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ABSTRACT

Smartphones are now frequently used by end-users as the
portals to cloud-based services, and smartphones are easily
stolen or co-opted by an attacker. Beyond the initial log-
in mechanism, it is highly desirable to re-authenticate end-
users who are continuing to access security-critical services
and data, whether in the cloud or in the smartphone. But
attackers who have gained access to a logged-in smartphone
have no incentive to re-authenticate, so this must be done
in an automatic, non-bypassable way. Hence, this paper
proposes a novel authentication system, iAuth, for implicit,
continuous authentication of the end-user based on his or her
behavioral characteristics, by leveraging the sensors already
ubiquitously built into smartphones. We design a system
that gives accurate authentication using machine learning
and sensor data from multiple mobile devices. Our system
can achieve 92.1% authentication accuracy with negligible
system overhead and less than 2% battery consumption.

1. INTRODUCTION

We consider two usage scenarios in this paper: attackers
accessing sensitive cloud-based services and data through a
smartphone, and attackers accessing sensitive data stored in
the smartphone itself.

Public clouds offer elastic and inexpensive computing and
storage resources to both companies and individuals. Cloud
customers can lease computing resources, like Virtual Ma-
chines, from cloud providers to provide web-based services
to their own customers - who are referred to as the end-users.

Past work on protecting a cloud customers’ Virtual Ma-
chines tended to focus on attacks within the cloud from ma-
licious Virtual Machines that are co-tenants on the same
server, or from compromised Virtual Machine Monitors, or
from network adversaries [24, 15]. However, end-users can
also pose serious security threats.

Consider the increasingly common situation of accessing
cloud-based services and data through a smartphone. Users
register accounts for these services. Then they login to their
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accounts from their smartphones and use these cloud ser-
vices. However, after log-in, the user may leave her smart-
phone unattended or it may be co-opted by an attacker, and
now the attacker has legitimate access to the cloud-based
services and data, or the sensitive data stored in the smart-
phone itself. Ideally, smartphone users should re-autheticate
themselves, but this is inconvenient for legitimate users and
attackers have no incentive to "re-authenticate”. This paper
addresses how re-authentication can be done conveniently,
without explicit user participation, for smartphone users.

In the second scenario, smartphones themselves store pri-
vate, sensitive and secret information related to our daily
lives. We do not want these accessible to an attacker who
has stolen the device, or has temporary access to it.

To protect cloud-based services and data from adversaries
who masquerade as legitimate end-users, we propose a se-
cure and usable re-authentication system, which is both im-
plicit and continuous. An implicit authentication method
does not rely on the direct involvement of the user, but is
closely related to her behavior or living environment. This
is more convenient than having to re-enter passwords. A
continuous re-authentication method should keep authenti-
cating the user, in addition to the initial login authentica-
tion. This can detect an adversary once he gets control of
the smartphone and can prevent him from accessing sensi-
tive data or services via smartphones, or inside smartphones.
Our system, called iAuth, can protect cloud-based services
and data from attackers who masquerade as end-users, to en-
hance any security already provided by the cloud providers
to cloud customers. iAuth can also help protect the criti-
cal information stored in the smartphone. The smartphone
stores private and confidential information, which should
not be accessible to an adversary who steals or somehow
gets temporary access to the smartphone. iAuth is able to
identify the adversary and restrict the adversary’s access
to sensitive information, even when the smartphone has no
network services.

iAuth exploits one of the most important differences be-
tween personal computers and smartphones: a variety of
sensors built into the smartphone, such as accelerometer,
gyroscope, magnetometer and ambient light, etc. iAuth
also exploits the increasing number of wearable devices with
Bluetooth connectivity and multiple sensors, e.g., smart-
watches. It is designed based on the fact that sensor mea-
surements within the smartphones and wearable devices can
reflect users’ behavioral patterns, thus achieving highly ac-
curate user authentication.

We propose some new techniques in iAuth to overcome the



limitations posed by past smartphone authentication meth-
ods. (1) Some past work had high authentication errors [27,
16]. We combined a smartwatch with a smartphone to im-
prove the authentication accuracy. However, it is challeng-
ing to combine multiple devices since they usually contain a
large amount of noise that may influence the authentication
accuracy if not handled properly. We successfully address
this problem by utilizing both time and frequency informa-
tion of the sensors’ data from multiple devices. (2) Past
approaches require a long time to learn a user’s behavior or
detect attacks [11, 3]. We use sophisticated machine learning
algorithms in iAuth, taking only 13 milliseconds to identify
any unauthorized accesses to the devices. This can block
the adversaries before they steal any useful information. (3)
Some past work only do one-time authentication [6], while
iAuth enables continuous authentication as a background
service, when the user is using a smartphone. (4) Our sys-
tem incurs rather low CPU and memory overhead, and only
costs 2% additional battery power, on modern smartphones.
We believe such lightweight properties would make iAuth an
attractive system for continuous authentication in real world
applications. Our key contributions are:

e Design of an implicit authentication system, iAuth, by

combining a user’s sensor information recorded in the smart-

phone and wearable devices. Our system continuously
monitors the user’s behavior and authenticates the user
in an accurate, efficient, and stealthy manner.

e An efficient and low-overhead use of sensor measurements
as behavioral patterns in both time and frequency do-
mains, and an efficient machine learning classifier, for low
overhead authentication.

e Experimental results to show that our approach can achieve
high authentication accuracy up to 92.1%.

2. RELATED WORK

Traditional authentication approaches are based on pos-
session of secret information, such as passwords. Also, phys-
iological biometrics based approaches make use of distinct
personal features, such as fingerprints or iris patterns. Re-
cently, behavior-based authentication utilize the distinct be-
havior of users, e.g., gaits and gestures.

Currently, there are many different physiological biomet-
rics for authentication, such as face patterns, fingerprints
[10], and iris patterns [20]. However, physiology-based au-
thentication requires user participation in the authentica-
tion. For example, fingerprint authentication needs the user
to put his finger on the fingerprint scanner. Hence, these
physiology-based approaches requiring user compliance can
not achieve continuous and implicit authentication.

Behavior-based authentication assumes that people have
distinct stable patterns for a certain behavior, such as hand-
writing pattern [25, 22], gait [19] and GPS patterns [3].
Behavior-based authentication exploits users’ behavioral pat-
terns to authenticate a user’s identity. Below we review
past work in this area that specifically use sensors built into
smartphones.

Smartphone Authentication with Sensors. Kayacik
et al. [11] proposed a lightweight, and temporally & spa-
tially aware user behavioral model for user authentication
based on both hard and soft sensors. They showed that the
attacker can be detected in 717 seconds. However, they did

not quantitatively show their authentication performance.
SenSec [27] constantly collects data from the accelerometer,
gyroscope and magnetometer, to construct gesture models
while the user is using the device. GPS sensors are used in
[3] to demonstrate that the system could detect abnormal
activities (e.g., a phone being stolen) by analyzing a user’s
location history. Shahzad et al. [22] and Trojahn et al. [25]
developed a mixture of a keystroke-based and a handwriting-
based method to realize authentication through the screen
sensor. Li et al.[14] exploited five basic movements (sliding
up, down, right, left and tapping) and their related com-
binations as the user’s behavioral pattern features, to per-
form authentication on smartphone. Nickel et al. [19] used
accelerometer-based behavior recognition to authenticate a
smartphone user through the k-NN algorithm. Lee et al. [13,
12] showed that using more sensors can improve authenti-
cation performance. They monitored users’ living patterns
and utilized SVM as a classifier for user authentication. Our
iAuth system has better authentication accuracy (around
92%) with lower complexity than previous methods.

Riva et al. [21] built a prototype to use face recogni-
tion, proximity, phone placement, and voice recognition to
progressively authenticate a user. However, their objective
is to decide when to authenticate the user and is thus or-
thogonal to our setting. Furthermore, their scheme requires
access to sensors that need users’ permissions, limiting their
applications for implicit authentication.

Authentication with Wearable Devices. Recently,
wearable devices have emerged in our daily lives. However,
limited research has been done on authenticating users by
these wearable devices. In [17], Mare et al. proposed ZE-
BRA which is a bilateral recurring authentication method.
The signals sent from a bracelet worn on the user’s wrist
are correlated with the terminal’s operations to confirm the
continued presence of the user if the two movements corre-
late according to a few coarse-grained actions. To the best
of our knowledge, there is no smartphone authentication re-
search proposed in the literature that combines a wearable
smartwatch with a smartphone to authenticate a user, as we
do.

3. THREAT MODEL AND ASSUMPTIONS

We consider an attacker who has physical access to the
smartphone and aims to steal sensitive information or cloud
services accessed via the smartphone. We focus on this type
of attacks based on two observations. First, compared to
traditional computing devices (e.g., PCs), smartphones are
small and easily lost or stolen. Besides, users sometimes
leave their smartphones for a while, which give attackers op-
portunity to access the critical information. Second, current
authentication methods (e.g., passwords) can be misused by
users. For instance, a lot of users do not set the password
since it is inconvenient to input it every time, and other
users choose weak passwords. Our threat model assumes
passwords are vulnerable.

We assume the smartphone functions correctly: the sen-
sors in the smartphone are trusted to provide accurate data.
Some secure part of the system software is able to lock the
smartphone, or deny access to security-critical resources,
once the user does not pass the authentication test. The
integrity of the iAuth app in the smartphone is verified and
secure, so the attacker cannot bypass the authentication by
compromising the iAuth software.



The smartwatches have built-in sensors, e.g., accelerome-
ter and gyroscope. They are also equipped with a wireless
radio (e.g., Bluetooth) to communicate with smartphones.
We assume the communication between the smartwatch and
smartphone is secure. We assume each smartwatch (and
smartphone) is associated with one owner and users do not
share their smartwatches (and smartphones). This associa-
tion can be implemented using a variety of approaches. For
instance, a user may be required to enter a validation code
when she puts the smartwatch on to activate it, and the
smartwatch would deactivate when it is removed from the
wrist, which can be detected through the built-in sensors
such as accelerometer, or after a certain period of time. Our
system works if only the smartphone is present, but we will
show that it works better if the smartwatch is also present.

iAuth uses backend services for computing and training
authentication models. These services are located in remote
cloud servers (Authentication Servers), which are assumed
to be trusted. The confidentiality and integrity of authenti-
cation servers are protected so the attackers cannot steal or
modify the users’ sensor data stored in the server’s database.
The threat model also assumes that attackers do not succeed
in denial of service attacks on the authentication services.
We also assume the communication channels between the
smartphones and authentication servers are secure, e.g., SSL
is used for communication between the smartphone and the
authentication server in the cloud. Actual authentication,
after training, is done in the smartphone itself, without the
need to access the cloud or networks.

4. SYSTEM DESIGN

4.1 Architecture Overview

Figure 1 shows the iAuth architecture. It includes three
hardware devices: the wearable device (e.g., smartwatch),
the smartphone, and the authentication server in the cloud.

4.1.1 Wearable IoT device.

In iAuth, we consider a two-device authentication con-
figuration, which includes a mobile smartphone and a user-
owned wearable device. We use a smartwatch as an example,
but other types of wearable devices, e.g., body sensors, can
also be applied to iAuth. iAuth authentication is designed
for implicit authentication on the smartphone, where the
smartwatch serves as important auxiliary information for
improving authentication accuracy. The smartwatch keeps
monitoring a user’s raw sensors’ data and sends the infor-
mation to the smartphone via Bluetooth.

4.1.2  Smartphone.

The smartphone also monitors the user’s sensor data. It
runs the authentication testing module as a background ser-
vice. In the testing module, sensor data from the smart-
phone and smartwatch are sent to the feature extraction
components, in both the time domain and the frequency
domain, where fine-grained time-frequency features are ex-
tracted to form the authentication feature vector. This is
fed into the authentication component.

The classification algorithm used in our work is the kernel
ridge regression (KRR) algorithm [23], but other machine
learning algorithms can also be used. The authentication
component consists of a classifier, which is used to authen-
ticate the user based on the authentication feature vector.
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Figure 1: iAuth architecture including the cloud-
based training module and smartphone-based test-
ing module

When the classifier generates the authentication results,
it sends these results to the Response Module. If the au-
thentication results indicate the user is legitimate, then the
Response Module will allow the user to use the cloud apps
to access the critical data or cloud services in the app server.
Otherwise, the Response Module can either lock the smart-
phone or refuse accesses to the security-critical data, or per-
form further checking. If the legitimate user is misclassified,
in order to unlock the smartphone, several possible responses
can be implemented, depending on the situation and secu-
rity requirements. For example, the legitimate user must ex-
plicitly re-authenticate by using a biometric that may have
been required for initial log-in, e.g., a fingerprint. The le-
gitimate user is motivated to unlock his device, whereas the
attacker does not want to use his fingerprint because it will
leave a trace to his identity. iAuth architecture allows such
explicit unlocking mechanisms, but is not restricted to one
such mechanism.

4.1.3 Authentication Server.

iAuth includes a training module deployed in the Authen-
tication Server in the cloud. This provides efficient compu-
tation and enables the training data set to use sensor fea-
ture vectors of other enrolled smartphone users. When a
legitimate user first enrolls in the system, the system keeps
collecting the legitimate user’s authentication feature vec-
tors for training the authentication model. Our system de-
ploys a trusted Authentication cloud server to collect sen-
sors’ data from all the participating legitimate users. To
protect a legitimate user’s privacy, the entire users’ data
are anonymized. In this way, a user’s training module can
use other users’ sensor data but has no way to know the
other users’ identities. The training module uses the legiti-
mate user’s authentication feature vectors and other people’s
authentication feature vectors in the training algorithm to
obtain the authentication model. After training, the au-
thentication model is downloaded to the smartphone. The
training module does not participate in the authentication
testing process and is only needed for retraining when the
device recognizes a user’s behavioral drift, which is done
online and automatically. Therefore, our system does not
require continuous communication between the smartphone
and the Authentication Server.



4.2 System Operation

iAuth stems from the observation that behavioral patterns
are different from person to person, when using smartphones
and smartwatches.

There are two phases for learning and classifying the user’s
behavioral pattern: enrollment phase and continuous au-
thentication phase. iAuth learns a profile of the legitimate
user in the enrollment phase and then authenticates the user
in the continuous authentication phase.

Enrollment Phase: Initially, the system must be trained
in an enrollment phase. When the users want to use the apps
in the smartphone to access sensitive data or cloud services,
the system starts to monitor the sensors and extract partic-
ular features from the sensors’ data. This process continues
and the data should be stored in a protected buffer in the
smartphone until the distribution of the collected features
converges to an equilibrium, which means the size of data
can provide enough information to build a user’s profile.
This is about 800 measurements for our method, as shown
in Section 6.3.2. At this time, one can assume that 1) the
user got used to her device and her device-specific ‘sensor-
behavior’ no longer changes, and 2) the system has observed
sufficient information to have a stable estimate of the true
underlying behavioral pattern of that user. The system can
now train the authentication classifier and switch to the con-
tinuous authentication phase.

Continuous Authentication Phase: Once the authenti-
cation classifier is trained and sent to the smartphone, the
smartphone can start the authentication phase. This is done
only in the smartphone, so network availability is not re-
quired. Based on the sensor data, the authentication classi-
fier decides whether these sensors’ data are coming from the
legitimate user.

Post-Authentication: If the authentication feature vec-
tor is authenticated as coming from the legitimate user, this
testing passes and the user can keep accessing the sensitive
data in the smartphone or in the cloud via the smartphone.
When an attacker tries to access a smartphone of a legiti-
mate user, the system automatically de-authenticates him.
Once iAuth decides that the smartphone is now being used
by someone other than the legitimate user, the system can
perform defensive responses as described earlier. Similarly,
if the legitimate user is misclassified, several mechanisms for
re-instating her are possible, such as two-channel or multi-
factor authentication, or requiring an explicit login again,
possibly with a biometric, to unlock the system.

4.3 Security Protections

In this subsection, we describe the security protections
needed for the iAuth system.
Protecting data in transit. Sensitive data are transmit-
ted between smartwatches, smartphones and cloud servers.
Secure communications protocols are exploited to provide
confidentiality and integrity protection against network ad-
versaries. For instance, an initialization key is exchanged
when the smartwatch is paired with the smartphone using
Bluetooth. New keys derived from this key can also be used
to encrypt and hash the raw data transmitting between
smartwatch and smartphone via Bluetooth. The commu-
nication channels between smartphones and cloud servers
are protected by SSL/TLS protocols [7]. These network
transmissions between a smartphone and the cloud are min-
imized, since iAuth saves the latest n sensor measurements

in a trusted buffer (e.g., using ARM Trustzone), and sends
these in a batch to the cloud only on initial training. n is
the number of data samples needed (see Sections 6.3.2)
Protecting data at rest (i.e., in storage). When the
data are stored in the smartphones, or cloud servers, cryp-
tographic encryption and hashing operations are used to pre-
vent the attackers from stealing or modifying data.
Protecting data and code at runtime. The smartphone
and Authentication Server must also provide a secure envi-
ronment for running iAuth authentication testing and train-
ing code, and using sensitive sensor measurements collected
from different users and devices. Since most smartphones
use ARM processors, smartphones can exploit the ARM
TrustZone feature to place the authentication Testing Mod-
ule in the Secure World and isolate it from other apps in
the Normal World. The wrap-around buffer for collecting
the latest sensor measurements, discussed above, can also
be in Trustzone’s secure storage in the Secure World. Since
cloud servers tend to use Intel processors, they will soon
have access to Intel Software Guard eXtensions (SGX) [9,
1, 18]. Hence, the trusted Authentication Server can set
up secure enclaves for the training and retraining modules
for iAuth, and for securely accessing and using sensitive be-
havioral measurements from many smartphone users. Alter-
natively, some method of securely protecting trusted appli-
cation code, even from potentially compromised Operating
Systems, is needed. For example, Bastion secure trusted en-
vironments can be provided [4] for protection equivalent to
SGX secure enclaves.

S. AUTHENTICATION ALGORITHMS

5.1 Sensor Selection

We select the following two sensors: accelerometer and
gyroscope [8], in smartphones because: (1) They are ubiqui-
tously built into current smartphones. (2) These two sensors
also represent different information about the user’s behav-
ior. The accelerometer records the motion patterns of a
user such as how she walks [19]. The gyroscope records fine-
grained motions of a user such as how she holds a smart-
phone [26]. (3) These sensors do not need the user’s permis-
sions, making them useful for continuous background moni-
toring in implicit authentication. (4) The sensor data itself
does not contain information usually considered privacy sen-
sitive, like GPS locations, screen data and voice.

We use a wearable device like a smartwatch to provide fur-
ther information on user behavior to enhance user authen-
tication accuracy. We use the same sensors in the smart-
watches for the same reasons discussed above. We will show
that even if the same type of sensors are used on the smart-
phone and the smartwatch, but on different parts of the
body, they record different aspects of a user’s behavior.

Although the proximity of the smartwatch to the smart-
phone can be used as a simple second-factor authentication
signal, this may be less secure if the attacker gains access
to the victim’s smartphone while the victim, wearing his
smartwatch, is still within Bluetooth connectivity range. If
the attacker gets access to both the smartphone and the
smartwatch, a simple proximity signal of the smartwatch will
not help de-authenticate the attacker - smartwatch sensors
would work better. Hence, we propose using sensors on the
smartwatch (or other wearable) for improving smartphone
user authentication.



5.2 Authentication

5.2.1 Time Domain and Frequency Domain.

We segment the signals of the sensors’ data into a series
of time windows. In each window, we extract features from
the time domain and the frequency domain of the sensors’
data collected during this time from the accelerometer and
gyroscope.

We first compute the magnitude of each sensor data. For
an accelerometer data sample (z,y, z) at time ¢, the mag-
nitude is m = /x2 + y? + 22. We denote the magnitude
signal of sensor ¢ in the k-th window as S;(k).

In the time domain, we extract the mean, variance, max
and min at each time window. Thus, the features for sensor
¢ in the k-th window can be represented as

SPf(k) = [mean(Si(k)), var(S;(k)), maz(S;(k)), min(Si(k))]

(1)
We obtain the authentication feature vector in the time do-
main in the k-th window as

Auth® (k) = [SP*(k), SW' (k)] (2)
where
SP'(k) = [SPiec(k), SP} o (k)]
SWt (k) = [SW;cc(k)’ SW:uro(k)]

We also implement the Discrete Fourier transform (DFT)
[2] to obtain the frequency domain information. In the fre-
quency domain, we extract three features: (1) The amplitude
of the first highest peak, which represents the energy of the
entire sensors’ information within the window, (2) the fre-
quency of the second highest peak, which represents the main
walk frequency, and (3) the amplitude of the second highest
peak, which corresponds to the energy of the sensors’ infor-
mation under this dominant periodicity. The feature vector
of window k in the frequency domain for sensor ¢, can be
represented as

SP! (k) = [energy(Si(k)), frea(Si(k)), energyfre(smic))(] |

4

We construct the authentication feature vector in the fre-
quency domain as

Auth? (k) = [SPT (k), SW/ (k)] (5)

®3)

where
SPI (k) = [SPL.c(k), SP)yo(k)]
SWf(k) = [SW({cc(k)’SquyTo(k)]

Combining authentication features from both time and
frequency domains, we have the whole authentication fea-
ture vector as

Auth(k) = [Auth®(k), Auth’ (k)] (7)

(6)

After we obtain the time-frequency feature vectors, we uti-
lize a light-weight machine learning approach, kernel ridge
regression (KRR) [23], to train the authentication models
in the cloud for user authentication. Our experimental re-
sults in Section 6 show the improved accuracy of including
frequency domain features.

5.2.2 Kernel Ridge Regression (KRR)

Kernel ridge regressions (KRR) [23] have been widely used
for classification analysis. The advantage of KRR is that the

computational complexity is much less than other machine
learning methods, e.g., support vector machines (SVM) [5,
13]. The goal of KRR is to learn a model that assigns the cor-
rect label to an unseen testing sample. This can be thought
of as learning a function f : X — Y which maps each data
x to a label y. The optimal classifier can be obtained ana-
lytically according to

N
w* = argmin,, _pap|lw|® + Z(mek — )’ (8)
k=1

where N is the data size and wﬁ”l is the transpose of

Auth(k), and M is the dimension of this authentication fea-
ture vector. Let X = [z1,®2, - - ,xn] denote a M x N
training data matrix. Let y = [y1,y2, -, Yn]. c;_g(ml) de-
notes the kernel function, which maps the original data x;
into a higher-dimensional (J) space. In addition, we define
® = [p(x1)P(x2) - d(xn)] and K = &7 ®. This objec-
tive function in Eq. 8 has an analytic optimal solution [23]
where

w' = ®[K + pIn| 'y (9)

By utilizing certain matrix transformation properties, the
computational complexity for computing the optimal w”* in
Eq. 9 can be largely reduced from O(N%37) to O(M?>373).
Given that N is abut 800 samples and M is 27 for our
Auth(k) feature vector, this is a big reduction.

6. EVALUATION

6.1 Experiments setting

In order to evaluate the performance of our system, 20
users are invited to take our smartphone and smartwatch for
one to two weeks and use them in the same way that they
use their personal smartphones and smartwatches in their
daily lives. We collected sensor data from the accelerometer
and gyroscope in a smartphone (Nexus 5) and a smartwatch
(Moto 360) with a sampling rate of 50 Hz.

We perform two experiments. The first experiment is free-
form usage of the smartphone and/or the smartwatch to
determine the authentication parameter selection (Section
6.3) and evaluate the authentication performance (Section
6.4). The second experiment tries to trick our system using
masquerading attacks (Section 6.5). Finally, we show the
impact on the battery drainage (Section 6.6).

In our collected data, we used 10-fold cross-validation to
generate the training data and testing data sets for evaluat-
ing the authentication performance. To extensively investi-
gate the performance of our system, we repeated such cross-
validating mechanisms for 1000 iterations and averaged the
experimental results.

6.2 Confirming the intuition for iAuth

While it may be hard to prove that sensor measurements
can be used to differentiate users, we show some empirical
results that confirm our intuition for our iAuth system by
plotting the sensor data streams we collected from differ-
ent users (as described in Section 6.1). Figures 2 depicts
the sensor streams corresponding to different sensor dimen-
sions. For each sensor dimension, we randomly select two
signal streams from the same user and one signal stream
from another user for comparison.
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In these figures, we observe that the sensor signals for the
same user are more similar than those for different users,
which lays the foundation for our authentication approach.
Furthermore, by comparing the first row with the second
row in Figure 2, we can see that the measurements from
the accelerometer have more distinguishable characteristics
than those of the gyroscope. For example, in Figure 2(a),
the range of the acceleration of user 1 is completely separate
from user 2, while the measurements of the gyroscope for the
two users are overlapped to some extent as shown in Figure
2(d).

6.3 Authentication Parameter Selection

In our first experiment, users were invited to take our
smartphone and smartwatch for one to two weeks and use
them under free-form real-use conditions. We let the partic-
ipants use the devices in the same way that they use their
personal devices in their daily lives.

There are two important parameters in the system, the
window size and the size of the dataset. We first system-
atically investigate the performance of our approach under
different values of these two parameters.

6.3.1 Window Size

The window size is an important system parameter, which
determines the time that our system needs to perform an au-
thentication, i.e., window size directly determines our sys-
tem’s authentication frequency.

We vary the window size from 1 second to 16 seconds.
Given a window size, for each target user, we utilize 10-fold
cross-validation for training and testing. Here, we utilize the
false rejection rate (FRR) and false acceptance rate (FAR)
as metrics to evaluate the authentication accuracy of our
system. FAR is the fraction of other users’ data that are
misclassified as the legitimate user’s. FRR is the fraction
of the legitimate user’s data that are misclassified as other
users’ data. For security protection, a large FAR is more
harmful than a large FRR. However, a large FRR would de-
grade the usage convenience. Therefore, we investigate the
influence of the window size on FRR and FAR, in choosing
a proper window size.

Figure 3 shows that the FAR and FRR become stable
when the window size is greater than 6 seconds.

6.3.2 Data Size

Another important system parameter is the size of the
data set, which also affects the overall authentication accu-
racy because a larger training data set provides the system
more information. According to our observations above, we
set the window size to 6 seconds. With the training set



Table 1: The FRR,FAR and accuracy of iAuth.

Device FRR FAR | Accuracy
Smartphone 22.3% | 13.4% 83.2%
Smartphone& Smartwatch | 8.3% 7.5% 92.1%

sizes ranging from 100 to 1200, we show the experimental
results in Figure 4. We observe that the maximum accuracy
happens when the data size is around 800. The accuracy
decreases after the training set size is larger than 800 be-
cause a large training data set is likely to cause over-fitting
in the machine learning algorithms so that the constructed
training model would introduce more errors than expected.

6.4 Authentication Performance

After setting up the system parameters of 6 seconds win-
dow size and 800 data size, we now show the overall authen-
tication performance of our system in Table 1.

From Table 1, we have some interesting observations: (1)
By using only the smartphone, our system can achieve 83.2%
authentication accuracy. (2) By combining the smartphone
and smartwatch together, the authentication performance
has a significant increase to 92.1% authentication accuracy.

We measured the time for doing an authentication in our
system to be less than 13 milliseconds. Since the window
size of our system is 6 seconds, the time for doing an im-
plicit authentication is roughly 6 seconds. Therefore, our
system can achieve good authentication performance within
an acceptable time, making our system efficient and appli-
cable in real world scenarios.

6.5 Security Analysis

We analyze our system’s performance to defend against
attacks, such as masquerading or mimicry attacks, in our
next experiment. In this experiment, each subject was asked
to mimic the victim user’s behavior to the best of his ability
as a malicious adversary. One user’s behavior is recorded by
a VCR and his/her model was built as the legitimate user.
The other users were asked to watch the video and to try to
mimic the legitimate user and pass the authentication test-
ing. Such an attack is repeated 20 times for each legitimate
user and her corresponding ‘adversaries’.

Recall that the goal of iAuth is to prevent an attacker
from getting access to the sensitive information stored in
the cloud through the smartphone, or in the smartphone.
iAuth achieves low FARs when attackers attempt to use the
smartphone with their own behavioral patterns as shown in
Figure 3 and Table 1.

Now, we show that iAuth is even secure against the mas-
querading attacks where an adversary tries to mimic the
user’s behavior. Here, ‘secure’ means that the attacker can-
not cheat the system via performing these spoofing attacks
and the system should detect these attacks in a short time.
To evaluate this, we design a masquerading attack where the
adversary not only knows the password but also observes
and mimics the user’s behavioral patterns. If the adversary
succeeds in mimicking the user’s behavioral pattern, then
iAuth will misidentify the adversary as the legitimate user
and he can thus use the smartphone normally.

In order to show the ability of iAuth in defending against
the mimicry attacks, we counted the percentage of people
(attackers) who were still using the smartphone without be-
ing de-authenticated by the system. Our experiments show

Table 2: Power consumption under four different

scenarios.
Scenario Power Consumption
1) Phone locked, iAuth off 2.8%
2) Phone locked, iAuth on 4.6%
3) Phone unlocked, iAuth off 5.2%
4) Phone unlocked, iAuth on 7.2%

that iAuth can detect 90% of attackers in 18 seconds on av-
erage. Also, iAuth identified all the adversaries within 24
seconds. Therefore, iAuth performed well in recognizing the
adversary who is launching the masquerading attack.

Such experimental results also match with our analysis
from a theoretical point of view. We assume the FAR at
each time window is p, then the chance that the attacker
can escape from detection in n time windows is p". Based
on our experimental results in Section 6, our system can
achieve 7.5% FAR. Thus, within only three windows, the
probability for the attacker escaping detection is (7.5%) =
0.04%. Therefore, our iAuth shows good performance in
defending against masquerading attacks.

6.6 Smartphone Performance Overhead

To demonstrate the applicability of our system in real
world scenarios, we now evaluate the system overhead of
iAuth on personal smartphones. Specifically, we analyze the
CPU and memory overhead, and the battery consumption
on the smartphone.

6.6.1 CPU and Memory Overhead

The testing module of iAuth in a smartphone runs as
threads inside the smartphone system process. We develop
an application to monitor the average CPU and memory
utilization of the phone and watch while running the iAuth
app which continuously requests sensor data at a rate of 50
Hz on a Nexus 5 smartphone and a Moto 360 smartwatch.
The CPU utilization is 4% on average and never exceeds
6%. The CPU utilization (and hence energy consumption)
will scale with the sampling rate. The memory utilization
is 3 MB on average. Thus, we believe that the overhead
of iAuth is small enough to have negligible effect on overall
smartphone performance.

6.6.2 Battery Consumption

To measure the power consumption, we consider the fol-
lowing four testing scenarios

1. Phone is locked (i.e., not being used) and iAuth is off
2. Phone is locked and iAuth keeps running

3. Phone is under use and iAuth is off

4. Phone is under use and iAuth is running

For scenarios 1) and 2), we charge the smartphone battery to
100% and check the battery level after 12 hours. The average
difference of the battery charged level from 100% is reported
in Table 2. The iAuth-on mode consumes 1.8% more battery
power than the iAuth-off mode each hour. We believe the
extra cost in battery consumption caused by iAuth will not
affect user experience in daily use.

For scenarios 3) and 4), the phone under use means that
the user keeps using the phone periodically. During the using



time, the user keeps typing notes. The period of using and
non-using is five minutes and the test time is 60 minutes.
iAuth consumes 2% more battery power in one hour, which
is also an acceptable cost for daily usage.

7. CONCLUSIONS

We have proposed a new re-authentication system, iAuth,
to improve the security of a smartphone, and of secret and
sensitive data and code in the smartphone or in the cloud
accessible through a smartphone. iAuth is an authentication
system using multiple sensors built in a user’s smartphone,
supplemented by auxilliary information from a smartwatch
or other wearable device with the same owner as the smart-
phone. To the best of our knowledge, this is the first work
that utilizes both a smartphone and a smartwatch to au-
thenticate the smartphone user. Our system keeps moni-
toring the users’ sensor data and continuously authenticates
without any human cooperation. Our system implements
fine-grained authentication efficiently and stealthily by us-
ing both time and frequency information.

Experimental results demonstrate the advantage of com-

bining the smartphone and the smartwatch and time-frequency

information. iAuth can achieve authentication accuracy up
to 92.1% with negligible system overhead and less than 2%
additional battery consumption. We hope that iAuth can
act as a key technique for implicit user authentication in
real world scenarios.
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