and its complement, 1, is written to Pd2. If imm8 is
larger than the number of bits in Rs1, an Illegal Instruction
Trap occurs.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

trap

Trap

Format: 0 (P) trap

Description: The processor halts execution unconditionally.

xor

Xor

Format: 4a (P) xor Rd,Rs1,Rs2

Description: Rs1 and Rs2 are xored. The result is written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

xori

Xor Immediate

Format: 2 (P) xori Rd,Rs1,imm13

Description: Imm13 is zero extended and xored with Rs1. The result is

written to Rd.

Last revised on 12/9/2002 by A. Murat Fiskiran

This document is available from the PLX website: http://palms.ee.princeton.edu/plx

Copyright © 2000 - 2002 PALMS, Princeton University

PLX 1.1 ISA Encoding

Refer to Tables 1-7 in the most recent revision of the document titled “PLX 1.1 ISA Encoding”.

