PAX Processor:

Assembler and FPGA User Manual

[image: image1.png][¥] ModelSim XE lll/Starter 6.3c - Custom Xilinx Version

avhd
Pt shd

d

[Lf) EX _Forward it vhd
(L) EX_MEM e vhd
[X puxahd

[v r

[f) 0_Mu.vhd

[ig] F _Mox.vhd
o8 MEM e

B_reg.vhd

=

R S R e S S N NS

4J start B paxaz_Modelsin @l Pax_User_Manual.do. T3 Modsisim K€ II{tart. BN &% % 12i00AM

Last Edited 08/14/2008 by Michael S. Wang (msw2138@columbia.edu)
Table of Contents
Section 1: PAX Assembler
1.1 Installing and Editing the assembler

1.2 Using the assembler

Section 2: PAX FPGA

2.1 PAX-32
· Simulating PAX on ModelSim

· Running PAX on FPGA

· Loading PAX software onto FPGA

2.2 PAX-64
· Simulating PAX on ModelSim

· Running PAX on FPGA

· Loading PAX software onto FPGA

2.3 PAX-128: Current Status
Section 1: PAX Assembler

1.1 Installing and Editing the assembler

Currently, the PAX assembler is built under the “mozart” server at the PALMS website. All the source code and executable files of the PAX assembler are stored under the folder:

/home/mswang/CT-PAX/

Section 3 of the “PAX_ Assembler_Manual.doc” document describes the file structure and code structure of the CT-PAX folder, as well as how to edit and rebuild the PAX assembler.
To recompile the PAX assembler, use the script build_gnupax.sh under the CT-PAX folder.

1.2 Using the assembler

All the files necessary to use the PAX assembler are stored on the “mozart” server under the folder:

/home/mswang/PAX_Assembler/

To simply use the assembler, the files within this folder is enough. To edit or recompile the assembler, one must see the CT-PAX folder as described in section 1.2.
The PAX processor comes in three different sizes: PAX-32, PAX-64, and PAX-128. There are three corresponding PAX assemblers. The PAX_Assembler folder is organized into 5 subfolders:

· ../bin_32

· ../bin_64

· ../bin_128

· ../scripts

· ../test_programs

../bin_32

The ../bin_32/ folder contains the binary executables for the PAX-32 assembler. These executables are copied from a folder under the CT-PAX/ folder after the assembler is recompiled for the PAX-32 processor:

/home/mswang/CT-PAX/crosstool/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/bin
../bin_64

The ../bin_64/ folder contains the binary executables for the PAX-64 assembler. These executables are copied from a folder under the CT-PAX/ folder after the assembler is recompiled for the PAX-64 processor:

/home/mswang/CT-PAX/crosstool/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/bin
../bin_128

The ../bin_128/ folder contains the binary executables for the PAX-128 assembler. These executables are copied from a folder under the CT-PAX/ folder after the assembler is recompiled for the PAX-128 processor:

/home/mswang/CT-PAX/crosstool/gcc-4.1.0-glibc-2.3.2/arm-unknown-linux-gnu/bin
../scripts

The ../scripts/ folder contains three different scripts for running the PAX assembler, one for each of the three different PAX sizes. The inputs for the PAX scripts are as follows:
sh pax_s2o_32.sh [name of pax-32 assembler file stored in the test_programs folder]
sh pax_s2o_64.sh [name of pax-64 assembler file stored in the test_programs folder]
sh pax_s2o_128.sh [name of pax-128 assembler file stored in the test_programs folder]
examples:

sh pax_s2o_32.sh pax32_AES_Encryption

sh pax_s2o_64.sh pax64_AES_Encryption
sh pax_s2o_128.sh pax128_AES_Encryption
The output of the assembler is a .mif file, which contains the 32-bit machine code necessary to feed into the PAX FPGA.

../test_programs
The ../test_programs/ folder contains the PAX .s files are to be run by the PAX assembler. Currently, the scripts in the ../scripts folder obtains files from this ../test_programs/ folder to run on the PAX assembler. More .s files can be added to this folder for more testing and use of the PAX assembler.
Section 2: PAX FPGA

2.1 PAX-32

Simulating PAX-32 on ModelSim

1. Open the ../pax32_ModelSim/ folder.
2. Copy the .mif file (containing the machine code for PAX-32) created by the PAX assembler (See section 1) to this folder.
3. Rename this .mif file as instruction_memory_xilinx.mif. Delete or rename the instruction_memory_xilinx.mif file that was previously in folder.
4. Open up the pax32_ModelSim.mpf program, which opens up ModelSim and loads the PAX-32 project. A screenshot of the ModelSim window is:

[image: image12.png]PAX_FPGA Properties

Connest To | Setings

Funcion, anow, and e keys act &
Ofemidlkes O windows keys

Backspace key sends
@ okt O Del - O Culei, Space, CtikH

Emlstion

Auto detect Terminal Setup.

Telnetteminal D [ANST

Backssrol buffer fnes: 500

0] Blay sound when connecting or discornecting

==n

5. Click on “compile tab”, and select “compile all”. (Although this step is not necessary unless any files within the workspace has changed, it is nice to run through it the first time).

[image: image2.png][¥] ModelSim XE lll/Starter 6.3c - Custom Xilinx Version

T
T Ptpac] Compie al
Comple Selected

avhd
Pt shd

d

[Lf) EX _Forward it vhd
(L) EX_MEM e vhd
[X puxahd

[v r

[f) 0_Mu.vhd

[ig] F _Mox.vhd
o8 MEM e
B_req vhd

=

R e S N N S NN NN

il A Lser Manualdo.. | T3 Modelsin 4E 1i/Star 5% 126 an

6. In the workspace window, select the Library tab. Under work directory, select the tb_pax_sim entity. Double-click it to start ModelSim simulation of PAX-32 with the loaded PAX-32 program as specified from the .mif file from step 2.
[image: image3.png]1 Workspace.
Ele Edt Vew Add Window

Lok foveoim v]

eme Type__Jpath
work Lbrary work

+E] ol ey Ckeworl
E] br_cel_acdr ey Ckeworl
+{E] data_memory ey Ckeworl
+{E] data_memory xiinx_126 ey Ckeworl
+E] data_memory inx 32 ey Ckeworl
+{E] data_memory inx_64 ey Ckeworl
E] decoder ey Ckeworl
2E] ex_mem_reg ey Ckeworl
HE] ex ey Ckeworl
] fount ey Ckeworl
e ey Ckeworl
HE] i mux ey Ckeworl
e ey Ckeworl
HE] o ey Ckeworl
E] imm_extend ey Ckeworl
E] instruction_memory inx ey Ckeworl
HE] mem_fuv_mux ey Ckeworl
+E] mem_wb_reg ey Ckeworl
] pex_pack Package Ciiketior|
+HE] penest ey Ckeworl
E] Pt ey Ckeworl
+E] reatzs ey Ckeworl
1] reg2 ey Ckeworl
“1E] regs4 ey Ckeworl
+1E] registers ey Ckeworl
+HE] shifter ey Ckeworl
+{E] stall_detection ey Ckeworl
1] tabled ey Ckeworl
] table it ey Ckeworl
IE] th_pax entty Cikeworl

) Wb ety Citketvor
) xmuc 125 ety Cithetvor
] st ety Cithetvor
] xmoca ety Cithetvor
2] much ety Cithetvor

sl am Lbrary $HODEL T
i) am_ver unavalable) Lbrary $MODEL T

sl e Lbrary $MODEL T
I cover (nvaiable) Lbrary $MODEL T

w4l o Lbrary §MODEL TE|

sl simerim Lbrary $MODEL T
1A sierims_ver (unavalatie) Lbrary $MODEL T
T cro00_ver (navaiable) Lbrary $MODEL T

LM i Ly et 1

| — o

ot | [l brery

7. Click on the View tab and click on the Wave option.

[image: image4.png][¥] ModelSim XE lli/Starter 6.3c - Custom Xilinx Version

e cot JUA Convle Smuske AdS Transcit TookLayok Widon e
D@ oo . |l | ceaH| B el BB BP o g oo 20X | s e w)
Workspace List. Hft x| Objects Hd X
|*¥|Instance erification Management » |Design unit type | Visibilty |States |State hits |State misses |State % |State graph. Mode. el
o n
E Message Viewer ax) Architecture +ace=v In
@ v Obiects th_pax_sim) Process +accs n
& FProcess th_pax_sim) Process In
@ Profiing * Lth_pax_sim) Process n
& Callstack th_pax_sim) Process In
& Wakch th_pax_sim) Process In
H o g o) pocess 0
@ v Workspace th_pax_sim) Process In
o s Libpoicsim) process n
e Lt s -
o ! [pwcam) rocess ke
iy g it
W) e [ke
e 0 Package
P R R e
[— Factage ke
i s Pactaos it
B i teto st e toto Pactaos ke
e i Pactaos 1
ok o ik Pactaos 1
vt el i Pactaos 1
Wrnwcsd s Pactaos 1
Mt o rnad e o nsnad padace ke
B it g e ath Pactaos it
Bt e e 1164 Pactaos ke
B saniad e ackage

Internal
Internal
Internal
In
In
In
In

| Internal

[Eprotec [i orary | G5 [& ies [8 memores nteral

st
(= e <
ot poxc2_toddm Now: Ops Dokar [smlt oo

e =

8. This opens up the Wave window. Undock it for a larger view.

[image: image5.png][T wave - default
Ee Ede Formt

R &L e

9. Click on File -> load and open the wave.do file. This contains a preset group of settings for the ModelSim simulation of PAX-32. Click on “run” button on the top toolbar to allow ModelSim to simulate for the specified 92 us.
[image: image6.png]15 wave - default _ @@-‘

Be & & e | [y B 3« qaeq

FEE} TS
ADROLIIE 0B00000
DROLIIE 600600
i 3 AL

FEEEEEEEEEETEE et e it it ddd

I

10. Look at the waves to confirm that the simulation results are correct. As an example, assume that the .mif file that we loaded was pax32_AES_Encryption.mif. Open up the pax32_AES_Encryption.s file and confirm that the last four instruction writes the following results to data memory at the corresponding PC value:
	PC
	Data Memory Address
	Data Memory Data

	1184
	0xf0
	0x3925841d

	1185
	0xf1
	0x02dc09fb

	1186
	0xf2
	0xdc118597

	1187
	0xf3
	0x196a0b32

Confirm this result on ModelSim.

Running PAX-32 on FPGA

1. Open the ../pax32_fpga/ folder
2. Open the pax32_fgpa.xmp program, which opens up the Xilinx FPGA software and opens the PAX-32 FGPA project. A screenshot is shown below:

[image: image7.png]‘¥ Xilinx Platform Studio - C:\MikeWorldpax32. p - [System Assembly View1]

(0 Fle Edt Vew Project Hardware Software Device Configuation: Debug Smulation Window. el [SE]
DRELONDeLBENRBOIRMAR @-ARA MR X Bz iRNONIOORDASS
Fiers

Proect | Applations | IP Caabg (B O businetece O Pots © adbeses [llseremoAdaomes

Ee Instance Name = Akdess BaseAddiess | HihAddess | Size | Lock | [Cache | DCache | Bus Comnecton | IPType P Version

Descrplion 1P e [opt u~o b2 110
Anakog ppct05. 0 MoCR DSOCM_DCR U ~jo o Conneston ppeds 200
) ppcé05_1 MDCR DSOCM_DCR u~vo No Connection ¥ pped0s 2000
Bus Bidge ppci0s_0 MDCR 1S00M_DCR U ~jo No Conneston ppods 200
B e HihSpeed ppct0s.1 MDCR 1S00M_DCR U ~o Mo Comneston ppeds 200
T o SDOR U ~jo NoComestion v pbv34 1020
Debug p2op SDCR ocR U ~o Mo Comeston plopb_bidge 1.01.0
DA LEDs 4tk sope w0000 w0ttt [0 ot ~lopbop a01b
FPGA Recoriiguaion oiFsws._46it soPe ow0z0000 Owian2itt GO ot Vb opo 3016
General Pupose 10 PushButons 58k SOPB ow0a000 Owitoattt Btk |01 ot vlopbopo 301b
Intept Cortol 5y44CE_CompactFlash SOFB w0000 a0t [k ot opb_sysace 100
Memoy Block S22 a1 sope Ova0G00000 OwdtEDN GO ot ~ opb_uatlie 1005
My Contler 232 o2 p 0 SOFB ocn0000 oS00 Bk 01 ot ~ p®2_fpgap 1002
Pephera Contcler pb_trom i onti 1 SPLB c_baseaddrc_highadd 5000 st xwd O O b plo_brem_i_cnth 100
ey pzop P ANGO ovooo0000 ozt (26 v|0 o pl2o_bidge 1010
Priect Local peares p2op P ANG1 U~jo o 2o bidge 1010
Reset Coriel p2op sPLe ANG2 U ~o o pbi2ark bidge 101
Tiner p2op BT ANG3 U ~jo o 2o bidge 1010
Uity

< Im || [System AssemblyView! | Block Diagram

< i 3

3. Connect the FGPA to the computer.
4. Open up a Hyperterminal connection, and change the settings as shown below:
[image: image10.emf]

 Binary Field Multiplier

 ALU S PU

64

64

64

 Register File (32 registers)

T7 T6 T5 T4 T3 T2 T1 T0

 Combinational Logic

From Memory

PTLU Module

Single-issue PAX Processor

PAX Peripherals and Controller

PAX FPGA VHDL Hardware Module

Fig 1-1. Xilinx Virtex-II Pro FPGA Development Board

[image: image8.png]COM1 Properties

Bitsper second:

Databits:

Paiy

Stopbits:

Flow controt

[image: image11.png]ASCII Setup
ASCI Sending

end ine ends with ne eeds
cho typed characters locally

Line delay: [0 | millseconds.

Cheracter delay: 0| miliseconds.

4SOl Receiving
[Append line feeds to incoming ine ends
[Force incoring data to 7-bit ASCII

Wiap lines that exceed terminal widh

5. Initially, the PAX-32 project has an AES-128 encryption program loaded. To run this program on the FPGA, click on Device Configuration -> Download Bitstream. The program should run on the FPGA and printout the following results on the Hyperterminal screen:
-- Entering main() --

Running SysAceSelfTestExample() for SysACE_CompactFlash...

SysAceSelfTestExample FAILED

Running GpioOutputExample() for LEDs_4Bit...

GpioOutputExample PASSED.

Running GpioInputExample() for DIPSWs_4Bit...

GpioInputExample PASSED. Read data:0xF

Running GpioInputExample() for PushButtons_5Bit...

GpioInputExample PASSED. Read data:0x1F

***** PAX-32 Processor on Virtex-II Pro FPGA *****

------ Last Edited 08/08/08 by Michael Wang ------

 - pax32: CMD reset to: 0x0

------ Test PAX-32 Instruction Memory ------

 - pax32: write inst mem at 0x00A0, dat= 0x22222222

 - pax32: write inst mem at 0x00A1, dat= 0x66666666

 - pax32: read inst mem at 0x00A0, dat= 0x22222222

 - pax32: read inst mem at 0x00A1, dat= 0x66666666

------ Test PAX-32 Data Memory ------

 - pax32: write data mem at 0x00F0, dat= 0x11111111

 - pax32: write data mem at 0x00F1, dat= 0x55555555

 - pax32: read data mem at 0x00F0, dat= 0x11111111

 - pax32: read data mem at 0x00F1, dat= 0x55555555

------ Load and Run PAX-32 Program from program.pax ------

 - pax32: loading program to inst memory. prog size=1185...done.

 - pax32: start to run program...

 - pax32: program execution is done

 - pax32: User stopped pax

------ Program Descriptions (change for different program.pax) ------

function : AES-128 Encryption

input : 0x 3243f6a8 885a308d 313198a2 e0370734

key : 0x 2b7e1516 28aed2a6 abf71588 09cf4f3c

expected output : 0x 3925841d 02dc09fb dc118597 196a0b32

PAX FPGA output : 0x 3925841D 02DC09FB DC118597 196A0B32

***** PAX-32 Program Completed *****

-- Exiting main() --

6. To capture the printout of the Hyperterminal screen onto a text file, click on Transfer -> Capture Text on the Hyperterminal window.
7. Confirm that the Hyperterminal output matches with the one above.

Loading PAX software onto FPGA
Above, we looked at how to run a pre-loaded AES-128 encryption program on the PAX-32 FPGA. Next, we look at how to dynamically load new programs to run on the FPGA:

1. Write a different program using PAX-32 assembly language
2. Assemble the program using the PAX-32 assembler as described in Section 1. This turns the .s file into a .mif file, which contains the PAX-32 machine code of the program
3. Convert the .mif file into a program.pax file, which contains a C array that stores the machine code of the program. This array of PAX machine code is loaded by the PowerPC processor on the FPGA onto the PAX-32 instruction memory. This mif to program.pax conversion is performed by the MifConv program found in the folder:
/home/mswang/MifConf
This program takes as input:

./MifConv [mif file]

And outputs a program.pax file.

4. Copy this program.pax file into the folder under the PAX-32 FPGA directory:

../pax32_fpga/SDK_projects/TestApp_Peripheral/
5. Reopen the pax32_fgpa.xmp project

6. Under the Xilinx window, click on Software -> Launch Platform Studio SDK
A screenshot is shown below:

[image: image9.png]Xilinx Platform Studio SDK - C:\MikeWork\pax32_fpga\pax32

File Edt Refactor Nevigate Search Project Ainx Tools - Device Configuation - Run Window FHelp

Hrigls @8R RO |@-8-E-6-(3-0-A- |08 -§ -wC-0-
[Bcices
B+ Projects 52 =g 55 outine 52 =5
@@ & T\ 2/0000000000000000007007007000101110110010010111011071001011171107107111117117 A AW e T
Wt ppci0s_0_sw platform 2// Filenawe C:\Mikellork\ pax32_fpya/drivers/pax32_fpga_ip_v1_00_a/src/pax32_tpga_ip_selftest.c —
M ppedts 1 ew slatorm 3// versio 1.00.a
512 Testapp, Periphersl {ppc405_0_sw_plafo|| | 4// Description: Contains & diagnostic self-test function for the pax32_fpga ip driver
& Binaries 5/7 Date: Fri Jul 25 08:25:13 2008 (by Create and Import Peripheral Wizard)
& Debug L]
[opio_hesder.h 7
[pax3z_fpoa_ip.h El
[sysace_header.h D T]
(] paxa_foge_in_selftest.c 10
ED:‘E paxi2_fogs_ip.c L1#include "pax32_fpgs_ip.h" ~ Application Wizard
Testapp_Perheral.c 1 Z8inc1ude mprogram. pan-
L xapio_tapp_example.c 13/ rrssrnnssansstressianass Constant Definitions ++ SoeCt 8 Wizard
[sysace_seltest_example.c b Create a new C applcation project, and alow SDK to manage its Makefie, Thisis the typica
[Testapp.peripheral Linkscr d o stating point unless you have already mreated your project

2 A5 Encayionnd
ez foan.p st ok
a2 intracton ey i

16/#ssrranasssssrasasaansres Yarishle Definitions ++ Weards
17
15
L9/ rrrrRrE e Function Definitions *r
20
program_TEWP pasc 21/
program_okdpex 22
23 * Run & self-test on the driver/device. Note this
23 * resets of the device are perforned.
25
26 * It the hardvare system is not built correctly, tl
27 * revurn to the caller.
26
25 + Gparam baseaddr p is the hase address of the P
30
31 v grevurn
sz
35 - ST SUCCESS if all self-test code passed
33 - ESTFAILURE if any self-test code failed
35
36 * Gnote Caching must be turned off for this fund
37 * Gnote Self test may fail if data wewory and diTTSE-ETETT
38
39
0
41// pax32 command/status list
2%uintsz C_IoLE ox00000000;
49%uint32 C_PAX NOT START = 0x000D0OO1:
44Tuint32 C_RUN PAX_PROG 0x000000027
45Tuint32 C_PAX_PROG_DONE = 0x00000004;
46%uint32 C_VRITE_INST MEN = 0x00ODOOOS:
47%uint32 C_READ_INST MEN = 0x00000010;
46Xuint32 C_VRITE DATA MEN = 0x00OD0020;
45%uint3z C READ DATA HEN = 0x000D0040;

(import 475 Application Projects
S Import an Existing SDK Application Project into this Workspace

2 irucion ey .t
Hroganioe

I~ Do ot aunch Application Wizard at startup

raems | 2 Console 3 Properes 8|l -3--0
C-Buid [TestApp_Peripheral]

#%%% Incremental build of configuration Debug for project Testipp Peripheral #77%

make all
make: Nothing to be done for ‘all'.
Build complete for project Testipp_Peripheral

m; T

wiikable Smartnsert | 111

BN &%y 214pm

7. “Cancel” the Application Wizard window because the SDK environment has already been setup for the current PAX-32 FPGA project.

8. Change the pax32_fpga_ip_selftest.c program so that it outputs results to the Hyperterminal screen that makes sense for the current program stored in program.pax. More specifically, make changes to the part of the pax32_fpga_ip_selftest.c program:

 xil_printf("------ Program Descriptions (change for differnt program.pax) ------\n\r");
 xil_printf("function : AES-128 Encryption \n\r");
 xil_printf("input : 0x 3243f6a8 885a308d 313198a2 e0370734 \n\r");
 xil_printf("key : 0x 2b7e1516 28aed2a6 abf71588 09cf4f3c \n\r");
 xil_printf("expected output : 0x 3925841d 02dc09fb dc118597 196a0b32 \n\r");
 xil_printf("PAX FPGA output : 0x %08x %08x %08x %08x \n\r", f0, f1, f2, f3);
9. Recompile the pax32_fpga_ip_selftest.c program using the SDK environment. This allows the newly changed program.pax file to be compiled.

10. Make sure that the FPGA is turned on, and the Hyperterminal screen is connected.

11. Go back to the Xilinx Platform Studio window. Click on Device Configuration -> Update Bitstream.

12. Click on Device Configuration -> Download Bitstream.

13. View the results on Hyperterminal and confirm that it is the desired result.
2.2 PAX-64

Simulating PAX on ModelSim

1. This is the same as for PAX-32, except all the files are stored in the folder:

 ../pax64_ModelSim/

11. ModelSim can simulate any .mif file that is loaded onto the PAX-64 instruction memory. As an example, assume that the .mif file that we loaded was pax64_AES_Encryption.mif. Open up the pax32_AES_Encryption.s file and confirm that the last two instruction writes the following results to data memory at the corresponding PC values:

	PC
	Data Memory Address
	Data Memory Data

	1022
	0xf0
	0x 3925841d 02dc09fb

	1023
	0xf1
	0x dc118597 196a0b32

Confirm this result on ModelSim.
Running PAX on FPGA

This is the same as for PAX-32, except all the files are stored in the folder:

 ../pax64_fpga/

Loading PAX software onto FPGA

This is the same as for PAX-32, except all the files are stored in the folder:

 ../pax64_fpga/

2.3 PAX-128: Current Status
Currently, the PAX-128 VHDL works on Modelsim. ModelSim can simulate any .mif file that is loaded onto the PAX-128 instruction memory. As an example, assume that the .mif file that we loaded was pax128_AES_Encryption.mif. Open up the pax128_AES_Encryption.s file and confirm that the last instruction writes the following results to data memory at the corresponding PC value:

	PC
	Data Memory Address
	Data Memory Data

	926
	0xf0
	0x 3925841d 02dc09fb dc118597 196a0b32

Confirm this result on ModelSim.

PAX-128 does not yet work on the FPGA. We are not currently using block memory to generate the instruction and data memory. Instead, all memory are generated using the LUTs. For PAX-128, the FPGA is no longer large enough to support it. For future work, I suggest using block memory to generate the PAX memory, which can significantly reduce the amount of LUTs used, and thus, may allow PAX-128 to fit on the FPGA.
