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Abstract Advanced bit manipulation operations are not
efficiently supported by commodity word-oriented micro-
processors. Programming tricks are typically devised to
shorten the long sequence of instructions needed to emulate
these complicated bit operations. As these bit manipulation
operations are relevant to applications that are becoming
increasingly important, we propose direct support for them
in microprocessors. In particular, we propose fast bit gather
(or parallel extract), bit scatter (or parallel deposit) and bit
permutation instructions (including group, butterfly and
inverse butterfly). We show that all these instructions can
be implemented efficiently using both the fast butterfly and
inverse butterfly network datapaths. Specifically, we show
that parallel deposit can be mapped onto a butterfly circuit
and parallel extract can be mapped onto an inverse butterfly
circuit. We define static, dynamic and loop invariant
versions of the instructions, with static versions utilizing a
much simpler functional unit. We show how a hardware
decoder can be implemented for the dynamic and loop-
invariant versions to generate, dynamically, the control
signals for the butterfly and inverse butterfly datapaths. The
simplest functional unit we propose is smaller and faster
than an ALU. We also show that these instructions yield
significant speedups over a basic RISC architecture for a
variety of different application kernels taken from applica-
tions domains including bioinformatics, steganography,
coding, compression and random number generation.
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1 Introduction

Bit manipulation operations are typically not well supported
by microprocessors. However, these types of bit operations
are relevant for applications that are increasing in impor-
tance. Previously, accelerating bit manipulations has mostly
been associated with developing clever programming tricks
that use existing microprocessor features in non-intuitive
ways to speedup bit-string processing. Many of these tricks
have been collected and published, e.g., in Hacker’s Delight
[1]. In this paper, we show how a few advanced bit
manipulation instructions may be defined and efficiently
implemented in a commodity microprocessor, to accelerate
numerous applications.

For example, pattern matching and searching play a central
role in data mining applications. The data in question may be
genetic patterns in bioinformatics, iris or fingerprint informa-
tion in biometrics, keywords in communication surveillance,
and so on. The data and search terms may be represented by
vectors of bit-strings.We do a comparison to see if some set of
properties or features are present in a database record and then
gather the result bits from the comparison for further
processing. We call this a bit gather instruction.

Consider the bioinformatics alignment program BLASTZ
[2]. An alignment program takes two DNA strings and tries
to align them on the best match (where the best match allows
substitution, insertions and deletions). These programs
typically compare a seed, a short substring of DNA data,
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and if the match is good, the seed is extended. The BLASTZ
program allows a seed in which certain substring positions
are specified and others are left as wildcards. The program
selects and compresses the data in the specified substring
positions and uses the result as an index into a hash-table to
find where in the second string this seed is found. These steps
involve several bit manipulation operations on bit-strings.

Rather than allowing the acceleration of bit manipu-
lations to be relegated to esoteric “programming tricks” [1,
3], we want to accelerate bit manipulations by directly
building support for these operations into commodity
microprocessors. Supercomputers often have direct support
for advanced bit operations (see, for example, the Cray bit
matrix multiply instruction [4]). We will show that we can
add a low cost functional unit to a commodity micropro-
cessor that supports a useful set of bit operations that
accelerate many different applications.

In particular, the operations that we propose to support are:

– the bit gather operation, which we also call parallel
extract [5, 6];

– the bit scatter operation, which we also call parallel
deposit [6]; and

– bit permutations, which can arbitrarily rearrange the
bits in a processor word. Specifically, we focus on the
butterfly and inverse butterfly permutation instructions
[7–9] and the group permutation instruction [10, 11].

We give the instruction set architecture (ISA) definitions
for these instructions, consider the usage patterns of these
operations, and show how to design an efficient functional
unit that supports them using a few simple circuit building
blocks. We show that the bit gather operation can be mapped
to the inverse butterfly network and that the bit scatter
operation can be mapped to the butterfly network. The
simplest functional unit we propose is smaller and faster than
an arithmetic logic unit (ALU).

We also show that these instructions improve the
performance of a number of applications including bio-
informatics, image processing, steganography, compression
and coding. Our performance results indicate that a
processor enhanced with parallel deposit and parallel
extract instructions achieves a 10.04× maximum speedup,
2.29× on average, over a basic RISC architecture.

The paper is organized as follows: Section 2 describes our
advanced bit manipulation operations. Section 3 discusses the
datapaths required to perform the operations and culminates
with an overview of the advanced bit manipulation functional
unit. Section 4 summarizes the ISA definition of the new
instructions. Section 5 details the applications that benefit
from bit manipulation instructions and Section 6 summarizes
benchmark results. Section 7 provides the detailed imple-
mentation of the functional unit and gives synthesis results.
Section 8 gives related work. Section 9 concludes the paper.

2 Advanced Bit Manipulation Operations

Simple bit manipulation operations found in micropro-
cessors include and, or, xor and not. These are bit-parallel
operations that are easily accomplished in word-oriented
processors. Other common bit manipulation instructions
found in microprocessors that are not bit-parallel are shift
and rotate instructions. In these instructions, all the bits in a
word move by the same amount. In this section, we
introduce more advanced bit manipulation instructions that
are not currently found in commodity microprocessors.
Each of these operations can take tens to hundreds of cycles
to emulate in current microprocessors. However, by
defining new instructions for them, each can be imple-
mented in one, or a few, cycles.

2.1 Bit Gather or Parallel Extract: pex

A bit gather instruction collects bits dispersed throughout a
register, and places them contiguously in the result. Such
selection of non-contiguous bits from data is often
necessary. For example, in pattern matching, many pairs
of features may be compared. Then, a subset of these
comparison result bits are selected, compressed and used as
an index to look up a table. This selection and compression
of bits is a bit gather instruction.

A bit gather instruction can also be thought of as a
parallel extract, or pex instruction [5, 6]. This is so named
because it is like a parallel version of the extract (extr)
instruction [12, 13]. Figure 1 compares extr and pex. The
extr instruction extracts a single field of bits from any
position in the source register and right justifies it in the
destination register. The pex instruction extracts multiple bit
fields from the source register, compresses and right
justifies them in the destination register. The selected bits
(in r2) are specified by a bit mask (in r3) and placed
contiguously and right-aligned in the result register (r1).

Figure 1 a extr r1=r2, pos, len b pex r1=r2, r3.
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2.2 Bit Scatter or Parallel Deposit: pdep

Bit scatter takes the right-aligned, contiguous bits in a
register and scatters them in the result register according to
a mask in a second input register. This is the reverse
operation to bit gather. We also call bit scatter a parallel
deposit instruction, or pdep, because it is like a parallel
version of the deposit (dep) instruction found in processors
like PA-RISC [12, 13] and IA-64 [14]. Figure 2 compares
dep and pdep. The deposit (dep) instruction takes a right
justified field of bits from the source register and deposits it
at any single position in the destination register. The
parallel deposit (pdep) instruction takes a right justified
field of bits from the source register and deposits the bits in
different non-contiguous positions indicated by a bit mask.

2.3 Bit Permutation Primitive: grp

In [10, 11] Shi and Lee defined a bit permutation
instruction, grp, and showed that arbitrary bit permutations
can be accomplished by a sequence of at most lg(n) of these
grp instructions, where n is the word-size of the processor.
grp is a permutation primitive that gathers to the right the
data bits selected by “1”s in the mask, and to the left those
selected by “0”s in the mask (see Fig. 3). This can be
considered two parallel operations: grp_right (grpr) and
grp_left (grpl) [15]. The pex instruction is the grp_right half
of a grp operation. It conserves some of the most useful
properties of grp, while being easier to implement—the bits
that would have been gathered to the left are instead zeroed
out.

2.4 Butterfly and Inverse Butterfly Operations: bfly
and ibfly

While the grp operation can be used to achieve any
arbitrary permutation of n bits in lg(n) instructions, Lee et

al. [7–9] also found bit permutation primitives that can do
this in only two instructions. These are the butterfly (bfly)
and inverse butterfly (ibfly) instructions which permute
their inputs using the butterfly and inverse butterfly
networks, respectively (Fig. 4). The concatenation of the
butterfly and inverse butterfly networks forms a Beneš
network, a general permutation network [16]. Consequent-
ly, only a single execution of bfly followed by ibfly is
required to compute any of the n! permutations of n bits.

The structure of the networks is shown in Fig. 4, where
n=8. The n-bit networks consist of lg(n) stages. Each stage
is composed of n/2 two-input switches, each of which is
constructed using two 2:1 multiplexers. These networks are
faster than an ALU of the same width, since an ALU also
has lg(n) stages which are more complicated than those of
the butterfly and inverse butterfly circuits. Assuming a
processor cycle to be long enough to cover the ALU
latency, each bfly and ibfly operation will have single cycle
latency, since these circuits are simpler than an ALU’s
circuit. Furthermore, as each network has only n×lg(n)
multiplexers, the overall circuit area is small. (See Section 7
for circuit evaluation details.)

In the ith stage (i starting from 1), the input bits are n/2i

positions apart for the butterfly network and 2i−1 positions
apart for the inverse network. A switch either passes
through or swaps its inputs based on the value of a
configuration bit. Thus, the bfly, or ibfly, operation requires
n/2×lg(n) configuration bits. For n=64, three 64-bit
registers are needed to hold the configuration bits in
addition to the one register for the input. So, while a bfly
followed by an ibfly instruction can accomplish arbitrary n-
bit permutations in at most two instructions as opposed to

Figure 2 a dep r1=r2, pos, len b pdep r1=r2, r3.

Figure 3 grp r1=r2, r3.

Figure 4 a Eight-bit butterfly network and b 8-bit inverse butterfly
network.

Fast bit gather, bit scatter and bit permutation instructions 147



needing up to lg(n) grp instructions, grp only requires two
n-bit operands per instruction while each of the bfly or ibfly
instructions requires (1+lg(n)/2) n-bit operands per instruc-
tion. This presents a challenge, as typical ISAs and
processor datapaths support only two operands per instruc-
tion. We discuss this in more detail in Section 3.4.

3 Datapaths for pex and pdep

Our prior work on accelerating the grp permutation
instruction shows that it can also be implemented by two
inverse butterfly networks operating in parallel, one
implementing grpr and one implementing grpl [15]. Since
the pex operation is like the grpr operation, it can be
implemented by one inverse butterfly network. Since pdep
is the inverse of pex, we will show that it can be
implemented by the butterfly circuit, which reverses the
stages of the inverse butterfly circuit.

It is not immediately clear that parallel deposit can be
mapped to the butterfly network and that parallel extract
can be mapped to the inverse butterfly network. We will
show that these mappings are indeed correct and also that
the reverse is not true—parallel deposit cannot be mapped
to the inverse butterfly network and parallel extract cannot
be mapped to the butterfly network. Thus in order to design
a single functional unit that supports both pex and pdep,
both butterfly and inverse butterfly datapaths are required.

3.1 Parallel Deposit on the Butterfly Network

We first show an example parallel deposit operation on the
butterfly network. Then, we show that any parallel deposit
operation can be performed using a butterfly network.

Figure 5 shows our labeling of the left (L) and right (R)
halves of successive stages of a butterfly network. Since we
often appeal to induction for successive stages, we usually
omit the subscripts for these left and right halves.

Figure 6a shows an example pdep operation with mask=
10101101. Figure 6b shows this pdep operation broken
down into steps on the butterfly network. In the first stage,
we transfer from the right (R) to the left half (L) the bits
whose destination is in L, namely bits d and e. Prior to
stage 2, we right rotate e00d by 3, the number of bits that
stayed in R, to right justify the bits in their original order,
00de, in the L half. Note that bits that stay in the right half,
R, are already right-justified.

In each half of stage 2 we transfer from the local R to the
local L the bits whose final destination is in the local L. So
in R, we transfer g to RL and in L we transfer d to LL. Prior
to stage 3, we right rotate the bits to right justify them in
their original order in their new subnetworks. So d0 is right
rotated by 1, the number of bits that stayed in LR, to yield

0d, and gf is right rotated by 1, the number of bits that
stayed in RR, to yield fg.

In each subnetwork of stage 3 we again transfer from the
local R to the local L the bits whose final destination is in
the local L. So in LL we transfer d and in LR we transfer e.
After stage 3 we have transferred each bit to its correct final
destination: d0e0fg0h. Note that we use a control bit of “0”
to indicate a swap, and a control bit of “1” to indicate a pass
through operation.

Rather than explicitly right rotating the data bits in the L
half after each stage, we can compensate by modifying the
control bits. This is shown in Fig. 6c. How the control bits
are derived will be explained later in Section 7.1.

We now show that any pdep operation can be mapped to
the butterfly network.

Fact 1 Any single data bit can be moved to any result
position by moving it to the correct half of the intermediate
result at every stage of the butterfly network.

This can be proved by induction on the number of
stages. At stage 1, the data bit is moved within n/2 positions
of its final position. At stage 2, it is moved within n/4
positions of its final result, and so on. At stage lg(n), it is
moved within n/2lg(n)=1 position of its final result, which is
its final result position. Referring back to Fig. 6b, we
utilized Fact 1 to decide which bits to keep in R and which
to transfer from R to L at each stage.

Fact 2 If the mask has k “1”s in it, the k rightmost data bits
are selected and moved, i.e., the selected data bits are
contiguous. They never cross each other in the final result.

This fact is by definition of the pdep instruction. See the
example of Fig. 6a where there are five “1”s in the mask
and the selected data bits are the five rightmost bits, defgh;

Figure 5 Labeling of butterfly network.

148 Y. Hilewitz, R.B. Lee



these bits are spread out to the left maintaining their original
order, and thus never crossing each other in the result.

Fact 3 If a data bit in the right half (R) is swapped with its
paired bit in the left half (L), then all selected data bits to
the left of it will also be swapped to L (if they are in R) or
stay in L (if they are in L).

Since the selected data bits never cross each other in the
final result (Fact 2), once a bit swaps to L, the selected bits
to the left of it must also go to L. Hence, if there is one “1”
in the mask, the one selected data bit, d0, can go to R or L.
If there are two “1”s in the mask, the two selected data bits,
d1d0, can go to RR or LR or LL. That is, if the data bit on
the right stays in R, then the next data bit can go to R or L,
but if the data bit on the right goes to L, the next data bit
must also go to L. If there are three “1”s, the three selected
data bits, d2d1d0, can go to RRR, LRR, LLR or LLL. For
example, in Fig. 6b stage 1, the 5 bits have the pattern
LLRRR as e is transferred to L and d must then stay in L.

Fact 4 The selected data bits that have been swapped from
R to L, or stayed in L, are all contiguous mod n/2 in L.

From Fact 3, the destinations of the k selected data bits
dk−1…d0 must be of the form L…LR…R, a string of zero
or more L’s followed by zero or more R’s (see Fig. 7).
Define X as the bits staying in R, Y as the bits going to L
that start in R and Z as the bits going to L that start in L. It
is possible that:

1. X alone exists—when there are no selected data bits
that go to L,

2. Y alone exists—when all bits that start in R go to L and
there are no selected data bits that start in L and,

3. X and Y exist—when some bits that start in R stay in R
and some go to L and there are no selected data bits
that start in L and,

4. X and Z exist—when all the bits in R are going to R,
and all bits going to L start in L, or

5. X, Y and Z exist.

Figure 6 a 8-bit pdep operation b mapped onto butterfly network with explicit right rotations of data bits between stages and c without explicit
rotations of data bits by modifying the control bits.
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When X alone exists (1), there are no bits that go to L, so
Fact 4 is irrelevant.

The structure of the butterfly network requires that when
bits are moved in a stage, they all move by the same
amount. Fact 2 states that the selected data bits are
contiguous. Together these imply that when Y alone exists
or X and Y exist (2 and 3), Y is moved as a contiguous block
from R to L and Fact 4 is trivially true.

When X and Z exist (4), Z is a contiguous block of bits
that does not move so again Fact 4 is trivially true.

When X, Y and Z exist (5), Y comprises the leftmost bits
of R, and Z the rightmost bits in L since they are contiguous
across the midpoint of the stage (Fact 2). When Y is
swapped to L, since the butterfly network moves the bits by
an amount equal to the size of L or R in a given stage, Y
becomes the leftmost bits of L. Thus Y and Z are now
contiguous mod n/2, i.e., wrapped around, in L (Fig. 7).

Thus Fact 4 is true in all cases.
For example, in Fig. 6b at the input to stage 1, X is bits

fgh, Y is bit e and Z is bit d. Y is the leftmost bit in R and Z
is the rightmost bit in L. After stage 1, Y is the leftmost bit
in L and is contiguous with Z mod 4, within L, i.e., de is
contiguous mod 4 in e00d.

Fact 5 The selected data bits in L can be rotated so that
they are the rightmost bits of L, and in their original order.

From Fact 4, the selected data bits are contiguous mod
n/2 in L. At the output of stage 1 in Fig. 7, these bits are
offset to the left by the size of X (the number of bits that
stayed in R), denoted by |X|. Thus if we explicitly rotate
right the bits by |X|, the selected data bits in L are now the
rightmost bits of L in their original order (Fig. 7). In
Fig. 6b, Fact 5 was utilized prior to stages 2 and 3.

At the end of this step, we have two half-sized butterfly
networks, L and R, with the selected data bits right-aligned
and in order in each of L and R (last row of Fig. 7). The
above can now be repeated recursively for the half-sized

butterfly networks, L and R, until each L and R is a single
bit. This is achieved after lg(n) stages of the butterfly
network. (See the final output in Fig. 6b.)

The selected data bits emerge from stage 1 in Fig. 7
rotated to the left by |X|. In Fact 5, the selected data bits are
explicitly rotated back to the right by |X|. Instead we can
compensate for the rotation by modifying the control bits of
the subsequent stages to limit the rotation within each
subnetwork. For example, if the n-bit input to stage 1 is
rotated by k positions, the two n/2-bit inputs to the L and R
subnetworks are rotated by k (mod n/2) within each
subnetwork. At the output of stage lg(n), the subnetworks
are 1-bit wide so the rotations are absorbed.

Fact 6 If the data bits are rotated by x positions left (or
right) at the input to a stage of a butterfly network, then at
the output of that stage we can obtain a rotation left (or
right) by x positions of each half of the output bits by
rotating left (or right) the control bits by x positions and
complementing upon wrap around.

Consider again the example of Fig. 6b. The selected data
bits emerge from stage 1 left rotated by 3 bits, i.e., L is
e00d, left rotated by three positions from 00de. In Fig. 6b,
we explicitly rotated the data bits back to the right by 3.
Instead, we can compensate for this left rotation by left
rotating and complementing upon wrap around by three
positions the control bits of the subsequent stages. This is
shown in Fig. 8. For stage 2, the control bit pattern of L,

Figure 7 At the output of a butterfly stage, Y and Z are contiguous
mod n/2 in L and can be rotated to be the rightmost bits of L.

Figure 8 The elimination of explicit right rotations after stage 1 in
Fig. 6b, prior to stage 2.
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after left rotate and complement by 3, becomes 01 → 11 →
10 → 00. The rotation by 3 is limited to a rotation by 3
mod 2=1 within each half of the output of L of stage 2 as
the output is transformed from d0,0e in Fig. 6b to 0d,e0 in
Fig. 8. For stage 3, the rotation and complement by three of
the two single control bits in L become three successive
complements: 0 → 1 → 0 → 1, and the left rotation of L is
absorbed as the overall output is still d0e0. Hence, Fig. 8
shows how the control bits in stages 2 and 3 compensate for
the left rotate by 3 bits at the output of stage 1 (cf. Fig. 6b.)

Figure 6c shows the control bits after also compensating
for the left rotate by 1 bit of RL and LL, prior to stage 3 in
Fig. 8. The explicit right rotation prior to stage 3 is
eliminated. Instead, the two control bits in RL and LL

transform from 1 → 0 to absorb the rotation. By doing the
same control bit transformations for stage 2, the overall
result in Fig. 6c remains the same as in Fig. 6b. The explicit
data rotations in Fig. 6b are replaced with rotations of the
control bits instead, complementing them on wraparound.

We now explain why the control bits are complemented
when they wrap around. The goal is to keep the data bits in
the half they were originally routed to at each stage of the
butterfly network, in spite of the rotation of the input.
Figure 9a shows a pair of bits, a and b, that were originally
passed through. So we wish to route a to L and b to R in
spite of any rotation. As the bits are rotated (Fig. 9b), the
control bit is rotated with them, keeping a in L and b in R,

as desired. When the bits wrap around, (Fig. 9c), a wraps to
R and b crosses the midpoint to L. If the control bit is
simply rotated with the paired bits, then a is now passed
through to R and b is passed through to L, which is
contrary to the originally desired behavior. If instead the
control bit is complemented when it wraps around
(Fig. 9d), then a is swapped back to L and b is swapped
back to R, as is desired.

Similarly, if a and b were originally swapped (Fig. 10a),
a should be routed to R and b to L. As the bits rotate
(Fig. 10b), we simply rotate the control bit with them.
When the bits wrap around (Fig. 10c), input a wraps to R
and b crosses to L. When they are swapped, a is routed to L
and b to R, contrary to their original destinations. If the
control bit is complemented on wraparound, a is passed
through to R and b is passed through to L, conforming to
the originally desired behavior.

Thus complementing the control bit when it wraps
causes each of the pair of bits to stay in the half it was
originally routed to despite the rotation of the input pushing
each bit to the other half. This limits the rotation of the
input to be within each half of the output and not across the
entire output.

We now give a theorem to formalize the overall result:

Theorem 1 Any parallel deposit instruction on n bits can
be implemented with one pass through a butterfly network

Figure 9 a A pair of data bits
initially passed through; b rota-
tion of the paired data bits
and control bit; c wrapping of
the data bits and control bit;
d complementation of the
control bit.

Figure 10 a A pair of data bits
initially swapped; b rotation
of the paired data bits and
control bit; c wrapping of the
data bits and control bit;
d complementation of the
control bit.
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of lg(n) stages without path conflicts (with the bits that are
not selected zeroed out externally).

Proof We give a proof by construction. Assume there are
k “1”s in the right half of the bit mask. Then, based on
Fact 1, the k rightmost data bits (block X) must be kept in
the right half (R) of the butterfly network and the
remaining contiguous selected data bits must be swapped
(block Y) or passed through (block Z) to the left half (L).
This can be accomplished in stage 1 of the butterfly
network by setting the k rightmost configuration bits to “1”
(to pass through X), and the remaining configuration bits to
“0” (to swap Y).

At this point, the selected data bits in the right
subnetwork (R) are right-aligned but those in the left
subnetwork (L) are contiguous mod n/2, but not right
aligned (Fact 4, Fig. 7); they are rotated left by the size of
block X or the number of bits kept in R. We can
compensate for the left rotation of the bits in L and
determine the control bits for subsequent stages as if the
bits in L were right aligned. This is accomplished by left
rotating and complementing upon wraparound the control
bits in the subsequent stages of L by the number of bits
kept in R (once these control bits are determined pretending
that the data bits in L are right aligned). Modifying the
control bits in this manner will limit the rotation to be
within each half of the output until the rotation is absorbed
after the final stage (Fact 6).

Now the process above can be repeated on the left and
right subnets, which are themselves butterfly networks:
count the number of “1”s in the local right half of the mask
and then keep that many bits in the right half of the
subnetwork, and swap the remaining selected data bits to
the left half. Account for the rotation of the left half by
modifying subsequent control bits.

This can be repeated for each subnetwork in each
subsequent stage until the final stage is reached, where
the final parallel deposit result will have been achieved (e.g.,
Fig. 6c).

3.2 Parallel Extract on the Inverse Butterfly Network

We will now show that pex can be mapped onto the inverse
butterfly network. The inverse butterfly network is decom-
posed into even and odd subnetworks, in contrast to the
butterfly network which is decomposed into right and left
subnetworks. See Fig. 11, where the even subnetworks are
shown with dotted lines and the odd with solid lines.
However, for simplicity of notation we refer to even as R
and odd as L.

Fact IB1 Any single data bit can be moved to any result
position by just moving it to the correct R or L subnetwork

of the intermediate result at every stage of the inverse
butterfly network.

This can be proved by induction on the number of
stages. At stage 1, the data bit is moved to its final position
mod 2 (i.e., to R or L). At stage 2, it is moved to its final
position mod 4 (i.e., to RR, RL, LR or LL), and so on. At
stage lg(n), it is moved to its final position mod 2lg(n)=n,
which is its final result position.

Fact IB2 A permutation is routable on an inverse butterfly
network if the destinations of the bits constitute a complete
set of residues mod m (i.e., the destinations equal 0, 1,…,
m-1 mod m) for each subnetwork of width m.

Based on Fact IB1, bits are routed on the inverse
butterfly network by moving them to the correct position
mod 2 after the first stage, mod 4 after the second stage, etc.
Consequently, if the 2 bits entering stage 1, (with 2-bit wide
inverse butterfly networks), have destinations equal to 0
and 1 mod 2 (i.e., one is going to R and one to L), Fact IB2
can be satisfied for both bits and they are routable through
stage 1 without conflict. Subsequently, the 4 bits entering
stage 2 (with the 4-bit wide networks) must have
destinations equal to 0, 1, 2 and 3 mod 4 to satisfy Fact
IB2 and be routable through stage 2 without conflict. A
similar constraint exists for each stage.

Theorem 2 Any Parallel Extract (pex) instruction on n bits
can be implemented with one pass through an inverse
butterfly network of lg(n) stages without path conflicts (with
the unselected bits on the left zeroed out).

Proof The pex operation compresses bits in their original
order into adjacent bits in the result. Consequently, two
adjacent selected data bits that enter the same stage 1

Figure 11 Even (or R, dotted) and odd (or L, solid) subnetworks of
the inverse butterfly network.
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subnetwork must be adjacent in the output—1 bit has a
destination equal to 0 mod 2 and the other has a destination
equal to 1 mod 2. Thus the destinations constitute a
complete set of residues mod 2 and are routable through
stage 1. The selected data bits that enter the same stage 2
subnetwork must be adjacent in the output and thus form a
set of residues mod 4 and are routable through stage 2. A
similar situation exists for the subsequent stages, up to the
final n-bit wide stage. No matter what the bit mask of the
overall pex operation is, the selected data bits will be
adjacent in the final result. Thus the destination of the
selected data bits will form a set of residues mod n and the
bits will be routable through all lg(n) stages of the inverse
butterfly network.

3.3 Need for Two Datapaths

It would be convenient if both pex and pdep can be
implemented using the same datapath circuit. Unfortunate-
ly, this is not possible.

We first consider trying to implement pex using a
butterfly circuit. From Fact 1 we see that parallel extract
cannot be mapped to the butterfly network. Parallel extract
compresses bits and thus it is easy to encounter scenarios
where 2 bits entering the same switch would both require
the same output in order to be moved to the correct half (L
or R) corresponding to their final destinations. Consider the
parallel extract operation shown in Fig. 12. In order to
move both bits d and h to the correct half of their final
positions, both must be output in the right half after stage 1.
This clearly is a conflict and thus parallel extract cannot be
mapped to butterfly.

We now consider implementing pdep using an inverse
butterfly circuit. From Fact IB1 we see that parallel deposit
cannot be mapped to the inverse butterfly network. Parallel
deposit scatters right-aligned bits to the left, and thus it is
easy to encounter scenarios where 2 bits entering the same
switch would both require moving to the same even, or
odd, subnetwork. Consider the parallel deposit operation
shown in Fig. 13. In order to move both bits g and h to their
final positions mod 2, both must be output in the right
subnet (i.e., even network: 0 mod 2) after stage 1. This
clearly is a conflict and thus parallel deposit cannot be
mapped to the inverse butterfly datapath.

3.4 Towards an Advanced Bit Manipulation
Functional Unit

Now that we have shown how the operations map to the
datapaths, we can sketch the blocks of a functional unit
that supports all four operations—parallel extract, parallel
deposit, butterfly permutations and inverse butterfly
permutations.

The first building block is a butterfly network followed
by a masking stage and extra register storage to hold the
configuration for the butterfly network (see Fig. 14, which
shows a 64-bit functional unit with six stages). This
supports the pdep and bfly instructions. The masking stage
zeroes the bits not selected in the pdep operation. For bfly,
we use a mask of all “1”s. The extra registers are associated
with the functional unit and hold the control bits for the
butterfly network. Some ISAs have pre-defined application
registers that can be used as these extra registers: they are
called special function registers in PA-RISC [12, 13] orFigure 12 Conflicting paths when trying to map pex to butterfly.

Figure 13 Conflicting paths when trying to map pdep to inverse
butterfly.
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application registers (AR’s) in the Intel Itanium ISA [14]. In
this paper, we will adopt the Itanium nomenclature and call
them application registers.

Figure 14 supports butterfly permutations as the appli-
cation registers can be explicitly loaded with the configu-
ration for some permutation. Parallel deposit is also
supported as we can go through the steps suggested by the
proof to Theorem 1 to arrive at a configuration for the
butterfly network that performs the desired parallel deposit
operation. The ARs can be loaded with this configuration
and then the input is permuted through the butterfly network;
the bits that are not needed are then masked out using the bit
mask that defines the desired parallel deposit operation.

Figure 15 shows the analog of this building block for
implementing inverse butterfly permutations and the paral-
lel extract instruction. This contains a masking stage
followed by an inverse butterfly network and a set of
application registers to hold the configuration. The ARs are
loaded with the configuration for some inverse butterfly
permutation or a parallel extract operation. For parallel
extract we mask out the undesired bits with the bit mask
and then we permute through the inverse butterfly network.

Figure 16 combines these two building blocks to form a
single functional unit that supports all four operations.

Deriving a configuration for parallel deposit or parallel
extract a priori (by the programmer or compiler) is not
always possible. It is only possible when the pex or pdep
operation is static, i.e., if the bit mask is known when the
program is being written or compiled. However, the bit
mask might be variable and only known at runtime and
thus the configuration for the butterfly or inverse butterfly
datapath must be produced on the fly. For the highest
performance, we would like to have a hardware decoder
circuit (Fig. 17) where the input is the n-bit mask and the
output is the set of n/2×lg(n) control bits for pdep or pex.

We will show how to design this decoder and show that the
same decoder circuit can be used for both pex and pdep
with the caveat that the ordering of the stages that control
bits are routed to is reversed (the circular arrow in Fig. 17
indicates reversing the stages).

Another possible scenario is that the configuration is
only known at runtime but it is unchanging across many
iterations of a loop, i.e., it is loop invariant. In this case, we
would like to use the hardware decoder circuit once to load
a configuration for pex or pdep into the application registers
(see the new multiplexers in front of the ARs in Fig. 18)
and then use the application registers directly. This has the
advantage of removing the decoder from the critical path,
thus decreasing latency for the subsequent pex or pdep
instructions, and also possibly conserving power by
shutting down the decoder circuitry.

For completeness, we also consider a functional unit that
supports the grp permutation instruction. The grp permuta-
tion instruction is equivalent to a standard parallel extract
ORed with a “parallel extract to the left” of the bits selected
with “0”s. Consequently, for the functional unit to support
grp, we need to add a second decoder and a second inverse
butterfly network to perform the “parallel extract to the left”
(Fig. 19).

4 ISA Summary

Table 1 enumerates and defines all the advanced bit
manipulation instructions we have discussed so far. We
assume a 64-bit wordsize, without loss of generality.

bfly and ibfly For bfly and ibfly, the data bits in GR r2 are
permuted and placed in the destination register GR r1.
Application registers ar.bi and ar.ibi, i=1, 2, 3, are used to
hold the configuration bits for the butterfly or inverse

Figure 14 Functional unit supporting butterfly and parallel deposit
operations.

Figure 15 Functional unit building block supporting inverse butterfly
and parallel extract operations.
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butterfly datapath, respectively, and these registers must
first be loaded by the mov_ar instruction. The mov ar
instruction in Table 1 is used to move the contents of two
general-purpose registers to the application registers. The
sub-opcode, x, indicates which application register, or pair
of application registers, are written.

Static pex and pdep Static versions of pex and pdep are
used when desired mask patterns are known at compile
time. In the static version of the pex instruction, GR r2 is
and’ed with mask GR r3, then permuted using inverse

butterfly application registers ar.ib1−3, with the result
placed in GR r1. For static pdep, GR r2 is permuted using
butterfly application registers ar.b1−3, then and’ed with
mask GR r3, with the result placed in GR r1.

Dynamic pex.v and pdep.v Dynamic or variable versions of
pex and pdep are used when desired mask patterns are only
known at runtime. In the pex.v instruction, the data bits in GR
r2 selected by the “1” bits in the mask GR r3 are placed, in
the same order, in GR r1. In the pdep.v instruction, the right
justified bits in GR r2 are placed in the same order in GR r1,

Figure 17 Functional unit supporting butterfly, inverse butterfly and static and variable parallel extract and parallel deposit instructions.

Figure 16 Functional unit
supporting butterfly, inverse
butterfly, parallel extract and
parallel deposit.
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in the positions selected by “1”s in mask GR r3. For both in-
structions, the mask r3 is translated dynamically by a decoder
into control bits for an inverse butterfly or butterfly circuit.

Loop-invariant pex and pdep Suppose the particular pattern
of bit scatter or gather is determined at execution time, but
this pattern remains the same over many iterations of a
loop. We call this a loop-invariant pex or pdep

operation. The setib and setb instructions invoke a
hardware decoder to dynamically translate the bitmask
GR r3 to control bits for the datapath stages; these control
bits are written to the inverse butterfly or butterfly
application registers, respectively, for later use in static
pex and pdep instructions.

Table 1 also shows the grp instruction which can
perform arbitrary n-bit permutations. Due to the complexity

Figure 19 Functional unit supporting butterfly; inverse butterfly; static, variable and loop invariant pex and pdep; and grp.

Figure 18 Functional unit supporting butterfly, inverse butterfly and static, variable and loop invariant pex and pdep.
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of implementing grp (see Fig. 19), and the fact that arbitrary
permutations can be implemented in fewer instructions
using bfly and ibfly instructions, it may not be necessary to
implement grp. Furthermore, it can be emulated by a short
sequence of pex and Boolean instructions.

The last column of Table 1 shows the expected number
of cycles taken for the execution of the instruction. All
static instructions (with pre-loaded ARs) take a single
cycle, comparable to the time taken for an add instruction.
The hardware decoder takes about two cycles, hence the
setib and setb instructions take two cycles each. The
variable pex.v and pdep.v and grp instructions each take
up to three cycles each because they have to go through the
hardware decoder first and then incur some additional
datapath latency through the inverse butterfly or butterfly
networks and the output multiplexers.

5 Applications

We now describe how bfly, ibfly, pex and pdep instructions
can be used in existing applications, to give speedup
estimates that are currently realizable. Use of these novel
instructions in new algorithms and applications will likely
produce even greater speedup.

Table 2 summarizes each of the applications described
below in terms of the advanced bit manipulation instruc-
tions it uses. (Checkmarks indicate definite usage, checkmarks
in parenthesis indicate usage in alternative algorithms and

question marks indicate potential usage.) The use of the mov ar
instruction is assumed (but not shown in Table 2) whenever the
bfly, ibfly, or static pex and pdep instructions are used.

Table 2 shows that static pex and pdep are the most
frequently used, the variable pdep.v is not used at all, and
the variable pex.v is only used twice. The loop-invariant
pex and pdep instructions, indicated by the use of setib and
setb instructions, are only used for the LSB Steganography
application. The grp instruction is only used in a block
cipher proposed by Lee et al. [17].

5.1 Bit Compression and Decompression

The Itanium IA-64 [14] and IA-32 [18] parallel compare
instructions produce subword masks—the subwords for
which the relationship is false contain all zeros and for
which the relationship is true contain all ones. This
representation is convenient for subsequent subword mask-
ing or merging. The SPARC VIS [19] parallel compare
instruction produces a bit mask of the results of the
comparisons. This representation is convenient if some
decision must be made based on the outcome of the multiple
comparisons. Converting from the subword representation to
the bitmask representation for k subwords requires k extract
instructions to extract a bit from each subword and k−1
deposit instructions to concatenate the bits; a single static
pex instruction accomplishes the same thing.

The SSE instruction pmovmskb [18] serves a similar
purpose; it creates an 8- or 16-bit mask from the most

Table 1 New advanced bit manipulation instructions.

Instruction Description Cycles

bfly r1=r2, ar.b1, ar.b2, ar.b3 Perform Butterfly permutation of data bits using controls in associated ARs 1
ibfly r1=r2, ar.ib1, ar.ib2, ar.ib3 Perform Inverse Butterfly permutation of data bits using controls in associated ARs 1
pex r1=r2, r3, ar.ib1, ar.ib2,
ar.ib3

Parallel extract, static: Data bits in r2 selected by a mask r3 are extracted, compressed and right-aligned
in the result r1, using datapath controls which have been pre-decoded from the mask and placed in the
associated ARs

1

pdep r1=r2, r3, ar.b1, ar.b2,
ar.b3

Parallel deposit, static: Right-aligned data bits in r2 are deposited, in order, in result r1 in bit positions
marked with a “1” in the mask r3, which has been pre-decoded to give datapath controls placed in the
associated ARs

1

mov ar.x=r2, r3 Move values from GRs to ARs, to set datapath controls (calculated by software) for pex, pdep, bfly
or ibfly

1

pex.v r1=r2, r3 Parallel extract, variable: Data bits in r2 selected by a dynamically-decoded mask r3 are extracted,
compressed and right-aligned in the result r1

3

pdep.v r1=r2, r3 Parallel deposit, variable: Right-aligned data bits in r2 are deposited, in order, in result r1 in bit positions
marked with a “1” in the dynamically-decoded mask r3

3

setib ar.ib1, ar.ib2, ar.ib3=r3 Set inverse butterfly datapath controls in the associated ARs, using hardware decoder to translate the
mask r3 to inverse butterfly controls

2

setb ar.b1, ar.b2, ar.b3=r3 Set butterfly datapath controls in the associated ARs, using hardware decoder to translate the mask r3 to
butterfly controls

2

grp r1=r2, r3 Perform Group permutation (variable): Data bits in r2 corresponding to “1”s in r3 are grouped to the
right, while those corresponding to “0”s are grouped to the left

3
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significant bit from each byte of a MMX or SSE register and
stores the result in a general purpose register. However, pex
offers greater flexibility than the fixed pmovmskb, allowing
the mask, for example, to be derived from larger subwords, or
from subwords of different sizes packed in the same register.

Similarly, binary image compression performed by
MATLAB’s bwpack function [20] benefits from pex.
Binary images in MATLAB are typically represented and
processed as byte arrays—a byte represents a pixel and has
permissible values 0x00 and 0x01. However, certain
optimized algorithms are implemented for a bitmap
representation, in which a single bit represents a pixel.

To produce one 64-bit output word requires only eight
static pex instructions to extract 8 bits in parallel from 8 bytes
and seven dep instructions to pack these eight 8-bit chunks
into one output word (Fig. 20). For decompression, as with
the bwunpack function, only seven extr instructions are
required to pull out each byte and only eight pdep instruc-
tions to scatter the bits of each byte to byte boundaries.

5.2 Least Significant Bit Steganography

Steganography [21] refers to the hiding of a secret message
by embedding it in a larger, innocuous cover message. A

simple type of steganography is least significant bit (LSB)
steganography in which the least significant bits of the
color values of pixels in an image, or the intensity values of
samples in a sound file, are replaced by secret message bits.
LSB steganography encoding can use a pdep instruction to
expand the secret message bits and place them at the least
significant bit positions of every subword. Decoding uses a
pex instruction to extract the least significant bits from each
subword and reconstruct the secret message.

LSB steganography is an example of an application that
utilizes the loop-invariant versions of the pex and pdep
instructions. The sample size and the number of bits
replaced are not known at compile time, but they are
constant across a single message. Figure 21 depicts an
example LSB steganography encoding operation in which
the four least significant bits from each 16-bit sample of
PCM encoded audio are replaced with secret message bits.

5.3 Binary Image Morphology

Binary image morphology is a collection of techniques for
binary image processing such as erosion, dilation, opening,
closing, thickening, thinning, etc. The bwmorph function in
MATLAB [20] implements these techniques primarily

Figure 20 Compressing each input word requires one pex and one dep.

Table 2 Summary of bit manipulation instruction usage in various applications.

Instruction

Application bfly and
ibfly

pex setib pdep setb pex.v pdep.v grp

Binary compression ✓

Binary decompression/expansion ✓

LSB steganography Encoding ✓ ✓

Decoding ✓ ✓

Binary image morphology ✓ (✓)
Transfer coding Encoding ✓

Decoding ✓

Bioinformatics Compression ✓

Reversal ✓

Translation ✓

Alignment ✓

Compressed integers Encoding ✓

Decoding ✓

Random number generation ✓

Cryptology ✓ ? ? ? ? ? ? (✓)
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through one or more table lookups applied to the 3×3
neighborhood surrounding each pixel (i.e. the value of
9 pixels is used as index into a 512 entry table). In its
current implementation, bwmorph processes byte array binary
images, not bitmap images, possibly due to the difficulty in
extracting the neighborhoods in the bitmap form.

If the images are processed in bitmap form, a single pex
instruction extracts the entire index at once (assuming a
64-bit word contains an 8×8 block of 1-bit pixels, as in
Fig. 22). As the algorithm steps through the pixels, the
neighborhood moves. This means that the bitmask for
extracting the neighborhood is shifted and a dynamic pex.v
instruction may be needed. Alternatively, the data might be
shifted, rather than the mask, such that the desired neighbor-
hood always exists in a particular set of bit positions. In this
case, the mask is fixed, and only a static pex is needed.
Table 2 indicates the latter—with pex indicated by a check
mark and pex.v in parenthesis for the alternative algorithm.

5.4 Transfer Coding

Transfer coding is the term applied when arbitrary binary
data is transformed to a text string for safe transmission
using a protocol that expects only text as its payload.
Uuencoding [22] is one such encoding originally used for
transferring binary data over email or usenet. In uuencod-
ing, each set of 6 bits is aligned on a byte boundary and 32
is added to each value to ensure the result is in the range of
the ASCII printable characters. Without pdep, each field is
individually extracted and has the value 32 added to it.
With pdep, eight fields are aligned at once and a parallel
add instruction adds 32 to each byte simultaneously
(Fig. 23 shows four parallel fields). Similarly, for decoding,

a parallel subtract instruct deducts 32 from each byte and
then a single pex compresses eight 6-bit fields.

5.5 Bioinformatics

Pattern matching and bit scatter/gather operations are also
found in bioinformatics—the field of analysis of genetic
information. DNA, the genetic code contained within the
nucleus of each cell, is a strand of the nucleotide bases adenine,
cytosine, guanine and thymine. These bases are typically
represented by an ASCII string using the 8-bit characters A, C,
G and T. However, a 2-bit encoding of the nucleotides is more
efficient and can significantly increase performance of match-
ing and searching operations on large genomic sequences (the
human genome contains 3.2 billion nucleotides). The ASCII
codes for the characters A, C, G and T differ in bit positions 2
and 1 (A: 00, C: 01, G: 11, T: 10) and these 2 bits can be used to
encode each nucleotide [23]. Thus a fourfold compression of a
genomic sequence simply requires a single pex instruction to
select bits 2 and 1 of each byte of a word (Fig. 24).

A strand of DNA is a double helix—there are really two
strands with the complementary nucleotides, A ↔ T and C
↔ G, aligned. When performing analysis on a DNA string,
often the complementary string is analyzed as well. To
obtain the complementary string, the bases are complemented
and the entire string is reversed, as the complement string is
read from the other end. The reversal of the DNA string
amounts to a reversal of the ordering of the pairs of bits in a
word. This is a straightforward bfly or ibfly permutation.

The DNA sequence is transcribed by the cell into a
sequence of amino acids or a protein. Often the analysis of
the genetic data is more accurate when performed on a
protein basis, such as is done by the BLASTX program

Figure 22 Using pex to extract a 3×3 neighborhood of pixels from register containing an 8×8 block of pixels.

Figure 21 LSB steganography
encoding (4 bits per 16-bit PCM
encoded audio sample).
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[24]. A set of three bases, or 6 bits of data, corresponds to a
protein codon. Translating the nucleotides to a codon
requires a table lookup operation using each set of 6 bits as
an index. An efficient algorithm can use pdep to distribute
eight 6-bit fields on byte boundaries, and then use the result
as a set of table indices for a parallel table lookup (ptlu)
instruction [25–27] to translate the bytes (Fig. 25).

When aligning two DNA sequences, certain algorithms
such as the BLASTZ program (mentioned in the introduction)
use a “spaced seed” as the basis of the comparisons. This
means that n out of m nucleotides are used to start a
comparison rather than a string of n consecutive nucleotides.
The remaining slots effectively function as wild cards, often
causing the comparison to yield better results. For example,
BLASTZ uses 12 of 19 (or 14 of 22 nucleotides) as the seed
for comparison. The program compresses the 12 bases and
uses the seed as an index into a hash table. This compression
is a pex operation selecting 24 of 38 bits (Fig. 26).

5.6 Integer Compression

Internet search engine databases, such as Google’s, consist
of lists of integers describing frequency and positions of
query terms. These databases are compressed to minimize
storage space, memory bus traffic and cache usage. To
support fast random access into these databases, integer
compression—using less than 4 bytes to represent an
integer—is utilized. One integer compression scheme is a
variable byte encoding in which each byte contains seven
data bits and a flag bit indicating whether the next byte is
part of the current integer (flag=“0”) or starts the next
integer (flag=“1”) [28]. pex can accelerate the decoding of

integers by compacting 7-bit fields from each byte
(Fig. 27), and pdep can speedup encoding by placing
consecutive 7-bit chunks of an integer on byte boundaries.

5.7 Random Number Generation

Random numbers are very important in cryptographic
computations for generating nonces, keys, random values,
etc. Random number generators contain a source of
randomness (such as a thermal noise generator) and a
randomness extractor that transforms the randomness so
that it has a uniform distribution. The Intel random number
generator [29] uses a von Neumann extractor. This extractor
breaks the input random bits, X=x1x2x3…, into a sequence
of pairs. If the bits in the pair differ, the first bit is output. If
the bits are the same, nothing is output. This operation is
equivalent to using a pex.v instruction on each word X from
the randomness pool with the mask:

Mask ¼ x1 � x2k0kx3 � x4k0k . . .
or equivalently;

Mask ¼ X � X << 1ð Þð Þ&0 xAAA . . . A:

5.8 Cryptology

A number of popular ciphers, such as DES, have
permutations as primitive operations. In earlier work, we
have shown that the inclusion of permutation instructions
such as bfly, ibfly (or grp) can greatly improve the
performance of the inner loop of these functions [9–11,

Figure 25 Translation of four sets of three nucleotides into four
protein codons using pdep and ptlu.

Figure 24 Compression of sequence GCAC using pex.

Figure 23 Uuencode using pdep.
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30]. Also, these instructions can be used as powerful
primitive operations in the design of the next generation of
ciphers [17, 31] and hash functions (especially for the
Cryptographic Hash Algorithm Competition (SHA-3) [32]).

Since all the pex and pdep instructions—static, loop—
invariant and variable—are also very likely to be useful
for cryptanalysis algorithms, we indicate them as “?” in
Table 2.

6 Performance Results

We coded kernels for the above binary compression and de-
compression, steganography, transfer coding, bioinformatics
translate, integer compression and random number generation
applications and simulated them using the SimpleScalar
Alpha simulator [33] enhanced to recognize our new instruc-
tions. The latencies of the instructions in the simulator are as
given in Table 1. Figure 28 shows our performance results,
normalized to the baseline Alpha ISA cycle counts. The
processor with pex and pdep instructions exhibits speedups
over the base ISA ranging from 1.13× to 10.04×, with an
average of 2.29× (1.94× excluding the rng benchmark).

Random number generation exhibited the greatest
speedup due to the fact that a variable pex.v operation is
performed. A single pex.v instruction replaces a very long
sequence of instructions that loops through the data and
mask and conditionally shifts each bit of the input to the
correct position of the output based on whether the
corresponding bit of the mask is ‘0’ or ‘1’. Of the bench-
marks for static pex and pdep, the simple bit compression
and decompression functions exhibited the greatest speedup
as these operations combine many basic instructions into
one pex or pdep. The speedup is lower in the steganog-
raphy encoding case because there are only four fields per
word, and also in the uudecode and BLASTX translate case
because there are fewer fields overall. The lowest speedups
were for integer compression cases as a smaller fraction of
the runtime is spent on compression or decompressing bit
fields.

7 Detailed Implementation

To evaluate the cost of implementing the advanced bit
manipulation functional units described in Section 3.4,
Figs. 16, 17, 18 and 19, we first need to understand the
implementation of the major components in such a
functional unit. The most complex component in Figs. 17,
18 and 19 is the hardware decoder that takes a register
value (representing a bitmask) and turns it into the control
bits of the stages of the butterfly or inverse butterfly
datapath. Figure 16 does not have such a hardware decoder,
as it implements only the static versions of pex and pdep.

Hence, in order to evaluate the functional unit circuit
latency and area, we must first define what is contained within
the hardware decoder component. We will first develop an
algorithm to obtain the n/2×lg(n) butterfly or inverse
butterfly control bits from the n-bit pdep or pex bitmask.
Then, we will show how to design a hardware decoder circuit
that implements this algorithm. In the case of static pex or
pdep instructions, the algorithm can be used by the compiler
to generate the control bits for the inverse butterfly or

Figure 28 Speedup using pex.v, pex and pdep.Figure 27 Decoding of 14-bit integer encoded in 2 bytes.

Figure 26 Compression of 12 of 19 bases (24 of 38 bits) in BLASTZ using pex.
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butterfly datapath. In the case of dynamic or loop-invariant
pex and pdep instructions, the hardware decoder is used.

7.1 Decoding the Mask into Datapath Controls

The steps in the proof to Theorem 1 give an outline for how
to decode the n-bit bitmask into controls for each stage of a
butterfly datapath. For each right half of a stage of a
subnetwork, we count the number of “1”s in that local right
half of the mask, say k “1”s, and then set the k rightmost
control bits to “1”s and the remaining bits to “0”s. This
serves to keep block X in the local R half and export Y to
the local L half (refer to Figs. 5 and 7 for nomenclature).
We then assume that we explicitly rotate Y and Z to be the
rightmost bits in order in the local L half. Then, we iterate
through the stages and come up with an initial set of control
bits. After this, we eliminate the need for explicit rotations
of Y and Z by modifying the control bits instead. This is
accomplished by a left rotate and complement upon wrap
around (LROTC) operation, rotating the control bits by the
same amount obtained when assuming explicit rotations.

We will now simplify this process considerably. First,
note that when we modify control bits to compensate for a
rotation in a given stage, we do so by propagating the
rotation through all the subsequent stages. This means that
when the control bits of a local L are modified, they are
rotated and complemented upon wrap around by the
number of “1”s in the local R, and by the number of “1”s
in the local R of the preceding stage, and by the number of
“1”s in all the local R’s of all preceding stages up to the R
in the first stage. In other words, the control bits of the local
L are rotated by the total number of “1”s to its right in the
bitmask.

Consider the example of Fig. 6b. The control bit in stage
3 in the LL subnetwork is initially a “0” when we assumed
explicit rotations. We first rotated and complemented this
bit by 3, the number of “1”s in R of the bitmask: 0 → 1 →
0 → 1 (Fig. 8). We then rotated and complemented this bit
by another 1 position, the number of “1”s in LR of the
bitmask: 1 → 0. This yielded the final control bit in Fig. 6c.
Overall we rotated this bit by 4, the total number of “1”s to
the right of LL or to the right of bit position 6. This is a
Population Count (POPCNT) of the bitstring from the
rightmost bit to bit position 6.

Second, we need to produce a string of k “1”s from a
count (in binary) of k, to derive the initial control bits
assuming explicit rotations. This can also be done with a
LROTC operation. We start with a zero string of the correct
length and then for every position in the rotation, we wrap
around a “0” from the left and complement it to get a “1”
on the right. The end result, after a LROTC by k bits, is a
string of the correct length with k rightmost bits set to “1”
and the rest set to “0” (Fig. 29, where k=3).

We can now combine these two facts: the initial control
bits are obtained by a LROTC of a zero string the length of
the local R by the POPCNT of the bits in the bitmask in the
local R and all bits to the right of it. We denote a string of k
“0”s as 0k. We specify a bitfield from bit h to bit v as {h:v},
where v is to the right of h. So,

– for stage 1, we calculate the control bits as
LROTC(0n/2, POPCNT(mask{n/2−1:0})),

– for stage 2, we calculate the control bits as
LROTC(0n/4, POPCNT(mask{3n/4−1:0})) for L and
LROTC(0n/4, POPCNT(mask{n/4−1:0})) for R,

– for stage 3, we calculate the control bits as
LROTC(0n/8, POPCNT(mask{7n/8−1:0})) for LL,
LROTC(0n/8, POPCNT(mask{5n/8−1:0})) for LR,
LROTC(0n/8, POPCNT(mask{3n/8−1:0})) for RL and
LROTC(0n/8, POPCNT(mask{n/8−1:0})) for RR,
and so on for the later stages.

Let us verify that this is correct using the example of
Fig. 6c:

– for stage 1, the control bits are
LROTC(04, POPCNT(“1101”))=LROTC(04, 3)=0111,

– for stage 2, the control bits of L are LROTC(02, POPCNT
(“101101”))=LROTC(02, 4)=00 and the control bits of
R are LROTC(02, popcnt(“01”))=LROTC(02, 1)=01,

– for stage 3, the control bit of LL are
LROTC(01, POPCNT(“0101101”))=LROTC(01, 4)=0,
the control bit of LR is
LROTC(01, POPCNT(“01101”))=LROTC(01, 3)=1,
the control bit of RL is
LROTC(01, POPCNT(“101”))=LROTC(01, 2)=0 and
the control bit of RR is
LROTC(01, POPCNT(“1”))=LROTC(01, 1)=1.

This agrees with the result shown in Fig. 6c.
One interesting point is that for stage 1 we need the

population count of the odd multiples of n/21 bits, for stage
2 we need the population counts of the odd multiples of
n/22 bits, for stage 3 we need the population counts of the
odd multiples of n/23 bits and so on. Overall we need the

Figure 29 LROTC(“0000”, 3)=
“0111”.
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counts of the k rightmost bits, for k=0 to n−2. We call this
the set of prefix population counts.

Using the two new functions we have defined, LROTC
and prefix - population - counts, we now present an algo-
rithm (Fig. 30) to decode the n mask bits into the nlg(n)/2
control bits for pdep (and for pex).

7.1.1 Decoding the pex Mask into Control Bits
for the Inverse Butterfly Datapath

The control bits for the inverse butterfly for a pex operation
can also be obtained using Algorithm 1, with the one caveat
that the controls for stage i of the butterfly datapath are
routed to stage lg(n)− i+1 in the inverse butterfly datapath.
This can be shown using an approach similar to that in the
previous section, except for working backwards from the
final stage.

7.2 Hardware Decoder

The execution time of Algorithm 1 in software is approxi-
mately 1,200 cycles on an Intel Pentium-D processor. This
software routine is useful for static pex or pdep operations and
perhaps for loop invariant pex or pdep if the amount of
processing in the loop dwarfs the 1,200 cycle execution time.
However, for dynamic pex.v and pdep.v we require a hardware
decoder that implements Algorithm 1 in order to achieve a
high performance. Fortunately, Algorithm 1 just contains two
basic operations, population_count and LROTC, both of
which have straightforward hardware implementations.

The first stage of the decoder is a parallel prefix
population counter. This is a circuit that computes in
parallel all the population counts of step 1 of Algorithm 1.
The circuit is a parallel prefix network with each node

performing carry-save addition (i.e. a set of full adders).
The counters resemble carry shower counters [34] in which
the inputs are grouped into sets of three lines which are
input into full adders. The sum and carry outputs of the full
adders are each grouped into sets of three lines which are
input to another stage of full adders and so on. The parallel
prefix architecture resembles radix-3 Han-Carlson [35], a
parallel prefix look-ahead carry adder that has lg(n)+1
stages with carries propagated to the odd positions in the extra
final stage. The radix-3 nature stems from the carry shower
counter design, as we group 3 lines to input to a full adder at
each level. The similarity to Han-Carlson is due to the 1- and
2-bit counts (see next paragraph) being deferred to the end,
similar to odd carries being deferred in the Han-Carlson adder.
Thus, the counter has log3(n)+two stages. Figure 31 depicts a
dot diagram of the parallel prefix network.

One simplification of the counter is based on the properties
of rotations—that they are invariant when the rotation amount
differs by the period of rotation. Thus, for the ith stage of the
butterfly network, the POPCNTs are only computed mod
n/2i−1. For example, for the 64-bit hardware decoder, for the
32 butterfly stage 6 POPCNTs corresponding to the odd
multiples of n/64, we need only compute the POPCNTs mod
2—only the least significant bit; for the 16 butterfly stage 5
POPCNTs, we need only compute the POPCNTs mod 4—
the two least significant bits; and so on. Only the POPCNT
of 32 bits for stage 1 requires the full lg(n)-bit POPCNT.

The outputs from the population counter control the
LROTC circuits, one for each local R of each stage. Each
LROTC circuit is realized as a barrel rotator modified to
complement the bits that wrap around (Fig. 32a). However,
while a standard 2m-bit rotator has m stages and control
bits, this rotator has m+1 stages and control bits. The final
stage selects between its input and the complement, as the

Figure 30 Algorithm 1 for
decoding a bitmask into controls
for a butterfly (or inverse but-
terfly) datapath.
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bits wrap 2m positions. Propagating the zeros at the input
greatly simplifies the circuit (see Algorithm 1—we always
calculate LROTC(0k, count); Fig. 32b). Furthermore, for
the counts of the last butterfly stage, the LROTC circuits
can be eliminated as LROTC(“0”, b)=b for single bit b. An
overall diagram of the decoder is shown in Fig. 33.

The outputs from the decoder are routed to the butterfly
network and its application registers to be used for the pdep
instruction. Additionally, the outputs are routed to the
inverse butterfly network and its application registers,
reversing the order of the stages, to be used for the pex
instruction. Unfortunately, there is no overlap between the
decoder and the routing of the data through the butterfly
network for the pdep instruction since the control bits for
the first stage of the butterfly network depend on the widest
population count (see Algorithm 1 and Fig. 33), which
takes the longest to generate.

7.3 Circuit Evaluation Results

We evaluated the functional units of Figs. 16, 18 and 19 for
timing and area. These support static pex and pdep only
(Fig. 16), loop invariant and dynamic pex.v and pdep.v as
well (Fig. 18), and grp as well (Fig. 19). All three also
support bfly and ibfly permutation instructions. The circuits
in Figs. 18 and 19 are implemented with a 3-stage pipeline.
The hardware decoder occupies the first two pipeline
stages due to its slow parallel prefix population counter.
The butterfly (or inverse butterfly) network is in the third
stage.

The various functional units were coded in Verilog and
synthesized using Synopsys Design Compiler mapping to a
TSMC 90 nm standard cell library [36]. The designs were
compiled to optimize timing. The decoder circuit was
initially compiled as one stage and then Design Compiler
automatically pipelined the subcircuit. Timing and area
figures are as reported by Design Compiler. We also

synthesized a reference ALU using the same technology
library as a reference for latency and area comparisons.

Table 3 summarizes the timing and area for the circuits.
This shows that the 64-bit functional unit in Fig. 16
supporting static pex and pdep has a shorter latency than
that of a 64-bit ALU and about 90% of its area (in NAND-
gate equivalents). However, to support variable and loop-
invariant pex and pdep (as in Fig. 18), which requires a

Figure 32 a Barrel rotator implementation of 8-bit LROTC circuit.
b Simplified LROTC circuit obtained from propagating zeros at input.

Figure 31 Parallel prefix circuit. The numbers at the top are bit position. The numbers at the bottom indicate the number of bits in the sum. The
trapezoids indicate adder blocks.
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hardware decoder (as described in detail above), the
advanced bit manipulation functional unit will be 16%
slower than an ALU and 2.25×larger. To also support a fast
implementation of the grp instruction, the proposed new unit
will be 23% slower than an ALU and about 3.2×larger in
area.

Table 4 shows the number of different circuit types, to
give a sense for why the functional units supporting variable
pex.v, pdep.v and grp are so much larger. It clearly shows that
supporting variable operations comes at a high price. The
added complexity is due to the complex decoder combina-
tional logic and to the additional pipeline registers and
multiplexer logic. This explains why in Table 3, the variable
circuits (Figs. 18 and 19) have approximately 22–29% long-
er cycle time latencies compared to the static case (Fig. 16),
due to the decoder complexity and pipeline overhead. They
are also 2.5 to 3.6 times larger than the static case.

8 Related Work

Advanced bit manipulation operations have usually been
supported only by supercomputers. The Soviet BESM-6
supercomputer had pack and unpack instructions which are
similar to pex and pdep, respectively [37]. The use of these
instructions appears to be for cryptanalytic purposes [1].

However, there is very little information available about
this computer and its uses.

The Cray vector supercomputers contain a bit matrix
multiply (bmm) instruction [4]. This instruction multiplies a
(1×n) bit vector or an (n×n) bit matrix by an (n×n) bit
matrix. The matrix–matrix multiplication takes approxi-
mately n/2 cycles (assuming two vector lanes), not counting
loading of a 64×64 matrix into the bmm unit. This
instruction can be used to emulate any of the advanced bit
manipulation operations described in this paper. The cost of
the instruction is a special vector register to hold the (n×n)
multiplier matrix (or 4,096 bits of storage for n=64) and a
large combinatorial circuit with 64 AND-XOR trees. Our
proposed functional units are much smaller and are a better
fit for a commodity microprocessor. We examine smaller bit
matrix multiplication primitives in a separate paper [38].

Commodity ISAs also contain byte or subword permu-
tation instructions such as the PowerPC AltiVec vperm
instruction [39], the SPARC VIS bshuffle instruction [19],
the PA-RISC permute and mix instructions [40], the IA-32
pshufb instruction [18] or the IA-64 mux instruction [14].
These permute 16-bit subwords or bytes, but not bits.
For example, the vperm instruction takes three source
operands—the first two are the data to be permuted and
the third is a list of 16 indices that describe which source
byte to write to each byte of the output. The vperm
instruction can be used to permute bits in a routine that is
more efficient than masking and shifting. However, our
dedicated bit permutation instructions are still much faster.

In [41–43], Lee discussed the mix instruction she first
proposed for PA-RISC MAX-2 [40], and also proposed
new mixpair, check, excheck, exchange and permset
instructions, for all powers of 2, down to a single bit.
These subword and bit permutation instructions are
proposed as the canonical primitives needed to accelerate
rearrangements of 2-dimensional objects and bit-planes.

The MicroUnity MediaProcessor architecture [44] con-
tains a number of instructions that manipulate the subwords
(which are power of 2 bits wide) of a register. (Unfortu-
nately, this processor was never implemented.) The oper-
ations supported include bit permutation; arbitrary byte
permutation (similar to the instructions listed above for
other commodity ISAs); shuffling and swizzling; and
parallel shift, rotate, extract and deposit operations. These
instructions are not like pex or pdep in which multiple

Figure 33 Hardware decoder for dynamic pdep and pex operation
(for pex, the order of the outputs is reversed).

Table 3 Latency and area of
proposed functional units. Unit Cycle time

(ns)
Relative cycle
time

Area (NAND gate
equivalent)

Relative
area

ALU 0.50 1 7.5K 1
Fig. 16: pex, pdep 0.48 0.95 6.8K 0.90
Fig. 18: pex.v, pdep.v 0.58 1.16 16.9K 2.25
Fig. 19: grp 0.62 1.23 24.2K 3.22
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arbitrary fields are compressed or expanded, but rather
standard extract and deposit operations are performed on
each subword in parallel. The bit permutation instruction
operates on each byte of the input operand, performing any
permutation with repetitions of the bits within a byte. The
instruction also optionally transposes the input (interpreting
the 128-bit input as two 8×8 bit matrices) before permuting
the bits within each byte. A sequence of three such
permutation instructions can perform any arbitrary permu-
tation of the two 64-bit subwords of the 128-bit data input.
Note that these instructions require four 128-bit operands
(three inputs and one output).

Other permutation instructions have also been proposed
in the research community for microprocessors. In [45], the
xbox instruction was introduced to accelerate permutations
in symmetric-key ciphers. This instruction takes two source
operands—the data to be permuted and a list of eight indices
(for 64-bit registers) that describe how to permute a byte of the
first operand. Eight xbox instructions (and seven xor
instructions) are required to permute a 64-bit word, consid-
erably slower than the execution of our bfly and ibfly
instructions.

In [10, 11, 30, 46–48], Lee et al. proposed the grp,
pperm, cross, omflip, swperm and sieve bit permutations.
The grp instruction [10, 11] was described in Section 2.3.
The pperm instruction specifies the permuted ordering of
bits, like the subword permute instruction in PA-RISC. The
cross instruction [10, 46] permutes bits using two stages of
the full Beneš network; one of the two input operands is
used to hold the control bits for those two stages while the
other input operand holds the data to be permuted. Thus lg
(n) cross instructions are required for any arbitrary
permutation of n bits. The omflip instruction [10, 47]
permutes bits using two stages of omega and flip networks,
which are isomorphic to butterfly and inverse butterfly
networks, respectively. The advantage of omega and flip
networks is that the stages are all identical. Similar to cross,
the control bits for the two stages are supplied using an
input operand and lg(n) omflip instructions are needed for
arbitrary n-bit permutations. The swperm and sieve instruc-
tions [30, 48] can produce arbitrary bit permutations with
repetitions. The swperm instruction is similar to the
subword permutation instructions in commodity ISAs
mentioned above except that it operates on 4-bit subwords
rather than bytes. The sieve instruction permutes bits within

each 4-bit subword. Using swperm and sieve, an arbitrary
permutation of 64 1-bit subwords can be performed with 11
instructions and an arbitrary permutation of 32 2-bit
subwords can be performed with five instructions.

In [7], Lee et al. first proposed the bfly and ibfly
instructions using full butterfly and inverse butterfly data-
paths, then discussed how to implement these instructions
which require more than two n-bit operands in an
application-specific instruction processor (ASIP) [8] and
in a general-purpose processor with the restriction of two
operands and one result per instruction [9]. In [5, 6], we
discussed our early work on pex and pdep.

Recently, in [49], bit permutation instructions (bpi) for
cryptography and general purpose applications are pro-
posed. The cryptographic bpi is a 2-input operand instruc-
tion that routes the data input through a partial Beneš
network that is configured by performing a bit expansion
on the control input. The bpi is implemented using a full
Beneš network configured using a special n/2×(2×lg(n)−1)-
bit register R. The R register is loaded n bits at a time from
general purpose registers. This scheme for general permu-
tations is similar to our proposed scheme, first described in
[7, 10]. The difference is that we split the Beneš network
into butterfly and inverse butterfly subnetworks. Our
approach has a number of advantages. First, each network
is faster than an ALU and thus is single cycle while the
concatenation of the two networks may have greater latency
than an ALU and thus the general purpose bpi might take
two cycles. Additionally, there are a great many simple
permutations that require only one of the bfly or ibfly
subnetworks. Use of bpi for these permutations still
requires routing the data bits through both subnetworks.
One disadvantage of our approach is that two instructions
must be issued for general permutations. However, given
superscalar resources, this will likely have negligible effect
on bit permutation workloads.

9 Conclusion

In this paper we showed that bit gather (pex), bit scatter
(pdep) and bit permutation instructions (bfly and ibfly) can
all be supported by a single functional unit. We showed that
pex maps to the inverse butterfly datapath and pdep maps to
the butterfly datapath and not vice versa. We showed how
to implement various combinations of static, loop-invariant
and variable versions of pex and pdep in functional units of
increasing complexity.

We suggest that the simple functional unit in Fig. 16
suffices: it supports the static versions of pex and pdep, and
also the bfly and ibfly permutation instructions. Since the
applications studied showed that most of the time only
static pex and pdep are needed, this simple functional unit

Table 4 Number of registers and logical blocks in functional units.

Unit Pipeline
Registers

Butterfly and Inverse
Butterfly Networks

Decoders MUXes

Fig. 16 0 2 0 1
Fig. 18 ~9.25 2 1 13
Fig. 19 ~14.5 3 2 14
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should suffice. This functional unit (Fig. 16) is smaller and
faster than an ALU. If it is desired to support also dynamic
and loop-invariant versions of pex.v and pdep.v, we
recommend the full functional unit (Fig. 18), which is
slightly more than twice the size of an ALU with only 16%
longer latency. This allows a loop-invariant pex or pdep
operation to calculate the control bits for the inverse butterfly
or butterfly datapath, respectively, once, and load these into
the Application Registers associated with this functional
unit. Thereafter, the fast single-cycle static versions of the
pex or pdep instructions can be used. Furthermore, fully
dynamic pex.v or pdep.v operations can be accomplished in
one instruction each, albeit each of these takes three
pipelined cycles of latency rather than one cycle.

In order to configure the datapath for pdep and pex, we
detail Algorithm 1 which shows how to decode the n-bit
mask input in the pdep or pex instruction into the n/2×lg(n)
butterfly or inverse butterfly control bits. Algorithm 1’s
long runtime in software motivated the design of a
hardware decoder to support high performance dynamic
pdep.v and pex.v. We describe optimized hardware imple-
mentations of the parallel prefix population count circuit
and the LROTC circuit, the only two key components in the
hardware decoder for generating datapath control bits.

We show how pex, pdep and bit permutation instructions
improve the performance of a number of applications
ranging from bioinformatics to compression to steganog-
raphy. Benchmark results indicate that a processor en-
hanced with parallel deposit and parallel extract achieves a
10.04× maximum speedup, 2.29× on average, over a basic
RISC architecture. These performance results are very
promising, but future work should also study the perfor-
mance of whole applications.

Overall, we have brought the acceleration of advanced
bit manipulation operations out of the realm of “program-
ming tricks.” The most useful bit manipulation operations
in the applications we examined are static versions of pex,
pdep, bfly and ibfly, all of which can be executed in a
single cycle. We have shown that these operations are
needed by many applications and that direct support for
them can be implemented in a commodity microprocessor
at a reasonable cost.

Future work includes redesigning existing algorithms to
make use of these advanced bit manipulation instructions,
and designing new algorithms using them to advantage.
Adding compiler support for advanced bit manipulation
operations is also a fruitful area for future work; currently
we rely upon compiler intrinsics. Improvements in circuit
design can also be studied. Other bit manipulation
operations such as bit matrix multiplication also need to
be examined for usefulness in applications and cost-
effective implementation in a commodity microprocessor.
We hope to have laid the foundation for the ISA and

implementation of powerful and cost-effective advanced bit
manipulations in microprocessors.
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