
Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

PLX 1.0 – September 2001

PLX is a small, general-purpose, subword-parallel instruction-set architecture (ISA) designed at
Princeton University, Department of Electrical Engineering. PLX was designed to be a simple yet
high-performance Instruction-Set Architecture (ISA) for multimedia information processing.

PLX History

The design goals for PLX were specified by Prof. R.B. Lee. The architecture was first encoded,
documented and implemented as a class project for ELE 572 during Spring 2001, by R. Adler ’01
and G. Reis ‘01. PLX was then thoroughly revised and re-encoded by R.B. Lee and A.M. Fiskiran.
It is documented in this ISA manual as PLX 1.0.

PLX Architectural Highlights

PLX is a RISC architecture designed for high-performance multimedia information processing.

PLX specifies 32 general-integer registers, numbered R0 through R31. For a given PLX
implementation, the register size can be 32, 64 or 128 bits. The default size is 64 bits. No ISA
changes are required to scale the datapath down to 32 bits or up to 128 bits. However, for word
size and datapaths of 128 bits, some features are incomplete. Of the 32 general-integer registers,
R0 is hardwired to 0, therefore it always returns 0 when read. Writing a value to R0 has no effect.
GR31 is the implied link register for jmp.reg (jump register) and jmp.reg.link (jump register
and link) instructions.

PLX is a fully subword-parallel ISA. Subword parallelism has been shown to be critical for
achieving high-performance in multimedia applications. Subword sizes in PLX can be 1,2,4 or 8-
bytes. The size of the largest subword for a given PLX implementation is limited by the datapath
width of that implementation.

PLX uses 32-bit instructions, which are classified under 5 major instruction formats.

All PLX instructions are predicated. There are eight 1-bit predicate registers, numbered P0
through P7, forming a predicate register set of 1 byte long. There are 16 of these 1-byte predicate
register sets, however only one of them is active at a given time. The active predicate register set
is changed in software. In the active predicate register set, P0 is hardwired to 1, therefore, the
instructions predicated on P0 always execute. This definition of predication is novel to PLX.

Currently, PLX does not have floating-point instructions, but this is viewed as a necessary future
addition.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

PLX Instructions (grouped by functionality)

Program Flow Control Instructions

jmp Jump
jmp.link Jump and Link
jmp.reg Jump Register
jmp.reg.link Jump Register and Link

trap Trap

Compare Instructions and Predication

changepr Change Predicate Register Set
changepr.ld Change Predicate Register Set and Load
cmp.rel Compare
cmpi.rel Compare Immediate

testbit Test Bit

Memory Access Instructions

loadi.hi Load High Immediate
loadi.lo Load Low Immediate

load Load
load.update Load Update

store Store
store.update Store Update

ALU Instructions (Immediate)

addi Add Immediate
andi And Immediate
ori Or Immediate
subi Subtract Immediate
xori Xor Immediate

Shift and Bit Field Instructions (Immediate)

slli Shift Left Logical Immediate
srai Shift Right Arithmetic Immediate
srli Shift Right Logical Immediate
shrp Shift Right Pair

extract Extract
deposit Deposit

ALU Instructions (Packed)

padd Packed Add
paddincr Packed Add Increment
psub Packed Subtract

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

psubdecr Packed Subtract Decrement

pavg Packed Average
pavg.raz Packed Average Round Away From Zero
psubavg Packed Subtract Average

and And
andcm And Complement
or Or
xor Xor
not Not

pcmp.eq Packed Compare Equal To
pcmp.gt Packed Compare Greater Than

pmax Packed Maximum
pmin Packed Minimum

pshiftadd.l Packed Shift Left and Add
pshiftadd.r Packed Shift Right and Add

Multiply Instructions (Packed)

pmul.odd Packed Multiply Odd
pmul.even Packed Multiply Even

pmulshr Packed Multiply and Shift Right Logical
pmulshr.a Packed Multiply and Shift Right Arithmetic

Shift Instructions (Packed)

pshift.l Packed Shift Left Logical
pshift.r Packed Shift Right Logical
pshift.ra Packed Shift Right Arithmetic

Shift Instructions (Packed Immediate)

pshifti.l Packed Shift Immediate Left Logical
pshifti.r Packed Shift Immediate Right Logical
pshifti.ra Packed Shift Immediate Right Arithmetic

Subword Permutation Instructions

mix.l Mix Left
mix.r Mix Right

mux.rev Mux Reverse
mux.mix Mux Mix
mux.shuf Mux Shuffle
mux.alt Mux Alternate
mux.brcst Mux Broadcast

perm Permute

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

PLX Instructions (in alphabetical order of major mnemonics)

addi Add Immediate
and And
andcm And Complement
andi And Immediate
changepr Change Predicate Register Set
cmp Compare
cmpi Compare Immediate
deposit Deposit
extract Extract
jmp Jump
load Load
loadi Load Immediate
mix Mix
mux Mux
not Not
or Or
ori Or Immediate
padd Packed Add
paddincr Packed Add Increment
pavg Packed Average
pcmp Packed Compare
perm Permute
pmax Packed Maximum
pmin Packed Minimum
pmul Packed Multiplication
pmulshr Packed Multiply Shift Right
pshift Packed Shift
pshiftadd Packed Shift Add
pshifti Packed Shift Immediate
psub Packed Subtract
psubavg Packed Subtract Average
psubdecr Packed Subtract Decrement
shrp Shift Right Pair
slli Shift Left Logical Immediate
srai Shift Right Arithmetic Immediate
srli Shift Right Logical Immediate
store Store
subi Subtract Immediate
testbit Test Bit
trap Trap
xor Xor
xori Xor Immediate

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

PLX Instruction Reference

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

Formatting Used in Instruction Descriptions

load

Load

Format: 2 (P) load.sw Rd,Rs1,imm13 1,2,4,8

 2 (P) load.sw.update Rd,Rs1,imm13 1,2,4,8

Description: Value in a memory location is loaded into a register.

Size of the loaded memory block is indicated in the sw field,
and can be 1,2,4 or 8 bytes.

In load.sw, Rd is loaded with mem[Rs1+imm13].

If the update option is used, Rs1 is replaced with
Rs1+imm13 after the load is completed.

Instruction name

Major instruction mnemonic

Instruction format

Predicate register field

Instruction mnemonic

Operands (register and immediate fields)

Subword sizes (bytes)

Instruction description

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

addi

Add Immediate

Format: 2 (P) addi Rd,Rs1,imm13

Description: Imm13 is sign extended and added to Rs1. The result is

written to Rd.

and

And

Format: 4a (P) and Rd,Rs1,Rs2

Description: Rs1 and Rs2 are anded. The result is written to Rd.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

andcm

And Complement

Format: 4a (P) andcm Rd,Rs1,Rs2

Description: Rs1 and the complement of Rs2 are anded. The result is

written to Rd.

andi

And Immediate

Format: 2 (P) andi Rd,Rs1,imm13

Description: Imm13 is zero extended and anded with Rs1. The result is

written to Rd.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

changepr

Change Predicate Register Set

Format: 5b (P) changepr imm4,imm8

 5b (P) changepr.ld imm4,imm8

Description: In changepr, the active predicate register set is changed to

the predicate register set specified by imm4. Imm8 is
ignored.

In changepr.ld, the active predicate register set is changed
to the predicate register set specified by imm4, and imm8 is
written to this predicate register set.

cmp

Compare

Format: 5a (P) cmp.rel Rs1,Rs2,P1,P2

Description: Rs1 and Rs2 are compared with each other, according to

the relation specified in the rel field.

If the relation is true, predicate register P1 is set; if it is false,
P1 is cleared.

Complement of P1 is written to P2.

Rel Relation Sign of a and b
eq a == b N/A
ne a != b N/A
lt a < b Signed
le a <= b Signed
gt a > b Signed
ge a >= b Signed
ltu a < b Unsigned
leu a <= b Unsigned
gtu a > b Unsigned
geu a >= b Unsigned

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

cmpi

Compare Immediate

Format: 5b (P) cmpi.rel Rs1,imm8,P1,P2

Description: Rs1 is compared to sign-extended imm8 according to the

relation specified in the rel field. (See the table in the
description of the cmp instruction.)

If the relation is true, P1 is set; if it is false, P1 is cleared.

Complement of P1 is written to P2.

deposit

Deposit

Format: 3 (P) deposit Rd,Rs1,imm7,imm6

Description: Right-aligned bit field of length imm6 from Rs1, is written to

Rd, starting at location specified by imm7. Remaining bits of
Rd are unchanged.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

extract

Extract

Format: 3 (P) extract Rd,Rs1,imm7,imm6

Description: Bit field of length imm6 of Rs1, starting at a location

specified by imm7, is written right-aligned to Rd. High order
bits of Rd are cleared.

jmp

Jump

Format: 0 (P) jmp imm23

 0 (P) jmp.link imm23

 1 (P) jmp.reg Rd

 1 (P) jmp.reg.link Rd

Description: In jmp, imm23 is added to the current PC. The result

becomes the new PC.

In jmp.link, PC + 4 is written to GR[31]. The previous value
of GR[31] is destroyed. Then, imm23 is added to the PC.
The result becomes the new PC.

In jmp.reg, Rd is added to the current PC. The result
becomes the new PC.

In jmp.reg.link, PC + 4 is written to GR[31]. The previous
value of GR[31] is destroyed. Then, Rd is added to the PC.
The result becomes the new PC.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

load

Load

Format: 2 (P) load.sw Rd,Rs1,imm13 1,2,4,8

 2 (P) load.sw.update Rd,Rs1,imm13 1,2,4,8

Description: Value in a memory location is loaded into a register.

Size of the loaded memory block is indicated in the sw field,
and can be 1,2,4 or 8 bytes.

In load.sw, Rd is loaded with mem[Rs1+imm13].

If the update option is used, Rs1 is replaced with
Rs1+imm13 after the load is completed.

loadi

Load Immediate

Format: 1 (P) loadi.hi imm18

 1 (P) loadi.lo imm18

Description: In loadi.hi, low-order 16 bits of imm18 are loaded into low-

order 16th through 31st bits of Rd.

In loadi.lo, low-order 16 bits of imm18 are loaded into low-
order 0th through 15th bits of Rd.

(High-order two bits of imm18 are ignored.)

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

mix

Mix

Format: 3 (P) mix.sw.l Rd,Rs1,Rs2 1,2,4

 3 (P) mix.sw.r Rd,Rs1,Rs2 1,2,4

Description: Even or odd-indexed subwords are selected alternately from

Rs1 and Rs2, and written to Rd.

Subword size is indicated in the sw field, and can be 1,2 or
4 bytes.

In mix.sw.l, odd-indexed subwords are selected alternately
from Rs1 and Rs2, and written to Rd. The first subword of
Rd is the first subword of Rs1.

In mix.sw.r, even-indexed subwords are selected alternately
from Rs1 and Rs2 are written to Rd. The first subword of Rd
is the second subword of Rs1.

mix.2.l Rd,Rs1,Rs2

mix.2.r Rd,Rs1,Rs2

Rs1

Rs2

Rd

Rs1

Rs2

Rd

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

mux

Mux

Format: 4b (P) mux.rev Rd,Rs1 1

 4b (P) mux.mix Rd,Rs1 1

 4b (P) mux.shuf Rd,Rs1 1

 4b (P) mux.alt Rd,Rs1 1

 4b (P) mux.brcst Rd,Rs1 1

Description: A permutation is performed on the 1-byte subwords of Rs1

and the result is written to Rd.

Mux.rev reverses the order of the bytes of Rs1.

Mux.mix divides Rs1 into left and right halves, then a mix
operation is performed on these two halves of Rs1.

Mux.shuf divides Rs1 into left and right halves, then a
shuffle operation is performed on these two halves of Rs1.

Mux.alt divides Rs1 into left and right halves, then a shuffle
operation is performed on these two halves of Rs1.

Mux.brcst writes the least-significant subword of Rs1 to all
subwords of Rd.

mux.rev Rd,Rs1 mux.mix Rd,Rs1

Rs1

Rd

Rs1

Rd

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

mux.shuf Rd,Rs1 mux.alt Rd,Rs1

mux.brcst Rd,Rs1

Rs1

Rd

Rs1

Rd

Rs1

Rd

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

not

Not

Format: 4a (P) not Rd,Rs1

Description: Rs1 is complemented. The result is written to Rd. Rs2 is

ignored.

(Rs2 field of 4a-type instructions is ignored for this
instruction.)

or

Or

Format: 4a (P) or Rd,Rs1,Rs2

Description: Rs1 and Rs2 are ored. The result is written to Rd.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

ori

Or Immediate

Format: 2 (P) ori Rd,Rs1,imm13

Description: Imm13 is zero extended and ored with Rs1. The result is

written to Rd.

padd

Packed Add

Format: 4a (P) padd.sw Rd,Rs1,Rs2 1,2,4,8

 4a (P) padd.sw.u Rd,Rs1,Rs2 1,2,4,8

 4a (P) padd.sw.s Rd,Rs1,Rs2 1,2,4,8

Description: Rs1 and Rs2 are added, and the result is written to Rd.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Padd.sw uses modular arithmetic, padd.sw.u uses unsigned
saturation, and padd.sw.s uses signed saturation during the
add.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

paddincr

Packed Add Increment

Format: 4a (P) paddincr.sw Rd,Rs1,Rs2 1,2,4,8

Description: Rs1 and Rs2 are added, and their sum is incremented by

one. The result is written to Rs2. Modular arithmetic is used.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

pavg

Packed Average

Format: 4a (P) pavg.sw Rd,Rs1,Rs2 1,2

 4a (P) pavg.sw.raz Rd,Rs1,Rs2 1,2

Description: Averages of the subwords from Rs1 and Rs2 are written to

Rd.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

In pavg.sw, unsigned subwords from Rs1 and Rs2 are
added, and the sums are shifted right by one bit. The
highest order bit becomes the carryout of the add operation.
The shifted results are written to Rs2. The least-significant
bit of each result subword is the or of the two least-
significant bits of the shifted sums.

In pavg.sw.raz (raz stands for round away from zero),
unsigned subwords from Rs1 and Rs2 are added, and the
sums are incremented by one. The incremented sums are
then shifted right by one bit. The highest order bit becomes
the carryout of the add operation. The shifted results are
written to Rs2. The least-significant bit of each result
subword is the least-significant bit of the shifted sums.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

pcmp

Packed Compare

Format: 4a (P) pcmp.sw.eq Rd,Rs1,Rs2 1,2,4,8

 4a (P) pcmp.sw.gt Rd,Rs1,Rs2 1,2,4,8

Description: In pcmp.eq, subwords from Rs1 and Rs2 are tested for

equality.

In pcmp.ge, signed subwords from Rs1 are tested for being
greater-than the signed subwords of Rs2.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

If the comparison condition is true, then corresponding
subword of Rd is set to all ones, otherwise it is set to all
zeros.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

perm

Permute

Format: 4a (P) perm Rd,Rs1,Rs2 2

Description: A permutation is performed on the 2-byte subwords of Rs1

and the result is written to Rd.

All possible permutations can be performed, with or without
repetitions of subwords. The permutation is specified by the
bits read from Rs2.

(If Rs1 has n subwords, this requires nlogn bits to specify a
permutation. These bits are read from the low-order nlogn
bits of Rs2.)

perm Rd,Rs1,Rs2

Rs1

Rd

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

pmax

Packed Maximum

Format: 4a (P) pmax Rd,Rs1,Rs2 1,2

Description: The greater of the subwords from Rs1 and Rs2 is written to

Rd.

Subwords are treated as signed values.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

pmin

Packed Minimum

Format: 4a (P) pmin Rd,Rs1,Rs2 1,2

Description: The lesser of the subwords from Rs1 and Rs2 is written to

Rd.

Subwords are treated as signed values.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

pmul

Packed Multiply

Format: 4a (P) pmul.odd Rd,Rs1,Rs2 2

 4a (P) pmul.even Rd,Rs1,Rs2 2

Description: In pmul.odd, odd indexed signed 16-bit subwords from Rs1

and Rs2 are multiplied, and the 32-bit products are written
to Rd.

In pmul.even, even indexed signed 16-bit subwords from
Rs1 and Rs2 are multiplied, and the 32-bit products are
written to Rd.

pmulshr

Packed Multiply Shift Right

Format: 4a (P) pmulshr.sa Rd,Rs1,Rs2 2

 4a (P) pmulshr.sa.a Rd,Rs1,Rs2 2

Description: In pmulshr.sa, unsigned 16-bit subwords from Rs1 and Rs2

are multiplied. Each product is then logically shifted to the
right by sa bits, where sa can be 0,8,15, or 16. The lower
halves of the shifted products are written to Rd.

In pmulshr.sa.a, signed 16-bit subwords from Rs1 and Rs2
are multiplied. Each product is then arithmetically shifted to
the right by sa bits, where sa can be 0,8,15, or 16. The
lower halves of the shifted products are written to Rd.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

pshift

Packed Shift

Format: 4a (P) pshift.sw.l Rd,Rs1,Rs2 2,4,8

 4a (P) pshift.sw.r Rd,Rs1,Rs2 2,4,8

 4a (P) pshift.sw.ra Rd,Rs1,Rs2 2,4,8

Description: Subwords of Rs1 are shifted and the result is written to Rd.

Subword size is specified in the sw field, and can be 2,4 or 8
bytes.

In pshift.sw.l, subwords of Rs1 are logically shifted to the left
by Rs2 bits.

In p.shift.sw.r, subwords of Rs1 are logically shifted to the
right by Rs2 bits.

In, pshift.sw.ra, subwords of Rs1 are arithmetically shifted to
the right by Rs2 bits.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

pshiftadd

Packed Shift and Add

Format: 4a (P) pshiftadd.sa.l Rd,Rs1,Rs2 2

 4a (P) pshiftadd.sa.r Rd,Rs1,Rs2 2

Description: In pshiftadd.sa.l, signed 2-byte subwords of Rs1 are shifted

left by sa bits, where sa can be 1, 2, or 3. The result is
added to Rs2 using signed saturation arithmetic. The result
is written to Rd.

In pshiftadd.sa.r, signed 2-byte subwords of Rs1 are shifted
right by sa bits, where sa can be 1, 2, or 3. The result is
added to Rs2 using signed saturation arithmetic. The result
is written to Rd.

pshifti

Packed Shift Immediate

Format: 4b (P) pshifti.sw.l Rd,Rs1,imm5 2,4,8

 4b (P) pshifti.sw.r Rd,Rs1,imm5 2,4,8

 4b (P) pshifti.sw.ra Rd,Rs1,imm5 2,4,8

Description: In pshifti.sw.l, subwords of Rs1 are logically shifted to the

left by imm5 bits.

Subword size is specified in the sw field, and can be 2,4 or 8
bytes.

In pshifti.sw.r, subwords of Rs1 are logically shifted to the
right by imm5 bits.

In pshifti.sw.ra, subwords of Rs1 are arithmetically shifted to
the right by imm5 bits.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

psub

Packed Subtract

Format: 4a (P) psub.sw Rd,Rs1,Rs2 1,2,4,8

 4a (P) psub.sw.u Rd,Rs1,Rs2 1,2,4,8

 4a (P) psub.sw.s Rd,Rs1,Rs2 1,2,4,8

Description: Rs2 is subtracted from Rs1. The result is written to Rd.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

Psub uses modular arithmetic, psub.u uses unsigned
saturation, and psub.s uses signed saturation during the
subtract.

psubavg

Packed Subtract Average

Format: 4a (P) psubavg.sw Rd,Rs1,Rs2 1,2

Description: Unsigned Rs2 is subtracted from unsigned Rs1. The

differences are shifted right by one bit. The highest order bit
becomes the carryout of the subtract operation. The shifted
results are written to Rsd. The least-significant bit of each
result subword is the or of the two least-significant bits of the
shifted differences.

Subword size is specified in the sw field, and can be 1 or 2
bytes.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

psubdecr

Packed Subtract Decrement

Format: 4a (P) psubdecr.sw Rd,Rs1,Rs2 1,2,4,8

Description: Rs2 is subtracted from Rs1, and the difference is

decremented by one. The result is written to Rd. Modular
arithmetic is used.

Subword size is specified in the sw field, and can be 1,2,4 or
8 bytes.

shrp

Shift Right Pair

Format: 4c (P) shrp Rd,Rs1,Rs2,imm8

Description: Rs1 and Rs2 are concatenated and logically shifted to the

right by imm8 bits. The lower-order half of the shifted result
is written to Rd. (Most-significant bit of imm8 is ignored for
64-bit processors; most-significant two bits of imm8 are
ignored for 32-bit processors.)

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

slli

Shift Left Logical Immediate

Format: 2 (P) slli Rd,Rs1,imm13

Description: Rs1 is shifted to the left by imm13 bits. If imm13 is greater

than the word size, then only the low-order bits of imm13
are used as the shift amount. The vacated bits are filled with
zeroes. The result is written to Rd.

srai

Shift Right Arithmetic Immediate

Format: 2 (P) srai Rd,Rs1,imm13

Description: Rs1 is shifted to the right by imm13 bits. If imm13 is greater

than the word size, then only the low-order bits of imm13
are used as the shift amount. The vacated bits are filled with
the sign bit. The result is written to Rd.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

srli

Shift Right Logical Immediate

Format: 2 (P) srli Rd,Rs1,imm13

Description: Rs1 is shifted to the right by imm13 bits. If imm13 is greater

than the word size, then only the low-order bits of imm13
are used as the shift amount. The vacated bits are filled with
zeroes. The result is written to Rd.

store

Store

Format: 2 (P) store.sw Rd,Rs1,imm13 1,2,4,8

 2 (P) store.sw.update Rd,Rs1,imm13 1,2,4,8

Description: Value in a register is stored in a memory location.

Size of the stored data is specified in the sw field, and can
be 1,2,4 or 8 bytes.

In store.sw, Rd is stored to mem[Rs1+imm13].

If the update option is used, Rs1 is replaced with
Rs1+imm13 after the store is completed.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

subi

Subtract Immediate

Format: 2 (P) subi Rd,Rs1,imm13

Description: Imm13 is sign extended and subtracted from Rs1. The

result is written to Rd.

testbit

Test Bit

Format: 5b (P) testbit Rd,imm8,P1,P2,imm4

Description: The bit specified by imm8 is selected from Rd. If this bit is

set, P1 is set, otherwise P1 is cleared. If imm8 is larger than
the word size, no bit is selected and P1 is cleared.

Complement of P1 is written to P2.

(Imm4 is ignored.)

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

trap

Trap

Format: 0 (P) trap imm23

Description: The processor halts execution unconditionally.

imm23 is ignored.

xor

Xor

Format: 4a (P) xor Rd,Rs1,Rs2

Description: Rs1 and Rs2 are xored. The result is written to Rd.

Rev. 1/7/2002 - AMF

Copyright 2000, 2001, 2002 by Ruby Lee, rblee@princeton.edu, Princeton University

xori

Xor Immediate

Format: 2 (P) xori Rd,Rs1,imm13

Description: Imm13 is zero extended and xored with Rs1. The result is

written to Rd.

