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Abstract  
 
 
When users share resources, interference between users often reflects their activities and 
thus leaks out information of a user to others. Microprocessors, and their associated cache 
memories, are typically one of the most shared resources in a computer system. 
Compared with traditional software-based and system-level information leakage channels, 
the ones in microprocessors are often much faster and more reliable – and hence more 
dangerous. They can also bypass existing software-based protection and isolation 
mechanisms, and can nullify any confidentiality or integrity protections provided by 
strong cryptography. Because of the ubiquitous deployment of microprocessors and the 
fact that the attacks are effective on essentially all modern processors, such 
microprocessor-level information leakage exists in almost all computing systems and has 
become a serious security threat to a wide spectrum of platforms and users.  

Motivated by the increasing importance of the processor and cache information 
leakage problem, this dissertation aims to investigate the information leakage problem in 
microprocessors in a more generalized manner. The goal is to first understand the 
fundamental, rather than attack-specific, mechanisms that enable information leakage, 
and then propose countermeasures that attack the root causes and thus are generally 
effective. The dissertation also attempts to develop a theoretical model of information 
leakage channels, which can help analyze existing channels, identify new channels, 
evaluate their severity, and avoid such channels in future designs.  

The dissertation starts with concrete practical issues that are of high importance. It 
first analyzes the recent cache-based software side-channel attacks, revealing their 
common root cause, then proposing novel cache designs that can effectively defend 
against all attacks in this category without compromising performance, power efficiency 
and cost. The proposed Newcache design can even improve performance over traditional 
cache architectures. The dissertation also analyzes existing processor architectures, 
identifies several new covert channels that are much faster than traditional channels, and 
discusses alternative countermeasures. The dissertation then generalizes the problem of 
covert channels with abstract modeling and analysis, which clarify the ambiguity in 
traditional classifications of covert storage versus timing channels, help identify new 
channels and reveal limitations of existing covert channel identification methods. The 
dissertation also recognizes that asynchronism is an inherent characteristic of covert 
channels that should be properly captured in channel capacity estimation. Quantitative 
results are presented. 
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Chapter 1  
 
 
Introduction 
 
 
The term “information security” is often interpreted as the protection of information and 
information systems from unauthorized access, use, disclosure, disruption, modification, 
or destruction. The basis of information security consists of three components: 
confidentiality, integrity and availability. Confidentiality is the concealment of 
information, ensuring that information is accessible only to authorized parties. Integrity 
means guarding improper or unauthorized information modification or destruction. 
Integrity includes data integrity – the content of the data, and also origin integrity – the 
source of the data. Availability is the access to, and use of, information and resources in a 
timely and reliable manner.  

Information leakage is a direct threat to confidentiality. It leads to the disclosure of 
information to someone who should not learn the information. In many situations, the 
leaked information may not be the ultimate target of an attack. It may help compromise 
integrity or availability as well and facilitate further steps of the attack, e.g., gaining 
higher privilege or even taking over the whole system. In practice, despite huge efforts in 
securing computer systems, the information leakage problem exists, more or less, in 
almost all practical systems.  

 
 

1.1 Information Leakage: Practical and Theoretical Issues 

Many factors contribute to the wide existence of the information leakage problem – some 
are due to practical reasons whereas others lie in the fundamental theory upon which the 
systems are built.  

Among the practical issues, design flaws and implementation errors are common 
causes of information leakage problems. Design flaws may be introduced at various 
levels in the development phase. At the system level, incorrect assumptions and/or an 
insufficient threat model often lead to bad design decisions and flawed system 
architecture. A good example is the first generation XBOX gaming console. Among 
many mistakes that Microsoft made [1] (from the hackers’ perspective), transmitting the 
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secret key in plaintext over the HyperTransport bus between the CPU chip and the 
Southbridge chip1, which is directly visible to the hackers, is the worst one. The rationale 
behind this design decision was probably the fact that the HyperTransport bus was so fast 
that no logic analyzer at that time could sniff the bus, and it is a cheaper design. But it 
turned out to be an underestimation of the hackers’ resources and expertise. Custom 
hardware was quickly developed and the attack succeeded [1].  

When getting into low level implementations, the chances of developers making 
mistakes become higher due to the increasing amount of details involved. In complicated 
system design that involves developers with various skill levels producing millions of 
lines of code, having errors in implementation is essentially inevitable.  

The common use of less secure programming languages, e.g., C, has also contributed 
to many of the implementation bugs. Unlike other high-level programming languages like 
Java, they are more vulnerable to security issues like the buffer overrun problem [2-3], 
which has been recognized as a major threat to software/system security. In reality, not 
all these errors can lead to information leakage, but many of them do cause issues, e.g., 
the well known “kernel memory disclosure” problem, which exposes the content of 
kernel memory to unprivileged users [4].  

In addition to the mistakes made in the design and development stage, information 
leakage problems can also be introduced in the later stages of the system life cycle, e.g., 
after the system is placed online, or even after the life of the system has ended. Security 
problems in live systems are often due to incorrect configurations and/or bad practices in 
system management and maintenance, e.g., inappropriate security policies for users and 
data objects or simply bad passwords. There can also be problems after a system or some 
of its components are dead. Sensitive information should be securely shredded or 
carefully scrubbed, or it has to be properly protected or migrated to other live systems. 
Dead components, particularly storage devices, should be carefully processed before they 
leave the trusted sites. It is not difficult for an attacker to recover data from a dead hard 
drive. Advanced technology can even recover data from a hard drive that has been 
overwritten with 0’s [5].    

Theoretically, all these practical issues can be avoided, given sufficient time, effort 
and resources. However, there are some types of information leakage, which lie in the 
fundamental theoretic model on which systems are built, that are unavoidable even with 
perfect design, implementation, configuration and maintenance.  

One theoretical issue originates from the process of abstraction, in which the physical 
system is abstracted into a logical model, which preserves only the properties of interest 
and discards the rest. In reality this is a very common practice as it allows most of the 
development efforts to be independent of physical devices. However, any protection 
mechanisms developed upon the logical system model would be effective only for the 
aspects that are modeled. Information may still leak out via the physical aspects that are 
not modeled in the system, e.g., through acoustic or electro-magnetic emission, power 
variation, or even thermal activities. Attacks based on these issues are often referred to as 
side channel attacks. One may argue that if the system model includes all aspects of the 
physical system, the design may be immune to side channel attacks. However, that would 
only be possible for very simple devices, assuming it is possible to enumerate all physical 

                                                 
1 The Southbridge is one of the two chips in the chipset on a PC motherboard. It typically handles the I/O 
devices such as USB, audio, ISA bus, PCI, IDE channels etc. 



 

 

3

properties. For most practical systems, it is infeasible to consider all physical aspects of 
the system in the design and implementation. 

Another example of a theoretical issue relates to covert channels, which are often 
referred to as channels that are neither designed nor intended to transfer information [6].  
One type of covert channels, the covert storage channels, make use of entities not 
normally viewed as data objects to transfer information from one process to another. 
Another type of covert channels, the covert timing channels, exploit the temporal 
characteristics of events to transfer information. As an example of a covert storage 
channel, the file lock attribute can be used to transfer information. One process can lock a 
file to encode a bit ‘1’ and unlock the file to encode a bit ‘0’, and another process can 
retrieve the bit by checking if the file is locked. As an example of a covert timing channel, 
information can be leaked out by modulating the use of CPU time, e.g., a process can try 
to use as much CPU time as possible to indicate a bit ‘1’, and try not to use any CPU time 
to indicate a bit ‘0’. Other processes can extract the information by observing the system 
response time.  

Due to the essentially unlimited number of ways in exploiting various objects and 
resources in a system, covert channels widely exist in practically all computer systems. 
Despite extensive work on covert channel analysis, systematic identification and 
elimination of covert channels remains a very difficult problem.  

 
 

1.2 New Issues due to Cache and Processor Architectural Features 

In the literature, information leakage problems were mostly studied in the area of covert 
channels and side channels which focused on either specific hardware/software targets 
such as cryptographic devices and software ciphers, or system and software level covert 
channel issues. Information leakage due to hardware processors (including their tightly 
coupled caches) did not receive as much attention in the past.  

Compared with information leakage at other levels of a system, information leakage 
at the processor level is unique in several aspects. First, as the central processing unit of a 
system, processors are typically the most shared resources in the system – often among 
all users who may belong to different security domains, and therefore is an ideal place for 
inferring information from interference between users. Second, microprocessors are fast, 
and covert or side channels based on processor level interferences can often be orders of 
magnitude faster than those at the software level. Third, the processor level sharing often 
breaks software level isolation mechanisms like virtual machines (VMs). For example, 
two logically isolated VMs can still be running on the same physical microprocessor and 
share caches. It has been demonstrated in several recent work that sensitive information 
like cryptographic keys can be leaked out through shared caches. Fourth, in a processor 
the clocks are usually derived from common oscillating sources. This makes 
synchronization easier, e.g., between sender and receiver in covert channels, and 
therefore leads to faster covert channels.  

The situation is getting even worse over the last few decades. The advances in 
process technology have enabled billions of transistors to be integrated into a single chip, 
allowing more on-chip resources to be allocated for new architectural and micro-
architectural features that enhance performance, power efficiency, etc. Such new 
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additions however were often designed without being carefully examined for security. 
Furthermore, the increased system complexity increases the difficulty of identifying and 
mitigating of information leakage channels.  

To understand the information leakage problem in processors, we first need to know 
what information can be leaked out, by what means. A program running on a processor 
may leak information due to various reasons, some dependent on processor features while 
others not. Information leakage due to a program’s inherent characteristics, e.g., its 
algorithmic computation complexity, is often independent of the type of processor on 
which the program is running. Figure 1-1 is a simple example of this. Since the number 
of iterations is determined by the program input, the execution time of this code segment 
would reveal the value of the input (whether it is small or large), no matter what type of 
processor it runs on.  

On the other hand, other types of information leakage by a program may depend on 
what processor it is running on. For example, a program doing table lookups may have 
constant execution time if the table lookups take constant time. This may be true if the 
program runs on a processor without caches and the memory accesses take constant time. 
However, if the underlying processor has a cache, constant table lookup time may not be 
possible. A table lookup that hits in the cache would take shorter time than one that 
misses in the cache. In this dissertation, we focus on such information leakage that is 
specifically caused by cache and processor architectural features.   
 
1.2.1 Information Sources in Processors 

Despite various forms of information leakage and the resulting attacks, in this dissertation 
they are categorized into two types, as we will explain below. Most modern processors (if 
not all) are based on the stored-program architecture, which consists of a processing unit, 
that performs operations to manipulate data, and memory storage, that keeps instructions 
as well as data. The instruction memory and the data memory can be unified, e.g., in Von 
Neumann Architecture, or separated, e.g., in Harvard Architecture. Programs running on 
such architectures involve two types of operations: fetching and storing the instructions 
or data, and processing the instructions or data. The first type of operations deal with the 
object location information, and the second type of operations deal with the values of the 
objects. These two types of information – the object location and the object value – are 
the main sources of information leakage in processors.  

 
… 

/* loop counter is dependent on program input */ 
int cnt; 
cnt = input();  
for i = 0 to cnt  do begin 
      …; /* some work done here */ 
end; 
… 
 

Figure 1-1.  An input-dependent loop 
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According to the type of operations that a processing unit is involved in, most 
components in real processors can be categorized into two classes. Components such as 
the instruction decoder and functional units such as ALUs are units that manipulate or 
transform object values. Components such as caches, TLBs, and branch predictors 
perform or facilitate object fetching and/or storing operations and process information 
about the object locations. During the operations of such components, information about 
the operations being performed can often be leaked out, which is the basis of real 
information leakage attacks. In the next section, basic mechanisms of information 
leakage will be summarized and examples given. 
 
1.2.2 Basic Leakage Mechanisms  

Information leakage mechanisms in processors mostly fall into two categories. The first 
type of leakage occurs during the operation of the information-leaking component. For 
example, the branching unit may exhibit different power consumption characteristics, 
indicating a taken branch or a non-taken branch. Another example is the memory system. 
When performing a memory access operation, the memory system may exhibit input-
dependent delay – due to cache hit or miss, and can leak information about the input, i.e., 
the address of the access. Since such information leakage is due to the use of on-chip 
resources, we refer to this type of leakage as leakage by resource use.  

Another type of information leakage is due to reporting mechanisms that exist in 
many modern processors. For the purpose of debugging and performance analysis and 
tuning, modern processors often implement event monitors and counters accessible to 
system software as well as application software. Such reporting mechanisms allow a 
program to learn information about other programs that it may not be able to observe via 
the first type of information leakage. We refer to this type of information leakage as 
leakage by event reporting. Note that leakage by event reporting does not require direct 
use of resources.  
 
Leakage by resource use 
Based on what type of information is leaked, leakage by resource use can be value-
dependent leakage, address-dependent leakage, or hybrid leakage. 
 

Value-dependent leakage: If a processing unit exhibits input-dependent behavior, it may 
leak out information about the value of the object being processed, causing value-
dependent leakage. For example, functional units may exhibit input-dependent power 
consumption and leak out information about the input value, e.g., its hamming weight. 
Some simple CISC processors may implement complex instructions with micro programs, 
which could lead to variable execution cycles and leak information about the value of the 
instruction operand.  
Address-dependent leakage: If a processor component operates on an object’s location 
information, i.e., its address, it may cause address-dependent leakage. The branching unit 
and memory system including caches, Translation Lookaside Buffers (TLBs), etc., are 
good examples of this. A prefetching unit may also exhibit different behaviors for 
different access patterns, leaking out information about the memory access history.  
Hybrid leakage: The leakage of object values and location information can sometimes 
be twisted together. For example, value prediction [7-8] and speculative execution [9] 
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may speculate on operand values and lead to different execution paths for correct and 
incorrect prediction or speculation, respectively. The leakage of object values in such 
mechanisms, however, is through the variations of the objects’ addresses.   

 
Leakage by event reporting 
Unlike leakage by resource use, leakage by event reporting usually does not involve 
operations that generate information-leaking variations of object values or locations. 
Instead, it exposes events that are already generated. For example, the performance 
counters in Intel processors can record information about a wide range of events 
including the number of cache misses, or retired branches, or TLB references, or micro-
operations (uops) of various types, etc. In addition to the dedicated reporting mechanisms, 
other processor architectural features may also expose events that are originally invisible 
to a program. For example, control speculation in IA-64 allows a program to see the 
occurrence of an individual event such as a cache miss with a long delay, a page fault, an 
access right violation, etc.  

Due to the different nature of the two types of information leakage mechanisms, the 
leaked information has different characteristics. Leakage by resource use usually exposes 
primitive information of individual operations, e.g., values or locations of certain objects, 
whereas leakage by event reporting usually exposes composite “high” level events that 
represent the overall program behavior. Leakage by resource use therefore is commonly 
exploited in attacks that require accurate knowledge of certain internal objects of a 
program, e.g., side channel attacks, whereas leakage by event reporting is more suitable 
for constructing covert channels – it provides a large set of mechanisms that allow the 
receiver of the channel to observe various aspects of the behavior of the sender, which is 
ideal for covert channels. 

 
 

1.3 Dissertation Overview 

Despite the extensive research in the areas of covert channels and side channel attacks, 
the information leakage problem due to microprocessors did not receive as much 
attention in the past. Existing work include the information leakage through the memory 
bus, covert timing channels based on CPU or bus contention, and cache based covert 
channels and side channel attacks, etc.  We review all this in detail in chapter 2. All these 
work however addressed only specific attacks and the coverage is very limited. To the 
best knowledge of the author, a comprehensive and systematic examination of 
information leakage at the processor architectural level is not available.  

This work is motivated by the fact that there are rich and unique mechanisms in 
microprocessors which allow unintended and undesired information leakage, and the lack 
of a thorough investigation of the problem in the past. It aims to analyze and understand 
information leakage at processor architectural and micro-architectural level, and research 
suitable countermeasures before irreparable damage is done. The work first investigates 
real attacks, especially on processor caches, that are of high significance, analyzes 
concrete problems and proposes novel and effective solutions. The work then generalizes 
the problem with abstract modeling and classification, based on which theoretical 
analyses are performed. The generalized discussion helps clarify past misconceptions and 
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allows better modeling and clearer classification of information leakage channels. The 
better understanding of the nature of the problem also helps identify new information 
leakage channels. 

The rest of the dissertation is organized as follows. In chapter 2 we review related 
past work, including covert channel analysis, side channel attacks, steganography as well 
as other information hiding techniques. In chapters 3, 4, and 5, concrete information 
leakage problems of significant importance are first addressed. Chapter 3 [10] analyzes 
the recently reported cache based side channel attacks and reveals the common root cause 
of these attacks. Novel cache architectures, including the PLcache and RPcache, are then 
proposed as universal countermeasures to such classes of attacks. In chapter 4 [11], we 
present Newcache, another novel cache architecture that improves performance even as it 
improves security. The proposed cache architecture inherits the short access time and 
high power efficiency from the direct mapped cache architecture, and at the same time, 
enjoys low miss rates comparable to a highly associative cache. It also can prevent 
information leakage in caches and hence is immune to the cache-based side-channel 
attacks. In addition, it can bring several other benefits such as fault tolerance, power and 
thermal optimizations. In chapter 5 [12], we present new fast covert channels we 
identified in processors, and propose corresponding countermeasures. The theoretical 
aspect of the information leakage problem is addressed in chapter 6 [13-14]. As the basis 
of further theoretical analysis, the information leakage mechanisms are first generalized 
and an abstract channel model is constructed. The ambiguity in traditional classifications 
of covert storage and timing channels is explained and we propose a new classification 
that resolves this ambiguity. This chapter also presents new results on channel capacity 
estimation, pointing out that asynchronism is an inherent characteristic of covert channels 
that should be properly captured in channel capacity estimation. Finally, Chapter 7 
summarizes the contributions of the work and discusses possible directions of future 
work.  



 

 

8

 
 
 
 
Chapter 2  
 
 

Related Work 
 
 
In the most general sense, information leakage can be defined as any unwanted 
information distribution or transfer. It may occur anywhere in a system and the 
information can be leaked out in vastly different ways. In practice, information leakage is 
often a result of access control failure, which leads to direct exposure of information to 
unauthorized parties. Information can also be leaked out indirectly, even when the system 
has properly designed and implemented access control. In a computer system, the 
operations that process data can cause interference observable to others, from which 
certain information of the data being processed can be inferred. Many covert channels 
and side channel attacks are based on such indirect information leakage. Information 
leakage may occur at various levels of the system. For example, application software may 
fail to properly clear cryptographic keys after use, system software may contain bugs that 
allow exposure of kernel memory to unprivileged processes, and hardware circuits may 
exhibit data dependent behaviors such as various power consumption or operation timing. 
Information leakage can be unintended leakage, e.g., due to buggy software that 
accidentally expose one’s private data to others. Information can also be leaked out 
intentionally, e.g., by a Trojan horse that deliberately sends out information. Due to the 
abundance of information leakage mechanisms, information leakage was studied in a 
wide range of research areas in the literature, each of which investigates certain aspects 
of the problem in a particular context. In this section, the related work including covert 
channels, side channel attacks, information hiding and miscellaneous unintended data 
exposure are first reviewed. The relationship between the main focus of this work and the 
past work is then summarized, and the scope of this dissertation clarified. 

 

2.1 Covert Channels 

2.1.1 Definitions of Covert Channels 

In the literature, the term “covert channel” was used to refer to a variety of 
unconventional communication mechanisms. This section gives an overview of covert 
channels, reviews the existing definitions, and clarifies the subject of discussion.  
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The notion of covert channels was first introduced by Lampson [6]. He examined 
nontraditional means of information transfer, which he referred to as “covert channels”, 
in the context of program confinement. In such a context, there are normally two parties 
(e.g., processes in a computer system) involved in a covert channel: the sender S and the 
receiver R, who are disallowed by the system security policy to communicate in one or 
both directions between them. S and R therefore have to retort to nontraditional ways to 
exchange information. Lampson’s definition of covert channels was [6]:   

Definition 1: channels that are neither designed nor intended to transfer 
information.  

This definition points out the nature of covert channels but does not provide 
information on how covert channels can be constructed. Definitions 2 and 3 define covert 
channels from an implementation perspective.  

Definition 2:  channels that use entities not normally viewed as data objects to 
transfer information from one subject to another [15]. 

Definition 3:  channels that are a result of resource allocation policies and resource 
management implementation [16]. 

Unlike in normal communication channels, information transferred in covert channels 
is usually encoded into objects not used for data storage (e.g., control objects rather than 
files or messages), or modulated over the use of shared resources, causing interference 
among processes from which information can be indirectly inferred. Below are two 
examples of such covert channels: 

Example 1: the file lock channel [17]     
In systems that provide file locking capability, the status of the file lock can be exploited 
to transfer information between processes. The sending process S can lock a file to 
indicate a 1 and unlock it to indicate a 0. The receiving process R can then extract the bit 
by checking the status of the lock.  

The file lock channel is a representative example of covert channels under Definition 
2. There are also other means to construct covert channels, among which exploiting 
shared resources, e.g., the CPU time, is the most common one.  

Example 2: the CPU scheduling channel 
In multi-tasking systems, the CPU is shared among multiple processes, each of which is 
given a certain amount of CPU time. A process can modulate information over its own 
use of CPU time and interfere with other processes. For example, the sender S can use as 
much CPU time as possible to indicate a 1 and use little CPU time to indicate a 0. The 
receiver R can recover the information by comparing its own progress with a timer. A 
slow down of R’s execution would indicate a bit 1 sent by S. 

Definitions 2 and 3 however can hardly cover all covert channels due to the unlimited 
number of ways that covert channels can be constructed with. For example, Definition 2 
did not consider the covert channels based on the timing of events. Furthermore, although 
all the previous definitions are intuitively clear, they are informal and ambiguous, and 
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thus can hardly be used in systematic covert channel analysis with automatic tools. In 
[17-18], security policy was introduced into the definition of covert channels, which 
removes much of the ambiguity.  

Definition 4:  channels that allows a process to transfer information in a manner 
that violates the system's security policy [18].  

Definition 5:  given a nondiscretionary (e.g., mandatory) security policy model M 
and its interpretation I(M) in an operating system, any potential 
communication between two subjects I(Sh) and I(Si) of I(M) is 
covert if and only if any communication between the corresponding 
subjects Sh and Si of the model M is illegal in M [17, 19].  

In particular, Definition 5 pointed out the irrelevance of covert channels with 
discretionary security policies [17]. Implementations of discretionary policy models 
within operating systems cannot determine whether a program may release information in 
a legitimate manner [20], hence any user can make use of the legitimate communication 
channels rather than covert channels to leak out information. Compared with exploiting 
mechanisms not intended for communications as in covert channels, leaking information 
through legitimate channels is much faster, more convenient and harder to detect, in 
particular with the help of steganography as well as other data hiding techniques.  

Definitions 4 and 5 are particularly interesting in the context of Multi-Level Security 
(MLS) systems where mandatory security policies are widely used and formally defined. 
DoD’s Trusted Computer System Evaluation Criteria (TCSEC) [18] has adopted such a 
definition. In this dissertation, a combination of Definitions 1 and 5 is adopted as the 
definition of covert channels. This is not to create a new definition, but to clarify the three 
characteristics of covert channels. More specifically, by “covert channel” we refer to a 
channel that: 

1. exploits mechanisms that are not designed for communications, 
2. violates the system’s security policy M, where M is a non-discretionary policy, 
3. involves an insider that intentionally sends out information.  

Note that the third characteristic was not explicitly stated in definitions 1 to 5, but was 
indeed assumed in the context of discussion, e.g., insider attacks in MLS systems. This 
distinguishes covert channels from other unintentional information leakage problems.  

In addition to the covert channels defined above, there are also other uses of the term 
“covert channels” in the literature which however refer to different areas of work. For 
example, steganography is often regarded as a form of covert channel [21-22]. Definition 
6 is a definition used in such areas. 

Definition 6: A covert channel is a parasitic communications channel that draws 
bandwidth from another channel in order to transmit information 
without the authorization or knowledge of the latter channel's 
designer, owner, or operator [22]. 

Unlike covert channels that exploit unintended mechanisms to transfer information, 
steganography hides information in legitimate text such as ordinary files and network 
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packets. Since the main interest of this area of work is the covertness (i.e., the secrecy) of 
the communications (not just the information being transferred), and because the term 
“information hiding” was not yet invented at that time [23], the term “covert channels” 
was also used in this area. In this dissertation, according to our definition of covert 
channels, steganography will not be discussed in the scope of covert channels but will be 
discussed as a form of information hiding technique.  

The definition of covert channels in this dissertation also distinguishes side channels 
from covert channels. Although information leakage in covert channels and side channels 
may be based on the same physical mechanisms such as operation timings, side channel 
attacks assume no insiders and thus are unintentional information leakage. The targets of 
side channel attacks are mostly crypto ciphers which by no means would intentionally 
leak out information.  

 
2.1.2 Covert Channel Classification  

In the literature, covert channels are often categorized into two types: covert storage 
channels and covert timing channels [18, 24-26]. Covert storage channels usually make 
use of objects not intended for data storage whereas covert timing channels exploit the 
temporal characteristics of events to transfer information. For example, TCSEC [18] 
adopted the following definitions:  

Covert storage channels: covert channels that “would allow direct or indirect writing 
of a storage location by one process and the direct or indirect reading of it by another”. 
Covert timing channels: covert channels that “would allow one process to signal 
information to another process by modulating its own use of system resources in such 
a way that the change in response time observed by the second process would provide 
information”. 
 
The file lock channel described in section 2.2 is a typical covert storage channel, 

which makes use of the file lock object to carry the information. The sender is able to 
“write” a bit to the file lock, though indirectly, and the receiver can “read” the file lock 
value. Many other mechanisms in operating systems can be exploited as well. For 
example, by allowing a process to detect whether a directory exists or not even though 
the process does not have enough security clearance to access the directory, an insider 
can send bits out by creating and removing a directory known by the receiver. Resource-
exhaustion channels are another common class of storage channels. Based on the 
information bit to be sent, the insider can choose to use up, or not, the shared resources. 
The receiver then makes an allocation of the exploited resource and observes if the 
allocation fails, or not, to infer the bit. The CPU scheduling channel is a representative 
covert timing channel as the information is modulated over the observer’s response time. 
Other shared resources can also be exploited to construct covert timing channels in a 
similar way. Indeed, almost all mechanisms that allow a process to impact the system 
performance can be exploited as timing channels [21].  

In addition to those in standalone systems, covert channels exist in networks as well. 
Examples of covert storage channels in networks include those based on the pattern of the 
network packets’ destination address, unused header bits and certain packet fields, and 
examples of covert timing channels include those based on packet rate, packet timing, 
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network protocols such as the Medium Access Control (MAC) protocol of wireless 
networks, etc. [27-34]. A survey of network covert channels can be found in [35].    

The classification of covert channels as storage channels vs. timing channels is clear 
and helpful in covert channel analysis most of the time, and thus was widely accepted and 
used in the literature. However, researchers admitted that the difference between storage 
channels and timing channels is actually unclear [17, 23, 26] and there are covert 
channels that are hard to categorize. Below is an example: 

Example 3: the disk arm channel  
When servicing a sequence of disk access requests, the operating system often re-orders 
the requests to avoid unnecessary seek operations, i.e., the radial movements of the disk 
arm, which are very expensive in terms of time. Due to the similarity between the 
problem of scheduling a disk arm and that of scheduling an elevator in a tall building, the 
elevator algorithm is commonly used for disk access optimization, i.e., the disk arm 
keeps moving in the same direction until there are no more outstanding requests in that 
direction and then switches the direction. This allows a covert channel as described below. 
Assume that the inner-most cylinder is numbered 0 and the outer-most is numbered N. 
The receiving process R first initializes position of the disk arm to cylinder N/2 by 
requesting accesses to that cylinder. R relinquishes CPU after this access is completed. 
The sending process S can then encode a bit of information by accessing either cylinder 1 
or N-1 to send a bit ‘0’ or ‘1’, respectively. To receive the bit sent by S, R issues two 
requests – one to cylinder 0 and the other to cylinder N, and observes the order of 
completion of the two requests. If the access to cylinder 0 completes first, it means that 
the disk arm’s movement is N/2  1  0  N, indicating that S accessed cylinder 1 and 
thus a bit ‘0’ is sent. If R’s access to cylinder N completes first, the disk arm’s movement 
is N/2  N-1  N  0, meaning that S accessed cylinder N-1 and thus a bit ‘1’ is sent.  

This channel was categorized as a storage channel by Karger [36]. His argument was 
that the disk arm is a storage object whose value is the position of the disk arm and there 
is no timing measurement involved in this channel. However, Wray, the second author of 
the paper, regarded the disk arm channel as a timing channel. He argued that the disk 
itself is a timer and observing the ordering of events is a kind of timing measurement [26]. 
In fact, the ambiguity of the difference between storage channels and timing channels is 
due to the non-rigorous definitions of the two types of channels. For example, the rigor in 
the definition of timing channels relies on the rigor in the definition of time, which 
however is ambiguous as illustrated in [26]. To the best knowledge of the author, this 
ambiguity is still unresolved.   

 
2.1.3 Covert Channel Analysis 

Dealing with the covert channel problem usually involves three steps: covert channel 
identification, capacity (or bandwidth) estimation, and covert channel handling. Covert 
channel identification attempts to find all, or as many as possible, covert channels in the 
system. Once identified, covert channels must be measured for their severity. A common 
metric is the channel capacity, or channel bandwidth, which measures how fast 
information can be sent over the channel. Depending on the needs, covert channels can be 
audited, mitigated, or eliminated.   
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2.1.3.1 Identification 
Covert channel identification requires the analysis of all or a subset of system documents, 
including high level system specifications, system reference manuals, implementation 
source code and hardware manuals. A common approach of covert channel analysis is 
flow analysis. Information flow can be derived from the documents by attaching 
information flow semantics to the statements of the specification or programming 
language. In a program, data dependency and control dependency lead to information 
flow. For example, both assignment statement “x:=y” and if-else statement “if (y==c) 
x:=a else x:=b;” causes information flow from variable y to variable x. Examples of more 
information flows in programming language statements can be found in [20, 37-38]. The 
derived flows are then checked with the flow policy which is a representation of the 
system security policy. Such a procedure can be automated for analysis over formal 
specifications and source code, which has been adopted in several tools, including the 
SRI Hierarchical Development Methodology (HDM) and Enhanced HDM (EHDM) tools 
[39-40], the Ida Flo tool [41] and the Gypsy tools [42-44]. Information flow analysis can 
be further augmented with more semantic components. In [45] Tsai presented a method 
based on the analysis of programming language semantics, kernel code and data 
structures, and the resolution of aliasing of kernel variables. Together with the 
information flow analysis, direct and indirect visibility and alterability of kernel variables 
are examined and potential covert storage channels are identified.  

Information flow analysis methods shown above however are not suitable for 
specifications written with informal languages. In [15] Kemmerer proposed the Shared 
Resource Matrix (SRM) method which can be applied to both formal and informal 
specifications. The SRM approach requires the construction of a shared resource matrix 
from the specifications being analyzed. The matrix consists of visible/alterable shared 
resources and their attributes as columns and user-visible primitives as rows. Each entry 
of the matrix can be marked as either R or M if the corresponding primitive can reference 
(read) or modify (alter) the corresponding attribute. To identify indirect references to 
resource attributes, a transitive closure needs to be performed on the entries of the matrix. 
To detect potential covert channels, each column containing row entries with either an R 
or an M is analyzed since the resource attributes of these columns may be exploited for 
covert channels. A process that can alter an attribute can send information to a process 
that can read the same attribute, which may form a potential covert channel. Further 
analysis of the identified potential covert channels is then performed to determine if they 
are indeed exploitable. Some potential covert channels identified by the SRM method 
may be in parallel with an overt channel, or have the same process as both the sender and 
the receiver, or can only pass information that is already known by the receiver. Such 
channels are not real covert channels. 

Based on similar information and procedures used in the SRM method, Porras and 
Kemmerer proposed the Covert Flow Tree (CFT) method [46] that allows the search for 
covert communication scenarios with a graphical tool. The dependency information is 
first analyzed, which identifies the resource attributes that should be further analyzed. 
The trees are then constructed for such attributes. The left branch of the tree is the series 
of operations caused by the sender to alter the attribute and the right branch is the 
operations that enable the receiver to perceive the modification. Potential channels are 
then analyzed as in the SRM method to determine if real covert channels exist.  
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Noninterference analysis is another popular covert channel analysis method, first 
introduced by Goguen and Meseguer [47]. It is based on the concept that “one user 
should not be aware of any activity of another user that he does not dominate” [48] and 
does not examine flows directly. By modeling the system as a state machine, a precise 
definition of noninterference can be expressed with the effects of the system’s input 
history on a user’s view of the system state and output. Loosely speaking, if user X does 
not interfere with user Y, deletion (or purge) of any or all X’s inputs from the system’s 
input history should not change Y’s output. Formal definitions of noninterference can be 
found in [47, 49-50]. In practice, analyzing the entire history of the system inputs is 
infeasible, and the “Unwinding Theorem” solves this problem [51]. The “Unwinding 
Theorem” allows noninterference to be checked by examining the properties of the 
machine’ state transition function, avoiding analysis of history traces. Noninterference 
analysis is advantageous for avoiding the discovery of false illegal flows. Its main 
drawback is that it requires the construction of the state machine and the selection of 
users’ “view” functions that captures the system state visible to the user, which are 
nontrivial. Noninterference analysis was popular and has been applied to several systems 
including the SAT abstract model [52]. 

In summary, covert channel identification is a difficult problem which has not been 
completely solved despite all of the above work. On the one hand, the lack of formal 
specifications in real system designs disallows the use of the formal security-provable 
techniques, and at the same time analysis of informal specifications can not ensure 
security. Furthermore, it is really hard, if not impossible, to enumerate all possible 
information transfer mechanisms and include them into the system model. Under the 
“incomplete” system model, the ignored mechanisms can lead to covert channels even if 
the security of the system is theoretically proved.  

2.1.3.2 Capacity Estimation 
The task of capacity estimation of a covert channel is to estimate the maximum attainable 
bit rate of information transfer over the channel. Millen [53] first connected information 
flow models to Shannon’s communication theory [54] and introduced the notion of covert 
channel capacity as a measurement of the covert channel information rate.  

Unlike in most traditional communication channels, the times required for sending 
different bit values in many covert channels are different and depend on the history of bit 
transmission. Such channel properties are better captured by a state machine model as 
proposed by Millen in [55]. Millen assumed that the channels are noiseless, without 
interruption from processes other than the sender and the receiver, and the time required 
for the synchronization between the sender and the receiver is negligible. Such 
assumptions are valid in the context of estimating the maximum information rate. With 
the help of information theory, capacity of the state machine channels can be calculated 
once the transition overheads are determined. Information theory based capacity analysis 
was also applied to various other types of channels. The related work include 
Moskowitz’s work on the capacity of certain noisy timing channels [56], the simple 
timing channels [57], the Timed-Z channels [58], Kang’s work on the pump [59-60], 
Gray’s work on the bus-contention channel [61], Giles’s work on channels based on 
packet timing [62], and Venkatraman’s work on network channel capacities [63], etc. 

The information rate of a covert channel can also be estimated with informal methods. 
In this dissertation, such estimation is referred to as bandwidth estimation rather than 
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capacity estimation although some past work used these two terms in an exchangeable 
manner. Capacity estimation gives the theoretical upper bound (which is tight) of the 
information rate whereas bandwidth estimation gives an approximation of the bound. 
Bandwidth estimation usually adopts simpler equations as an approximation for the rate 
calculation. Examples of such work can be found in [17, 64].  

2.1.3.3 Covert Channel Handling 
The purpose of covert channel handling is to minimize the damage of covert channels to 
system security. The ultimately secure way to deal with covert channels is to eliminate 
them. Some covert channels can be closed by redesigning the system. For example, the 
file lock channel can be blocked by disallowing a user to check the lock status of a file 
that he is not entitled to access. However, handling all covert channels in a system via 
channel elimination is practically impossible. For example, closing covert channels based 
on shared resources would essentially require strict resource partitioning or no resource 
sharing at all. Such an approach may be applicable to small system modules without 
sacrificing system usability and performance, but applying it to the whole system would 
normally impose too many restrictions on the system design and eventually lead to 
unusable systems.  

Another covert channel handling strategy is through deterrence. The main deterrence 
method is channel auditing. If a known covert channel involves operations that are 
normally infrequently used and has low capacity, handling it via auditing can be a good 
choice. It is easy for the auditing system to detect the use of such a channel with 
reasonable expenses on recording, and before the channel use is detected only a tolerable 
amount of information can be leaked out. Channel auditing however has several 
fundamental problems. Not all covert channels are suitable for auditing, and some of 
them are simply undetectable. The use of a covert channel is usually detected afterwards, 
sometime long after the occurrence and the damage has been done. The analysis of audit 
data is nontrivial and could be very time consuming. More details about the problems of 
channel auditing can be found in [65]. 

The third method of covert channel handling is based on capacity reduction. Such a 
method does not eliminate the covert channel completely, but makes it much slower. One 
class of the work aimed to reduce capacities of timing channels by playing tricks with 
time. Popek and Kline proposed to restrict each process to see only virtual time, which 
depends solely on its own activity [66]. By making the time of each process less 
correlated to each other, the capacities of timing channels between these processes are 
reduced. Hu proposed to use “fuzzy time” [25] in the system, which makes all timing 
sources visible to the processes noisy. Giles et al. proposed the timing jammer to mitigate 
the packet timing channels [62, 67]. Noisy timing measurement would generally lead to 
lower capacity of most timing channels. Another approach for reducing covert channel 
capacity is to slow things down such that given the same amount of time, less information 
can be transferred. The most straight forward implementation is to slow everyone down, 
e.g., by adding delay to every system call in a system [23]. In [68] Hu proposed the 
lattice scheduling technique which makes use of the secrecy class attributes of processes 
to make decisions. The lattice scheduler reduces the frequency of transitions between 
processes that could be the two ends of the covert channel and slows down the 
transmission procedure. Resource partitioning can also be used to reduce covert channel 
capacity. Gray proposed probabilistic partitioning to mitigate the bus-contention channel 
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[61]. Reducing covert channel capacity is also an interesting topic in the design of 
legitimate communication channels between security domains, e.g., from the low security 
level to the high security level. To ensure reliable communications, feedback mechanisms 
are usually needed to send back reception acknowledgements to the sender who is at the 
low security level, which leads to covert channels. To reduce the capacity of such covert 
channels, the pump and its variants were proposed [59-60, 69-70]. By placing a buffer 
between Low and High, the acknowledgements from High to Low are decoupled into two 
separate ACKs, one from the buffer to Low and the other from High to the buffer. By 
properly controlling the ACK times, the capacity of the covert timing channel can be 
reduced without compromising the reliability and performance of the legitimate 
communication channels.  

The covert channel problem in general is a hard problem. It is believed impossible to 
make any realistic systems free of covert channels. There is always a trade-off between 
the level of security and the performance, usability, cost, etc.  

 

2.2 Side Channel Attacks 

2.2.1 Overview 

Side channel attacks are a special class of attacks that are based on indirect information 
leakage due to a systems’ physical implementation. During the operation of a system, the 
variation of the system’s power supply current, operation timing, electromagnetic 
radiation and/or acoustic emission can all carry information – often referred to as side 
channel information – which reveals the system’s internal states and the data being 
processed. Although theoretically side channel information can be exploited to attack all 
kinds of systems, in practice the targets of the attacks are mostly implementations of 
cryptosystems, particularly simple cryptographic devices such as smart cards.  

Side-channel cryptanalysis is different from classical cryptanalysis although they both 
aim to break cryptosystems. Classical cryptanalysis views the target cryptosystem as an 
abstract mathematical object and attacks the weakness of the mathematical composition 
itself, whereas side-channel cryptanalysis views the target as a particular physical 
realization and attacks the system physically rather than mathematically. Although side-
channel cryptanalysis is much less general than classical cryptanalysis due to its 
implementation-specific nature, it is often much more powerful. Classical cryptanalysis 
typically requires a huge amount of computation and is only able to shrink the search 
space for the secrets. If the cipher is mathematically strong, classical cryptanalysis may 
be practically ineffective. In contrast, side-channel cryptanalysis often can recover more 
secret information – sometimes the full crypto key – in a much shorter time. It can be 
very effective even in attacking mathematically strong ciphers. 

 
2.2.2 Classification of Side Channel Attacks 

In the literature, side channel attacks are usually classified in two different ways.  

Passive vs. active: In passive attacks, the attacker does not interfere with the target 
system and only observes the system’s normal behavior. In active attacks, the attacker 
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tries to tamper with the system’s normal operations, e.g., by introducing faults into the 
computation, and deduces useful information from the system’s responses.  

Invasive vs. non-invasive: Invasive attacks usually involve physical deconstruction of 
some parts of the target system, e.g., depackaging a chip, to gain access to some internal 
components such as an internal data bus. Non-invasive attacks only exploit externally 
available information such as power supply current, operation timing etc. In [71], 
Skorobogatov et al. introduced a new type of attacks – the semi-invasive attacks. These 
attacks require depackaging the chip to gain access to the chip surface, but do not tamper 
with the chip further to probe internal components. 

Note that the above two classification methods are orthogonal. For example, a passive 
attack may require depackaging a chip to gain access to the necessary information 
sources, and an active attack does not always imply an invasive attack – faults can be 
introduced with nondestructive methods, e.g., by heating the chip.  

Although invasive attacks often allow the attacker to gain access to more information 
which makes the attack more powerful, in practice non-invasive attacks seem to receive 
more research and engineering effort due to economic reasons. Invasive attacks often 
require special equipment such as a scanning electron microscope or a probing station 
which are expensive and usually not available for individuals. Non-invasive attacks do 
not have this requirement and can be adopted more widely.   

 
2.2.3 Representative Attacks 

Side channel attacks are extremely implementation-specific and this review does not 
attempt to list all of them. Below we briefly introduce representative attacks in each 
category and give references to other related work.  

2.2.3.1 Power analysis attacks 
The power consumption of a cryptographic device often carries much information about 
the operation taking place and the data being processed in the device. In [72] Kocher et al. 
first presented attacks based on power analysis – referred to as simple power analysis 
(SPA) and differential power analysis (DPA).  

The power measurements involved in power analysis are usually referred to as traces. 
A trace consists of a set of measurement samples, e.g., the power supply current, during a 
cryptographic operation. Due to the physical characteristics of the device, the device’s 
internal states and the operations taking place in the device are transformed into the 
variation of the power consumption, which is recorded in the traces and can be recovered 
directly or statistically.  

Simple Power Analysis (SPA): SPA refers to the technique that analyzes variations in the 
power traces that are directly distinguishable. Such large-scale variations are usually due 
to the execution of different operations. In implementations with software running on 
processors, different instruction sequences exhibit different power consumption profiles. 
In pure hardware implementations, different function modules consume different amount 
of power. In real attacks, SPA can identify operations with unique properties, e.g., round 
operations in ciphers like DES and AES – they cause repetitive patterns in power traces. 
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A more significant application of SPA is to identify conditional branches, which exhibit 
different SPA characteristics when executing different paths. In some RSA 
implementations, the conditional branches in exponentiation operations are controlled by 
the secret key bits. Finding out the branching direction would directly lead to the 
recovery of the secret key bit. Identifying conditional branches was also adopted in SPA 
to recover information from the DES key schedule computation, DES permutations, and 
various string or memory comparison operations [72]. 

Differential Power Analysis (DPA): DPA aims to recover information from subtle 
variations in the power traces that SPA can not exploit and thus is more powerful. In 
particular, the power variations correlated to a device’s internal states are usually very 
small and overshadowed by the large-scale signals and measurement noise. Statistical 
techniques are employed in DPA to amplify the weak signal of interest and remove the 
effects of noise as well as other unrelated signals. Although the exact form of DPA is 
attack-specific, the underlying ideas are similar. In a typical DPA, the attacker first 
selects an internal state to exploit – often an intermediate result of the cryptographic 
computation that depends only on the plaintext or ciphertext, and a small part of the 
secret key (meaning a small search space). The effects of the selected state on power 
consumption therefore carry information about the secret key. Multiple power traces are 
normally needed to provide enough samples for statistical analysis. The key recovery 
procedure typically involves tests of a small number of hypotheses on the secret key 
values in the search space using the power measurement samples. Below is an example.  

Let S(C,"b",Ks) denote the function – often referred to as the selection function –  that 
describes the relation between the selected state b (e.g., a binary bit), the system input or 
output C (e.g., the plaintext or ciphertext), and the secret Ks (e.g., a byte of the secret key). 
The outcome of the selection function S(C,"b",Ks) is the value of the state b given the 
values of C and Ks. In DPA, the attacker knows the C value for each trace T. He guesses 
possible values of Ks in the search space and tests if the hypotheses are true. To test a 
hypothesis, each power trace is classified as a 1-trace or a 0-trace based on the outcome 
the selection function given the trace’s C value and the guessed value of Ks. A 1-trace has 
a corresponding b=1 and a 0-trace has a corresponding b=0. The hypothesis can be tested 
by computing the difference between the averages of 1-traces and 0-traces:   
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where M1 and M0 are the numbers of 1-traces and 0-traces, respectively. For a correct 
guess of the Ks value, the classification of 1-traces and 0-traces is correct and the mean 
computations in (2.1) average out the noise in 1-traces and 0-traces while maintaining the 
bias caused by b. The subtraction then removes the common signals that is unrelated to b. 
T therefore measures the power variation due to different values of b. If the hypothesis 
is wrong, the traces are incorrectly classified and the computed T is roughly zero. The 
attacker tests hypotheses on all possible key values in the search space. The key value 
with a corresponding T that is sufficiently different from zero is likely the correct guess.  

More advanced power analysis techniques were also available. An important 
improvement of DPA is high-order DPA [73-75]. Instead of assuming that at some point 
of the computation the intermediate state value is correlated to the power consumption as 
in classical DPA, high-order DPA considers effects of the state at multiple points in the 
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power consumption curve. The resulting differential function – the equation (2.1) in the 
case of classical DPA – has a high-order form. High-order DPA is able to break 
countermeasures that defeat classical DPA [76]. Another important improvement on 
power analysis is the template attack [77-78]. Template attacks rely on precise modeling 
of noise, with which the attacker is able to fully extract information from a single sample. 
Template attacks however require the attacker to possess an experimental device identical 
to the target system on which he can do experiments of his choice.        

Power analysis has been demonstrated very effective in attacking various 
implementations of almost all major cryptosystems. Numerous reports were published on 
attacks on software as well as hardware implementations of DES [72, 79-83], AES [84-
91], RSA [92-95], Elliptic Curve Cryptosystems (ECC) [96-100], RC4 [77], IDEA, RC6 
and HMAC [101]. A comprehensive review of power analysis can be found in [102]. 

2.2.3.2 Timing analysis attacks 
Operation timing is another important source of side channel information. The variations 
in execution time can be the result of multiple factors: the operation’s inherent 
computation complexity, software implementation issues such as branches and 
conditional execution of operations, and hardware dependent effects such as cache misses 
and variable branching penalty.  

The idea of timing analysis of cryptosystems was first introduced by Kocher in [103] 
where he analyzed implementations of Diffie-Hellman, RSA and RSS. A timing attack 
was then practically implemented against an RSA implementation with Montgomery 
algorithm [104]. The attack was further improved in  [105-106] and was able to recover a 
512-bit secret key with 5000~10000 timing measurements. Timing analysis was also 
applied to RSA implementations that use Chinese Reminder Theorem (CRT). The 
resulting attack was very powerful – a 1024-bit secret key can be recovered using about 
370 time measurements [107]. In addition to attacks targeted at local machines, timing 
analysis even allows attacks over networks. In [108], a remote attack against the 
OpenSSL implementation of RSA was demonstrated practical, despite the high noise 
level in real world networks. This work was further improved in [109]. Timing attacks 
were also applied to block ciphers such as AES [106].  

Most of the early work on timing analysis were based on a black-box model, i.e., only 
externally available signals (normally the running time of the entire cryptographic 
operation) are accessible to the attacker. This is particularly true in attacks on embedded 
devices such as smart cards where the timings of the internal sub-operations are normally 
unavailable. Timing analysis attacks under such a model therefore rely on statistical 
analysis and require a considerable number of time measurements. The recent cache 
attacks, however, have demonstrated that information leakage in processor caches 
enables richer forms of attacks based on both black-box analysis and white-box analysis. 
The attacks are generally effective – almost all processors with caches are vulnerable, and 
can be used to attack embedded devices as well as general purpose systems. Cache 
attacks have received significant interest due to their wide impact.  

In the literature, Page first described theoretical attacks based on information leakage 
in caches and categorized the attacks into two types: trace-driven attacks vs. time-driven 
attacks [110]. The attacker in trace-driven attacks is able to detect the outcome of each 
victim’s memory reference in terms of hit or miss whereas in time-driven attacks, the 
attacker can only see an aggregated profile, e.g., the total number of hits or misses. 
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Although Page’s work is not specifically in the context of timing analysis, most existing 
cache attacks employ timing analysis due to the convenient timing measurements with 
the high accuracy timers widely available in modern processors. Also, some processor 
features such as Simultaneous Multi-Threading (SMT) allow an attacker to run in parallel 
with the victim on the same chip and observe the victim’s memory references in real time 
which exposes information about the internal sub-operations of the target cryptosystem. 
In addition to the trace-driven and time-driven types of attacks, a cache attack can also be 
classified as an access-driven attack [111]. The attacker in an access-driven attack is able 
to learn not only the cache’s hit/miss behavior but also which cache lines/sets are touched, 
individually or in an aggregated manner. 

The first practical cache attack was implemented by T sunoo et al. [112-113] in 
2002 and 2003. The attack exploits the cache collisions in DES code and was a time-
driven attack. In 2005, Bernstein showed the vulnerability of software AES 
implementations due to evictions of AES table entries in the cache and presented a time-
driven attack that was able to recover a large portion of the key (the exact number of key 
bits that are recoverable depends on the cache configuration of the target system) [114]. 
This attack was further improved in [115] by exploiting the second round operation of 
AES – in addition to the first round operation, and was able to recover the full key. 
Bonneau et al. [116] proposed another time-driven attack that requires less timing 
measurements than in Bernstein’s attack. This attack relies on cache collisions – cache 
hits due to accesses to the same AES table entry – rather than cache evictions of AES 
table entries. In [117], Aciiçmez et al. pointed out the infeasibility of the existing cache 
attacks as remote attacks and proposed a real remote attack. A significant amount of 
timing measurements however are required. In addition to time-driven attacks, Osvik et al. 
also described several variants of cache attacks against AES in [118] and [119], in which 
the attacker is able to detect individual internal operations such as AES table lookups by 
making use of  Simultaneous Multi-Threading (SMT). The attacker runs simultaneously 
with the victim process on the same chip where the cache is shared. Due to the cache line 
evictions caused by the victim, the attacker is able to learn which cache lines/sets are 
touched by individual memory references of the victim. The resulting attacks are very 
powerful. In [120], Neve et al. improved the attacks by making use of the final round 
operation of AES and making the use of SMT not necessary. Similar techniques were 
also adopted by Percival in his attack against RSA [121]. The full 1024-bit secret key can 
be recovered in a single encryption.  

In addition to cache based attacks, other processor architectural features can also be 
exploited in timing attacks. Aciiçmez et al. have demonstrated successful attacks against 
RSA by exploiting branch prediction units in modern processors [122-124].  

2.2.3.3 Electromagnetic analysis attacks  
Electrical currents produce electromagnetic fields. Electromagnetic analysis makes use of 
the information carried in the electromagnetic (EM) field of the target device during its 
operation and extracts the information of interest. Since the 1950’s, the US government 
has been aware of the information leakage via electromagnetic emanations, which leads 
to the standard called TEMPEST [125].  

According to Agrawal et al. [126], electromagnetic emanations can be direct or 
unintentional. Direct emanations are caused by intentional current flows, which often 
consist of short bursts of current due to sharp rising edges and can be observed in a wide 
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frequency band. Unintentional emanations are normally due to couplings. Harmonic-rich 
signals such as “square-wave” clocks and communication related signals contribute most 
to emanation via coupling and generate carrier signals for modulations. Data signals can 
be modulated over the carrier signal via Amplitude Modulation (AM) or Angle 
Modulation (FM or phase modulation). Observing direct emanation usually involves 
measurements of near-field signals, which may require chip depackaging. Carrier signals 
of unintentional emanation can have much better propagation and can be exploited more 
easily and effectively. Due to the close correlation between the currents flowing through 
the target device and the associated EM field, the measured EM traces often carry similar 
information as power traces. The power analysis techniques therefore are often also 
applicable to electromagnetic analysis. Electromagnetic emanations however contain 
even more information than power variations and therefore may enable more powerful 
attacks. Unlike in power analysis where the measured current is the overall current of all 
components in the device, the electromagnetic field of the device indeed contains 
multiple channels, which may enable the isolation of effects from different components.  

The first published attack based on electromagnetic analysis (EMA) was introduced 
by Quisquater et al. in [127] and further improved in [128-129]. Quisquater et al. showed 
that with a simple flat coil, an attacker is able to measure the electromagnetic emanations 
produced by a smart card. Similar techniques as in power analysis were used in their 
attacks, referred to as Simple EMA (SEMA) and Differential EMA (DEMA). In [130], 
Mangard showed his near-field EM attack with a simple handmade coil and also 
demonstrated that far-field EM measurements of the power supply unit enabled the 
recovery of the secret key. Carlier et al. presented an EM attack on an FPGA 
implementation of AES and described a new way of retrieving some secret information 
[131]. In [132], Agrawal et al. proposed multi-channel attacks, which combine multiple 
side channels of the same or different kinds, including EM channels, power channels, etc. 
In [133], Quisquater et al. combined electromagnetic analysis and power analysis and 
were able to identify instructions executed by a processor based on a dictionary of 
instructions and their power/electromagnetic traces. Electromagnetic emanations were 
also exploited in retrieving information from computer displays including CRT as well as 
flat-panel displays [134-135]. It is worth noting that although most existing work on 
EMA employed similar techniques as power analysis, in the future the rich information 
contained in electromagnetic field can be further explored and enable new attacks.  

2.2.3.4 Other attacks  
Other side channel information can also facilitate side channel cryptanalysis. In 2004, 
Agrawal et al. demonstrated attacks based on acoustic emanations of computer keyboards, 
telephone and ATM keypads [136]. The key being pressed can be recognized by 
differentiating the sound produced by different keys. Acoustic emanations were also 
employed in analyzing noise generated by computers and allowed attackers to learn CPU 
behavior [137]. In [134], Kuhn presented techniques that retrieve information from 
diffuse visible light of CRT displays.  

Fault analysis attacks sometimes are also discussed in the context of side channel 
attacks although they do not rely on the leakage due to physical side channel information. 
The basic idea of fault attacks is to induce faults into the target device during its 
operation and observe the erroneous output. Depending on the implementation, faults can 
be introduced transiently or permanently by manipulating power supply voltage, clock 
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and device temperature, applying radiation or light to the device, or exploiting eddy 
current [5, 138-144]. Fault attacks have been successfully applied to DES [145-147], 
AES [148-152], stream ciphers [153-154], RSA-CRT [155-157], ECC [158-159], and 
modular exponentiation-based cryptosystems [160-161].  

Information leakage via address bus sometimes is also regarded as a form of side 
channel. Knowing the address trace of a program, e.g., the one exposed on a computer’s 
address bus, allows an attacker to learn the internal state of the program, enabling attacks 
on copyright-protected software and ciphers [162-166]. 

 
2.2.4 Countermeasures 

2.2.4.1 Countermeasures of power analysis and electromagnetic analysis 
We review countermeasures of power analysis and EM analysis together since 
electromagnetic emanation is essentially a product of current flows. The countermeasures 
of power analysis thus are usually also effective on EM analysis.  

In the literature, most of the countermeasures are based on the following ideas: 
removing variations, hiding dependence, randomization, and blinding or masking.  

Software countermeasures: As suggested in [167], making the execution flow of a crypto 
implementation as constant as possible can help mitigate SPA – it reduces the major 
portion of the power variation [155, 168]. In the case of RSA, inserting dummy multiply 
operations in the square-and-multiply implementation and the balanced Montgomery 
powering ladder [169] are examples of such. Block cipher implementations tend to have 
fewer or no branches and their execution path can be made constant more easily. SPA can 
also be mitigated by hiding dependency, which makes it harder for the attacker to 
reconstruct the secret even when knowing the operations performed. The use of sliding 
window techniques [170] and m-ary RSA [171-172] were suggested for this purpose. 
Other exponent recoding schemes were suggested by Walter [173-174]. Randomization 
can help mitigate both SPA and DPA. The randomized algorithms can make it harder to 
identify target patterns in a single trace – mitigating SPA, or make the target power 
characteristics random among different traces – mitigating DPA. Randomized 
implementations of RSA as well as ECC can be found in [174-184]. Techniques that 
randomize variations among traces however do not stop attacks that can recover secrets 
in a single trace [77, 185]. Masking the internal states of the computation, i.e., preventing 
the attacker from predicting such states, which is the basis of DPA, can solve this 
problem. In [186] and [76], techniques that divide each bit of the original computation 
into two statistically independent shares were proposed. DPA relying on the prediction of 
the original internal bit therefore will not succeed. These methods however were proven 
vulnerable to high-order DPA [73-75]. An alternative approach is blinding or masking by 
combining input with random numbers. The techniques [187-188] for blinding signatures 
are good examples of this [103]. Other masking techniques can be found in [189-194].   

Hardware countermeasures: The idea of randomization can be easily applied at the 
processor architectural or micro-architectural level. Random register renaming [195] and 
random code injection [196] was proposed to randomize the power variations. Masking is 
often adopted in logic or cell level circuit design. A theoretical work on gate level 
masking was presented in [197]. Various implementation work such as multiplexor-based 
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circuit, correction-term-based circuit as well as other circuit styles can be found in [198-
202]. Removing power variations was mostly done at cell level by making the power 
consumption of the cell data-independent. The major logic styles proposed include 
asynchronous circuit [203-204], Dual-Rail Precharge (DRP) circuits [205-208], and 
Current Mode Logic (CML) circuits [209-211]. There are also other hardware 
countermeasures in addition to the above methods. Power measurement noise can be 
increased by using a random number generator [212]. Signal suppressing techniques were 
proposed in [213]. The detachable power supply technique was presented in [214]. To 
defend against EM analysis, the use of metal shield layer and random number generator 
was suggested to reduce the EM field and make it noisy [128]. 

2.2.4.2 Countermeasures of timing analysis 
The concepts of removing variations, randomization, and blinding/masking are also 
applicable in defending against timing analysis. To remove timing variations, in addition 
to the work on the defense of power analysis that make the execution path constant [169], 
the timing variations due to the reduction operations in Montgomery algorithm [104] was 
also considered. Dhem [215] proposed improved multiplication schemes that allow 
chaining of several modular multiplications with only one extra reduction, thus removing 
most timing variation. Similar work were also presented by Walter [216-217] and Hachez 
et al. [218]. The issues of implementing constant time block ciphers were discussed in 
[106]. Randomization techniques for power analysis protection [174-184] are also helpful 
in preventing timing attacks. Randomized algorithms randomized power variations as 
well as timing variations. Blinding techniques are particularly effective in defending 
against timing attacks. Kocher in his first paper on timing attacks [103] had suggested the 
use of blind signatures [189-194] as an effective countermeasure. The countermeasures of 
cache-based attacks are reviewed separately in the next section due to the uniqueness of 
cache attacks. 

2.2.4.3 Countermeasures of cache-based attacks 
The area of cache-based attacks is young and still rapidly evolving. Although various 
intuitive ideas have been suggested, the application of them is not trivial, and many of 
them are still not carefully investigated.  

Software countermeasures: Page [110], Bernstein [114] and Osvik et al. [118-119] 
suggested several conceptual countermeasures to mitigate cache attacks. The first 
approach is to avoid memory accesses so that the security of the cipher is irrelevant to 
caches. Specific techniques include replacing table lookups with logical and arithmetic 
operations, putting tables in registers (if the architecture has a sufficient amount registers), 
or using implementations such as the bitslice scheme [219]. Making the memory accesses 
data-oblivious [162-163] can also mitigate the attacks. Observing a statically or 
statistically fixed memory access pattern would reveal no useful information to the 
attacker. Software masking may also be helpful since it would prevent the attacker from 
knowing the internal states of the cipher. Pre-loading tables, dynamically moving tables 
around, and hiding timing were also suggested, but with comments on their obvious 
limitations and nontrivial applications. Brickell et al. [220-221] proposed several 
implementations of AES based on three mitigation strategies: (1) compact S-box tables; 
(2) table randomization; and (3) pre-loading of relevant cache lines. These strategies 
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together with selective round protection can enable various combinations for different 
security-performance trade-offs. Software mitigations for RSA implementations were 
proposed in [221]. Two methods for the binary implementations were presented, 
including conditional branches elimination and the replacement of all squares with 
multiplies. The attacks against the fixed window and sliding window implementation 
were mitigated by storing the pre-computed multiplier table in an interleaved manner. 
The bytes of each table entry are distributed to all cache lines in the table. The access to 
any multiplier therefore leads to accesses to all cache lines, resulting in fixed access 
pattern.  

Hardware countermeasures: Conceptual countermeasures were suggested by Page [110], 
Bernstein [114] and Osvik et al. [118-119], including: (1) disabling cache sharing; (2) 
static or disabled cache; (3) larger cache lines; (4) non-deterministic cache placement; 
and (5) hardware masking. Percival [121] suggested not allowing one process to evict 
cache lines of another. These ideas however were not investigated in detail. As the first 
dedicated work, the Partitioned cache [222] was proposed by Page to mitigate cache 
based attacks. With instruction set architecture (ISA) extensions, private cache partitions 
can be formed for the protected processes or software modules, with the ability of 
reconfiguring cache line sizes as well as address masks. The author however admitted 
that the overhead of the architecture – in terms of both performance and hardware cost – 
could be high, and it might not be suitable for high clock rate processor design. Trade-
offs have to be made among performance, cost and security.  
 
 

2.3 Information Hiding 

In the most general sense, covert channels, steganography, anonymity, and watermarking 
are all forms of information hiding [223-225]. This section reviews steganography and 
watermarking techniques, which hide information in ordinary messages such as media 
files or network packets. In the context of information leakage, information hiding allows 
undetectable information transfer covered by legitimate communications.  
 

2.3.1 Steganography and Watermarking Basics 

2.3.1.1 Steganography 
Steganography in Greek means “cover writing”. It is the art and science of hiding 
information by embedding messages in other seemingly harmless messages [226]. Unlike 
cryptography which aims to hide the content of a message, the goal of steganography is 
to hide the presence of the message. In other words, steganography allows secret transfer 
of information while no one else can detect the very existence of the communication.  

According to the terminology used in [223], the original object in which the message 
is embedded is referred to as the cover-object, e.g., cover-text, cover-image, cover-music, 
etc. The message to be embedded is referred to as the stego-message. The object with 
embedded message is called the stego-object. In some cases, the sender/receiver needs a 
secret to embed/retrieve the message. The secret is referred to as the stego-key. Figure 2-1 
illustrates the generic embedding/retrieving process. Note that stego-keys k1 and k2 may 
or may not be the same key, depending on whether a symmetric-key or public-key system 
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is used. Also note that the cover-object c at the decoding end is optional, indicated by a 
dashed line. Some applications do not require the original object to recover the message. 

Three properties are usually discussed in steganographic systems: transparency, 
capacity and robustness. Transparency describes the similarity between the cover-object 
and the stego-object, or the imperceptibility of the embedded information. Capacity 
measures the amount of the information that can be embedded in the cover-object without 
compromising transparency. The robustness of the embedding scheme in the context of 
steganography is often related to the security of the steganographic system. Depending on 
the application, it is relevant to the detectability of the presence of the stego-message, the 
retrievability of the stego-message, and the resistance of overwriting, removing or 
disabling the stego-message in the stego-object.  

 

 
Figure 2-1. A generic process of message embedding and retrieving 

 
2.3.1.2 Watermarking 
Watermarking is closely related to steganography but has slightly different goals. Unlike 
steganography, the embedded message is usually related to the cover object [227], e.g., 
the mark indicating the creator of an art work. In practice, watermarking is more relevant 
to the protection of mark tampering or removal rather than the protection of message 
detection.  

Watermarks can be perceptible or imperceptible, public or private, and robust or 
fragile, as explained in the following applications [228-229]: 

 Copyright watermarks: By embedding information about the creator or owner of 
the object, watermarking provides a way for securing the ownership rights or 
proving the ownership. Copyright watermarks should be robust, meaning that they 
are hard to remove, and should be still detectable even when the stego-object has 
been modified considerably. Copyright watermarks can be either perceptible or 
imperceptible. 

 Fingerprint watermarks: Fingerprint watermarks can be used to track and trace 
copies of an original work, such as copyright protected images and movies. For 



 

 

26

example, unique fingerprints such as serial numbers can be embedded into each 
copy when distributing it to the customer. The fingerprint has to be imperceptible, 
robust and private. Private means that only a select group – the distributor in the 
above example – can detect or extract the watermark.   

 Broadcast watermarks: Broadcast watermarks can be used as a copy control 
mechanism and allow copyright protection to be built into software and hardware 
devices. For example, copy control can be achieved by detecting a watermark and 
invoking proper software or hardware operations such as enabling or disabling the 
record module. Broadcast watermarks should be imperceptible, public and robust. 

 Annotation watermarks: Metadata can be embedded into the object itself using 
watermarking techniques. For example, date, location, author’s information, and 
search keywords etc. can be embedded into the image itself. Such watermarks 
should be imperceptible, public and robust. 

 Integrity watermarks: Watermarks can also be used to ensure integrity of the 
cover-object. Such watermarks should be fragile, i.e., tiny modification of the 
original object would lead to damage of the embedded watermark. Integrity 
watermarks can be either perceptible or imperceptible, public or private. 

 
2.3.2 Data Hiding Techniques 

Despite the fundamental philosophical differences between steganography and 
watermarking, these two fields share many of their underlying technical approaches, 
which are briefly reviewed below. 

Substitution techniques: Many cover-objects, e.g., images and audio files, contain 
considerable redundancy. Substitution techniques usually involve replacing some of the 
redundant parts, e.g., the least significant bit (LSB) of the original object [230], with the 
secret message. Substitution techniques can produce imperceptible watermarks and have 
high capacity. The embedded watermarks however are not robust. 

Transform domain techniques: The transform domain techniques embed information in a 
transform space, such as DCT [231-233], Wavelet [234-236], and DFT [237-239], and 
can be  naturally integrated with popular compression techniques such as JPEG and JPEG 
2000. These techniques overcome the robustness problem of substitution techniques 
while still produce imperceptible watermarks. 

Spread spectrum techniques: Spread spectrum techniques used in communication 
systems can also be applied to embedding schemes [240-241]. By distributing the 
information in a much wider spectrum, the resulting watermark is much more resistant to 
attacking techniques such as filtering and lossy compression, leading to better robustness. 

Statistical methods: Statistical methods embed information by changing the statistical 
properties of the cover-object and use hypothesis testing to retrieve the embedded 
information [242-244]. In the binary case, a single bit of information can be embedded 
into the cover-image by changing statistical distribution of luminance values in the set of 
pseudo-randomly selected pairs of image pixels.  

Distortion techniques: Information can be also embedded by distorting the cover-object 
and measuring the deviation from the original object for secret extraction. Distortion 
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techniques are commonly used in hiding information in text files. For example, the line-
shift coding displaces a whole line of text by a small amount, e.g., 1/300 inch, to indicate 
a ‘1’ bit. Similarly, word-shift coding and character coding can also be used to encode 
information [245]. 

Cover generation methods: Cover generation methods generate an object based on the 
secret only for the purpose of being a cover-object. Techniques such as the Mimic 
functions [246] can be used to hide the presence of the message by making the statistical 
characteristics of the generated cover-object match those of an innocent looking text.  
 

2.4 Miscellaneous Unintended Data Exposure 

Unintended data exposure in this dissertation refers to the accidental exposure of 
information, which allows unauthorized users to gain direct access to the protected data. 
It is often due to various implementation bugs and design flaws and is one of the most 
common types of information leakage problems in computer systems. Due to the huge 
number of vulnerabilities, this review illustrates the problem with only representative 
examples. More complete lists of known vulnerabilities can be found in the US-CERT 
data base [247] as well as various security online bulletins [248-249]. 

At the application level, implementation bugs, bad architecture design and default 
program settings and behaviors can all lead to information leakage. An example of the 
implementation bugs is the JavaScript bug in Mozilla and Firefox web browsers. It allows 
an arbitrary amount of heap data to be leaked out to a malicious website [250]. Another 
example is a bug in Microsoft Word that can cause a document to contain hidden data 
that are from another completely unrelated document [251]. If two documents were open 
using the buggy version of Word, saving one of the documents would lead to the 
inclusion of text from the other. In addition to implementation bugs, programmers’ lack 
of understanding of security requirements lead to bad design and introduce inadvertent 
information leakage as well. For example, crypto building blocks such as AES and RSA 
are often misused [252], leading to leakage of critical information even though the 
ciphers themselves are strong. Applications’ default settings and behaviors may also lead 
to information leakage. For example, Word documents usually contain hidden data that 
most ordinary users are unaware of, including names and usernames of the documents’ 
creators, pathnames of the documents, text that were already deleted, etc.  Such hidden 
data have enabled an attacker to obtain a significant amount of sensitive information by 
simply examining published documents [251].   

Unintended data exposure at the system level is usually due to bugs in system 
software, and can appear in various forms. For example, information can be leaked out 
through memory: bugs in kernel software [253] can expose content of kernel memory to 
user space applications. Error reporting and logging systems can also be exploited. Core 
dump files may contain sensitive data (e.g., user’s password), and can be accessed by 
unprivileged users or even remote users [254-257]. Logs and session files have similar 
problems [258]. File systems can also be problematic. A few versions of the ext2 file 
system leak kernel memory data to disk when creating new directories [259]. Paging 
mechanisms may swap out memory pages containing critical data to disks (though not 
due to bugs) [260], which can be examined by an attacker at a later time. 
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At the hardware level, information can be leaked out through storage devices such as 
hard drives and memories. An attacker can collect surplus hard drives which still contain 
a large amount of information and recover sensitive data from them. Even if the storage 
devices have been cleared before they are released to untrusted parties, e.g., by filling the 
disk with zeros, information can still be recovered [5]. In addition to non-volatile storage 
devices, volatile memory can also cause information leakage. Contrary to most people’s 
belief, solid-state Random-Accessed Memory (RAM) can retain its data even after being 
powered off. Peter Gutmann [5, 141] examined the “burn-in” effects that occur in both 
static RAM (SRAM) and dynamic RAM (DRAM). When a memory cell stores the same 
value for a relative long time, the physical attributes of the semiconductor devices may 
change and leave trace of the stored value. Information may remain in memory even if 
the data are only momentarily stored. Recent work on Cold Boot Attacks [261] showed 
that data can remain in memory for seconds to minutes after being powered off, and this 
time can be extended to hours by cooling the memory modules.  

The mitigation of unintended data exposure due to software bugs is mostly ad hoc: 
for each particular bug, a patch is issued and the information leakage channel is blocked. 
Chow et al. studied the data leakage problem in a more general manner, by examining the 
data lifetime in a system [258]. They also proposed secure deallocation mechanisms to 
reduce data lifetime and thus the risk of unintended data exposure. To avoid information 
leakage through paging system, Provos [260] proposed to encrypt virtual memory such 
that all pages swapped out to disk are encrypted, thus meaningless to unauthorized users. 
Secure processor architectures [262-267] that support encrypted memory also help 
mitigate various attacks that rely on information leakage via memory. 
 

2.5 Scope of this Dissertation 

The information leakage problem can be discussed in a space spanned over the three 
aforementioned dimensions: whether the leakage is via direct information exposure or 
indirect interference, whether the leakage is intentional or unintentional, and at which 
level the leakage occurs. Covert channels are intentional information leakage and mostly 
due to indirect interference rather than direct exposure. Side channels are similar to 
covert channels except that they are unintentional leakage and mostly due to physical 
leakage at the hardware level. Information hiding techniques such as steganography can 
also be exploited for intentional information leakage. These techniques however hide 
information in legitimate messages rather than exploit indirect interference as in covert 
channels. Unintended data exposure due to system or software vulnerabilities belongs to 
unintentional leakage, and the data leaked out are directly exposed to the attacker. 

The focus of this work is on the mechanisms that allow information-leaking 
interference in microprocessors. It is therefore more relevant to covert channels and side 
channels. Unlike past work in these two areas, we particularly focus on architectural or 
micro-architectural level information leakage rather than information leakage at the 
software level or physical circuit level. Such mechanisms allow covert channels that are 
much faster than traditional ones, and enable side channel attacks on embedded devices 
as well as general purpose systems. We consider countermeasures to the architectural-
level attacks. We also propose a new model for covert channels, and new results on 
covert channel capacity estimation.    
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Chapter 3  
 
 

Cache-based Side Channel Attacks: 
Analysis and Countermeasures 
 
 

3.1 Introduction  

Protecting sensitive information within computers and over networks is a major concern 
of users of computer systems. To achieve this goal, cryptographic methods are widely 
deployed in platforms ranging from simple embedded devices to complex server systems. 
The cryptographic primitives are designed to be mathematically strong such that even if 
the adversary gets hold of the encrypted data, it is computationally infeasible to infer the 
original data or the secret crypto key by brute-force trials, or even by differential 
cryptanalysis [145] and linear cryptanalysis [268]. However, side-channel attacks make 
use of auxiliary side channel information rather than mathematical analysis to deduce key 
bits, and can easily break even mathematically strong ciphers.  

In the past, side channel attacks were mostly used in attacking simple devices such as 
smart cards rather than more complicated general purpose systems, due to the noisy 
nature of the side channel information, the difficulty in collecting such information and 
the need for physical access or proximity. The recent cache-based attacks however can 
impact a much wider spectrum of systems and users. This is because caches exist in 
almost all modern processors, and the attacks are effective on various platforms [114, 118, 
121] and can be pure software attacks which are very easy to perform. This makes cache-
based side channel attacks extremely attractive as a new weapon in the attacker’s arsenal.  

Existing mitigations of cache attacks are mostly software approaches, which typically 
involve rewriting the software implementations such that they are not vulnerable to 
known attacks. These software countermeasures however are cipher-specific and only 
effective for known attacks. Due to more restrictive designs, significant performance 
degradations are commonly observed in such “secured” software implementations. 
Moreover, some software mitigations are based on empirical ideas and do not provide 
sufficient security. Hardware countermeasures are also discussed in the past. Despite 
various conceptual ideas, applying them in practice is not trivial and few of these ideas 
were fully investigated.  
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In this chapter, we first identify the root causes of cache attacks and clarify the 
following questions that have not been answered in the past: can the problem of cache-
based attacks be solved by software or hardware alone, or what is the proper partition of 
work for software and hardware in mitigating cache based attacks?  Based on these 
results, we then propose effective solutions by attacking the root causes of cache-based 
side-channel attacks. We also strive to achieve security without compromising 
performance, power efficiency or other cache design goals.  
 
 

3.2 Attack Analysis 

3.2.1 Information Leakage in Caches and Cache-based Attacks 

Cache hits and misses leak information. For example, a program’s memory reference 
traces may exhibit different cache hit and miss behavior, causing variations in the 
program’s execution time or power dissipation. Such variations allow an attacker to infer 
information about the program’s internal states. In addition to the interference in a single 
program, cache accesses from different processes using a shared cache may interfere with 
each other and allow one process to infer information about another. Such cache 
interference leaks information and makes caches susceptible to side channel attacks.  

Traditionally, cache-based side channel attacks were categorized into trace-driven 
attacks, time-driven attacks [110] and recently access-driven attacks [111]. The 
difference between these types of attacks is the attacker’s ability in observing the victim’s 
memory references. In trace-driven attacks, the attacker is able to detect the outcome of 
each memory reference of the victim in terms of hit or miss. In time-driven attacks, the 
attacker can only see an aggregated profile, e.g., the total number of hits or misses. In 
access driven attacks, the attacker is able to know which cache sets have been touched, 
individually or in an aggregated manner.  

Although in past work the difference in timing between cache hits and misses has 
been recognized as the source of information leakage  [114, 118, 121], in this work we 
further distinguish the type of information leakage achieved via cache hits versus that 
achieved via cache misses, since they have different impact on cache design. The 
difference between these two information leakage mechanisms is that cache misses 
involve interference between references to two different memory blocks – one replacing 
the other in the cache, whereas cache hits only involve the same block – a former access 
to a block can interfere with subsequent accesses to the same block, by causing them to 
hit in the cache. Below we categorize existing attacks in terms of how interference due to 
cache misses and cache hits is exploited and analyze a representative attack in each 
category.  We discuss in turn: 

 Internal interference due to cache misses 
 External interference due to cache misses 
 Internal interference due to cache hits 
 External interference due to cache hits. 

The implications on cache designs and possible countermeasures are then discussed.   
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3.2.1.1 Internal interference due to cache misses: Bernstein’s Attack  
The first class of attacks we discuss is due to cache interference that comes from the 
victim’s code itself. Furthermore, the interference is caused by cache misses rather than 
cache hits. Hence, we call this internal interference due to cache misses. Bernstein’s 
attack is representative of this class of attacks.  

Attack description: Bernstein’s attack is a time-based attack. The victim of the attack 
is a software module that can perform AES encryption. The module is a “black box” to 
the attacker. The attacker is able to choose the input to the victim and measure how long 
it takes to complete the encryption. The attacker may be a process in the same machine 
with the victim, or a remote user requesting encryption service. Empirical studies show 
that for most software AES implementations running on modern microprocessors, the 
execution time of an encryption is input-dependent and can be exploited to recover the 
secret encryption key. The attack consists of three steps:  

1. Learning phase: Let the victim use a known key K. The attacker generates a large 
number, N, of random plaintexts P. He sends the plaintexts to the cipher program 
and records the encryption time for each plaintext. He uses the algorithm shown 
in Figure 3-1 to obtain the timing characteristics for K, shown in Figure 3-2(a). 

2. Attacking phase: Repeat step 1 except that an unknown key K’ is used. The timing 
characteristics for K’ is shown in Figure 3-2(b). Note that the input set is 
randomly generated and not necessarily the same as that used in step1. 

3. Key recovery: Given the two sets of timing characteristics, use the correlation 
algorithm shown in Figure 3-1(b) to recover the unknown key K’. As explained 
below, the timing characteristic charts for different keys, e.g., Figure 3-2(a) and 
Figure 3-2(b), should be the same except that the locations of the bars in the 
charts are permuted. The correlation algorithm simply tries all 256 possible 
permutations (each of which corresponds to a value of j) and finds the one that 
would permute Figure 3-2(b) into Figure 3-2(a).  

In Figure 3-2, the height of the bar at position j is tavg
i(j,K), which is the average of the 

execution time of the AES encryptions when the value of the i-th byte of plaintext P is j, 

For key K: 
For s = 1 to N do begin 

Generate a random 128-bit Plaintext block, Ps; 
Ts = time taken for AES encryption of Ps using K; 

end; 
For i = 0 to 15 do begin 

For j = 0 to 255 do begin 
count = 0;             
For s = 1 to N do begin 

If  pi = j then  
TSUMi(j) = TSUMi(j) + Ts; 
count = count+1; 

             end; 
             tavg

i(j,K) = TSUMi(j)/count;  
      end; 
end; 

 

 
 
For i = 0 to 15 do begin 
   For j = 0 to 255 do begin 
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   end; 
   ki’= findMax(Corr); 
end; 
 

Note: Function findMax() searches for the 
maximum value in the input array and returns its 
index. 

Figure 3-1.  (a) Timing characteristic generation         (b) Key-byte searching algorithm 
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using key K (for visual clarity, a constant, denoted as Tmean which is the mean value of 
tavg

i(j,K) for all j, is subtracted from tavg
i(j,K) when plotting the figure). In the AES 

algorithm, each plaintext P is an M-byte block, e.g., M=16, therefore M pairs of such 
timing characteristic charts are generated. Figure 3-2 only shows one such pair, 
corresponding to byte 0 in P. Experiments show that tavg

i(j,K) is pretty much fixed for a 
given system configuration. Furthermore, it is found that when a different key K’ is used, 
the timing charts roughly remain the same except that the locations of the bars in the 
charts are permuted, as shown in Figure 3-2. More specifically, equation (3.1)  holds: 

tavg
i(pi , K) = tavg

i(p’i , K’) if  p’i  k’i = pi  ki         (3.1) 

where  is the bit-wise XOR operation, and ki and k’i are the i-th byte of K and K’ 
respectively.   

Attack analysis: Bernstein’s attack itself does not show what actually causes the 
information leaking timing characteristics. This is actually due to the cache miss behavior 
of the memory references corresponding to the table lookups that are used in various 
software AES implementations. The following analysis assumes the OpenSSL v0.9.7a 
implementation and can be applied to other implementations as well. The software AES 
cipher in OpenSSL v0.9.7a uses five tables, four for the first 9 rounds of operations and 
one for the last round, which is irrelevant to the attack. During the encryption, for each 
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                                     (a) Average encryption time for byte 0 with known key K        

                                     (b) Average encryption time for byte 0 with unknown key K’        

Figure 3-2.   Timing characteristic charts for byte 0 (obtained on a Pentium-M machine) 
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byte pi of the plaintext, one of the four tables is accessed using the index (piki) where ki 
is the i-th byte of the encryption key. Ideally, these table lookups will hit in the cache 
since normally the cache is large enough to accommodate all these tables. However, in 
reality it is found that there are always other memory accesses that regularly contend for 
cache lines at some fixed locations and cause evictions of corresponding table entries. 
Therefore, given an index (piki), if the corresponding table entry is mapped into one of 
these “hot” cache locations, the table lookup will have a higher probability to experience 
a cache miss due to the evictions caused by the contending memory accesses. This will 
lead to larger tavg

i(pi , K), i.e., a high bar in Figure 3-2(a). When a different encryption key 
K’ is used, the same analysis applies and the resulting timing characteristics charts should 
be the same except that the locations of the bars are permuted. This is because given an 
arbitrary value pi for the key-byte ki, there is always such a value p’i for key-byte k’i that 
generates the same index, i.e., p’i  k’i = pi  ki. The table lookup with the same index 
would share the same timing characteristics. Therefore, a bar at location pi in Figure3-2(a) 
will also appear in Figure 3-2(b), but at location p’i = pi  ki  k’i.  

The evictions of AES table entries can be the result of memory references of other 
processes as well as the victim AES process itself. To be useful, such evictions have to be 
regular and also consistent during the learning phase and the attacking phase of the attack. 
Since in many cases other processes are unrelated to the victim process, they do not 
generate regular evictions at fixed locations (relative to the location of the AES tables) or 
do not produce consistent cache eviction characteristics during the learning phase and the 
attacking phase. In such cases, cache interference from other processes contributes little 
to Bernstein’s attack. In contrast, memory references from the same process – possibly 
from code segments other than the AES cipher code – can cause more robust cache 
interference during both learning and attacking phases. In our experiments, the observed 
common sources of interfering memory references include the wrapper code of the core 
AES encryption engine and the stack adjustment instructions of the user function that 
contains the AES cipher. Such internal interference allows the attack to succeed even if 
the cipher runs alone without being interfered by any other process. For this reason, we 
consider Bernstein’s attack as a representative attack that is based on internal 
interference due to cache misses. 

3.2.1.2 External interference due to cache misses: Percival’s Attack 
Another class of information-leakage attacks is due to cache interference from other 
processes. For example, processors supporting Simultaneous Multi-Threading (SMT) 
allow multiple processes to run simultaneously on the same chip, sharing the cache 
system. A process (e.g., the victim process) therefore can evict cache lines holding data 
of another (e.g., the attacker process), causing it to miss on these cache lines. This gives 
the attacker the ability to observe the victim’s cache access behavior (i.e., which cache 
lines/sets are touched) and obtain a relatively accurate access trace. Percival’s attack is a 
representative attack for this class of attacks. 

Attack description: Percival’s attack was demonstrated on an Intel processor with 
HyperThreading (HT) technology. In Percival’s attack, the attacker manages to launch a 
process running simultaneously with the victim process, i.e., the process that performs 
RSA encryption. His goal is to discover the private encryption key used by the victim. 
The attacker sequentially and repeatedly accesses an array, thus loading in his own data 
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to occupy all cache lines. During accessing the array, he also measures the delay for each 
access to detect cache misses, e.g., using the rdtsc instructions to read a timer in Intel 
x86 processors. The victim’s memory accesses will cause evictions of the attacker’s data, 
and when the attacker accesses the evicted data in his next round of array access, he will 
miss on these cache lines and observe longer delays. In this way, the attacker is able to 
obtain a figure that accurately shows the evolution of the victim’s footprint in the cache, 
which allows him to extract information about the internal states of the RSA encryption.  

Attack analysis: The core operation used in RSA is modulo exponentiation. It is often 
implemented with a series of squarings and multiplications. The secret encryption key is 
divided into segments of multiple bits, each of which is associated with a number of 
squarings followed by a multiplication. For each multiplication, a multiplier is selected 
from a set of pre-computed constants – stored in a table, and the key segment is used as 
the index of the corresponding table lookup. With the ability to observe the victim’s 
footprint in the cache, the attacker can obtain the following information: (1) the attacker 
is able to identify every squaring and multiplication due to the different footprints of 
these two sub-operations; (2) for each identified multiplication, the associated table 
lookup can be identified, i.e., the attacker is able to know which cache line is accessed, 
thus knowing which table entry is accessed. Obtaining the squaring and multiplication 
chain of an RSA encryption in some implementations (e.g., the sliding window 
implementation used in OpenSSL) allows the attacker to know some information (e.g., 
the Hamming weight) about the secret key segments. Even if safer RSA ciphers such as 
the fixed window implementation are used such that no information can be extracted 
from the squaring and multiplication chain, knowing which table entry is accessed during 
a multiplication directly allows the attacker to learn the index used in the table lookup – 
the index being the secret key segment.  

Clearly, Percival’s attack is based on the cache misses caused by other processes: the 
victim’s memory accesses cause the attacker process to miss in the corresponding cache 
lines, thus allowing the attacker to observe the victim’s footprint in cache. Hence, it is a 
case of external interference due to cache misses. 

3.2.1.3 Internal interference due to cache hits: the cache-collision timing attacks  
Unlike in Bernstein’s attack and Percival’s attack where a cache miss indicates the 
occurrence of cache interference, in the cache-collision attacks, cache interference leads 
to cache hits instead. The cache collision attacks are similar to Bernstein’s attack in the 
way that the attacks are launched. During the attack, the victim cipher (AES in this case) 
is also considered a black box and the measurements of the encryption times of a large 
number of random messages are the only thing that the attacker is able to do. With the 
knowledge of the time of each encryption and either the plaintext or the ciphertext 
involved in the encryption, the attacker is able to recover the secret encryption key. Note 
that the collision attacks do not require a learning phase, i.e., the attacker does not need to 
possess a system identical to the target system.  

Attack analysis: Unlike Bernstein’s attack which is based on the empirical 
observation of timing variations without exploiting any information about how such 
timing variations are caused, the cache collision attacks make full use of the cipher 
structure to design the attack. In particular, the cache collision attacks exploit the cache 
interference caused by the AES encryption code itself. To illustrate the attack, we use the 
OpenSSL v0.9.7a as an example. The cache interference exploited in the attacks is due to 
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table lookups in the first round or the last round of the AES encryption. Assuming a 128-
bit (16-byte) wide cipher, each round operation requires 16 table lookups, as shown in 
equation (3.2) except for the last round.     

    (3.2) 
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original key byte, i = 0, … , 15. As shown in (3.2), each table is shared by four state bytes 
for their table lookups. The cache collision attacks are based on the interference between 
table lookups accessing the same table. To clarify, a collision occurs if two table lookups 
access the same table entry. If the AES table initially is not present in cache, the first 
table lookup would make the second table lookup hit in cache. Colliding table lookups 
therefore should have shorter execution time than non-colliding table lookups. Since the 
index used to access a table is the state byte, a collision occurs if  

jijijjii kkpporkpkp      (3.3) 

for all i and j values where table lookups for the i-th and j-th bytes of the state look up the 
same AES table. To exploit such equations, the average execution times t(i,j,) are 
computed for all qualifying i and j over all plaintexts that satisfy  ji pp ,  = 0, …, 

255. According to (3.3), the  value that leads to the minimum average execution time is 
the difference between the key bytes k i and k j. Since each AES table is shared by four 
state bytes, the difference between each pair of the four key bytes can be recovered. This 
essentially means the discovery of 3 bytes of the key. For example, bytes 0, 4, 8 and 12 
share table T0, and the attack can discover 8040 , kkkk  and 120 kk  . The attacker can 

then do brute-force search to find k 0 and then obtain the absolute values of the other three 
key bytes. In the end, the attacker is able to discover twelve key differences and needs to 
do brute-force search to find the remaining 4x8=32 bits of the key. This attack can be 
further improved by exploiting the final round operation instead of the first round. Table 
lookups in the final round share one single table, allowing the recovery of the full key 
(with some more optimization techniques).  

In summary, the cache collision attacks are based on internal cache interference – the 
interference caused solely by the AES encryption code itself. Furthermore, the cache 
interference is among memory references accessing the shared objects, one reference 
causing others to hit in the cache.   

3.2.1.4 External interference due to cache hits 
Although in theory, side channel attacks based on external interference due to cache hits 
are possible, to the best knowledge of the author, none of the existing attacks fall into this 
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category. This is mainly due to the fact that the attacker and the victim rarely share 
objects. For security reasons, the victim is normally isolated from other processes, e.g., 
via address space isolation, sandboxing or virtual machines. Therefore, the situation 
where both the attacker and the victim access the same cache line, one access causing the 
other to hit in cache, would not occur.  

Despite the low possibility of attacks based on external interference due to cache hits, 
caution is still necessary in practice. For example, due to the popularity of shared 
dynamic-linked libraries, an attacker process may share some library code with the victim. 
If the shared code operates on sensitive information (for example the two processes share 
the crypto library), an attack is still possible. The victim’s instruction fetch can cause the 
attacker to hit in the I-cache, enabling the attacker to learn the victim’s execution paths. 
In such situations, a simple yet effective solution is to disallow sharing of library code. In 
this dissertation, we assume the attacker and the victim are fully isolated unless otherwise 
specified. 

3.2.1.5 Remarks 
Although both miss-based interference and hit-based interference can be exploited in 
cache attacks, existing attacks all exploit either one of them, not both. To our 
understanding, this is because opposite assumptions are required for attacks that exploit 
these two different types of interference. Miss-based attacks (e.g., Bernstein’s attack and 
Percival’s attack) assume the data are initially in cache and expect hits when accessing 
them. Interference is expressed with “abnormal” evictions that cause cache misses. In 
contrast, hit-based attacks (e.g., the cache-collision attacks) assume that the data initially 
is not present in the cache, and the “abnormal” hits carry the information of interest. 
However, it is still worthy of further research to see whether smarter techniques exist that 
can combine both miss-based and hit-based interference.  
 
3.2.2 Countermeasures and Implications on Cache Designs 

From the perspective of a cache designer, miss-based information leakage is easier to 
mitigate than hit-based leakage. In miss-based interference, references to two memory 
blocks interfere with each other if they contend for the same cache line and evict each 
other. Since the mapping between memory blocks and the cache lines is determined by 
the cache indexing scheme, miss-based interference may be mitigated by manipulating 
the memory-to-cache mapping to reduce cache miss contentions. Indeed, many cache 
indexing schemes have been proposed to reduce conflict misses – though the purpose was 
for performance rather than for security. In contrast, the interference due to cache hits, 
i.e., where a former access to a block interferes with subsequent accesses to the same 
block – making them hit in the cache – is hard to mitigate, because this is the desired 
behavior and the basis of the performance benefit brought by caches. Removing such 
interference is equivalent to no caching, which makes the use of caching meaningless. This 
dilemma makes the mitigation of hit-based information leaks inherently hard. 

Fortunately, even though hit-based interference is hard to remove without losing 
performance, there are still ways to circumvent the problem, particularly through 
software techniques. The most straightforward software countermeasure to eliminate 
information leakage in caches is to simply avoid using memory accessing operations (e.g., 
table lookups). However, the performance overhead is very high and the method is not 
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generally applicable. When memory accesses cannot be avoided, some software 
countermeasures help mitigate hit-based information leakage by preloading objects into 
the cache before any use of them so that all subsequent accesses hit in cache, thus leaking 
no information. This approach however is not really secure since the preloaded objects 
could be evicted by other memory references at a later time, which indeed often occurs. 
Other software techniques try to avoid interference due to hits by not sharing objects. For 
example, if in the AES cipher, table lookups for different bytes do not share tables, 
accesses to these tables will not interfere with each other, and the attacks that rely on this 
interference, e.g., the cache-collision attacks [116] described in section 3.2.1.3, would not 
succeed. However, this does not stop attacks based on miss-based information leakage, 
e.g., Bernstein’s attack. In general, we observe that just as it is difficult for hardware to 
mitigate hit-based interference, it is difficult for software to mitigate miss-based 
interference. The developer of one program cannot control undesirable evictions of his 
program’s cache lines by another program, since he has little control on how other 
programs are designed and behave. 

Fortunately, hardware mechanisms can help prevent the above problems that software 
can not handle. For example, cache partitioning [222] can help to prevent undesirable 
cache evictions if the objects are put into a private partition. This essentially prevents 
interference due to misses. The problem of such hardware solutions is that they degrade 
cache utilization and hence, cache performance. Another issue is that from an architecture 
point of view, cache partitioning is non-trivial in design and often has strict restrictions 
on certain aspects such as the size of a partition [269]. In addition to cache partitioning, 
randomization can also help mitigate miss-based information leakage, e.g., by 
manipulating cache addressing schemes such that interference is randomized rather than 
eliminated. This may incur fewer restrictions in cache design and have lower 
performance impact – and is the approach we propose.  

The above discussion indeed reveals an important new insight. While software can 
easily handle hit-based information leak but has little control on miss-based information 
leak, hardware can easily mitigate miss-based information leak. Therefore a natural 
choice to build a secure system is that, the hardware provides the mechanisms that 
prevent interfering misses while software developers focus only on avoiding interfering 
hits of their own code without worrying about how other programs are designed and 
behave. This simplifies the jobs at both sides.  

In this dissertation, we focus on the hardware side, showing novel cache architectures 
that provide security without compromising performance as well as other design goals. 
The proposed architectures attack the root cause of cache attacks and follow the two 
general approaches mentioned above: eliminating interference or randomizing 
interference. The resulting design therefore is generally effective.  

 
 

3.3 New Cache Designs for Mitigating Software Cache Attacks 

This section presents two novel cache designs, the Partition-Locked cache (PLcache) and 
the Random Permutation cache (RPcache), that realize cache interference elimination and 
randomization with little hardware cost and performance impact.  
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3.3.1 Partition-Locked Cache (PLcache) 

The concept of cache partitioning is not new, as described in section 3.2. However, in 
previous designs, the partitions are mostly static. We refer to such a cache as a statically 
partitioned cache, or a partitioned cache in short. Static partitioning prevents sharing, 
often leading to large performance degradation. A process may use very few cache lines 
in its partition, but unused lines are not available to other processes which may need more 
cache lines than they have in their partitions. Simple static partitioning does not provide 
sufficient security. For example, even if an AES cipher is running in a private cache 
partition, attacks based on internal cache interference, e.g., Bernstein’s attack, can still 
succeed. This is because simple partitioning does not eliminate all cache interference.   

Instead, we propose the Partition-Locked cache (PLcache) that essentially achieves 
the effect of cache partitioning, but much more flexibly with less performance 
degradation and better security. In PLcache, the cache lines of interest are locked in cache, 
creating a flexible “private partition”. These cache lines can not be evicted by other cache 
accesses not belonging to this private partition. When properly employed, all critical 
cache accesses will always hit in cache, meaning that the timing variations due to hits or 
misses are completed eliminated, thus preventing both internal and external interference.   

3.3.1.1 Architecture description 
The PLcache consists of two parts: the hardware addition to the cache and the system 
interface for controlling which cache lines should be locked. 

A. Hardware addition:  
Figure 3-3 shows the hardware addition to the cache, consisting of two new tags, L and 
ID, per cache line. The 1-bit L flag indicates whether this cache line is locked or not. The  
ID field indicates the owner of the cache line. Not shown in Figure 3-3, is an optional LL 
bit per TLB entry, page-table entry or segment descriptor (if the architecture supports 
segmentation) which indicates if an access to a page or a segment should cause the 
corresponding cache line to be locked in cache.  

 

B. Control interface:  
There are two mechanisms that allow the programmer, compiler and OS to control what 
to lock in the cache. Either mechanism can be implemented: 

ISA extension: a new set of load/store instructions with a lock/unlock sub-op can be 
added to the base ISA (Instruction Set Architecture). This provides the fine-grain control 
on what data to lock. Table 3-1 describes the new load/store instructions.  
Segment/Page-based protection: Regions of memory, e.g., those containing AES and 
RSA tables, can be marked as LOCKED. Accesses to such regions of memory should 
cause the corresponding cache line to be locked. This uses the LL bit described above, 
added to the segment descriptor and the TLB entry. This interface gives the operating 
system an opportunity to control what data should be locked in the cache. Table 3-2 

Original cache lineL ID

Figure 3-3. A cache line of the PLcache 
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shows API calls that can be exposed to programmers to make use of this mechanism. To 
lock a memory region, the function lock_mem_region() can be called which returns a 
region id. The LL bit of the corresponding segment is set. To unlock a region, the 
function unlock_mem_region() can be called with the id of the region to be unlocked as 
the input argument. The LL bit of the corresponding segment is cleared, and the locked 
cache lines invalidated. 

C. Cache access handling:  
Figure 3-4 shows the flow chart of an access to a PLcache. Note that the sequential steps 
shown in the flow chart do not necessarily execute sequentially in the hardware.  The 
cache hit handling procedure is the same as in traditional caches except that the L bit of 

Table 3-1: Optional ISA extension for PLcache  

Name Description 

ld.lock/ 
ld.unlock 

Identical to a normal load instruction with the additional action: If the memory 
access hits in the cache or causes a cache line to be fetched into the cache, 
the L bit of the cache line is set/cleared. 

st.lock/ 
st.unlock 

Identical to a normal store instruction with the additional action: If the memory 
access hits in the cache or causes a cache line to be fetched into the cache, 
the L bit of the cache line is set/cleared. 

Table 3-2: Potential API calls for PLcache 

Declaration 

int lock_mem_region(unsigned long start_addr, unsigned long length); 

int unlock_mem_region(int region_id); 

 

Figure 3-4. Cache access handling procedure for PLcache 
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the cache line accessed needs to be updated if necessary. If the access is a load/store 
instruction with lock/unlock sub-op, the instruction itself determines if the L bit should be 
set or cleared. This information is available early in the pipeline (after the instruction 
decoding stage) and hence does not impact cache access time. If the LL bit in segment 
descriptors is implemented, its checking can be done together with the checking of 
existing protection bits, and no extra delay is added. Similarly, if the LL bit in the TLB 
entry is implemented, the check can be done together with that for existing protection bits 
during the TLB access. 

During a cache miss, the replacement algorithm differs from a traditional cache 
because of the Locked cache lines. Let R denote the line chosen to be evicted by the 
normal cache replacement algorithm (e.g., LRU) and D denote the new data block that is 
being fetched into the cache. The following cases need to be considered: 

Case Description 

1 If D does not need to be locked and R is also not locked, D replaces R like in a normal cache 
miss. 

2 If D does not need to be locked but R is a locked line, D can not replace R. In this case, for a load 
instruction, one can simply return D to the processor execution core.  For a store instruction, the 
data is written back to the next level of memory, without replacing R. The LRU list should be 
updated so that R becomes the most recently used line and will not be chosen for eviction next 
time. This can avoid repeatedly missing on this cache set due to the locked line. 

3 If D needs to be locked in the cache, it is allowed to replace any line that is not locked or any 
locked line that belongs to the same process. We do not allow the new line to evict a locked line of 
another process. Such a miss can be handled as described in case 2. 

 
D. Updating the L bit of a cache line: 
If the ISA extension is implemented, the instructions with locking/unlocking capability 
can set or clear the bits whereas normal load and store instructions can not. If the 
segment/page based protection is implemented, in each memory access the address is 
checked and the L bit is set or cleared accordingly. If both mechanisms are implemented, 
locking/unlocking instructions always set/clear the L bit, and a normal load/store 
instruction can also set the L bit if the address is in a locked memory region. 

3.3.1.2 Discussion 

A. ISA extension vs. segment/page-based protection:  
The ISA extension gives the software developer the flexibility to prevent cache 
interference for any portion of its memory. Legacy code however can not benefit without 
modification. The segment/page based protection provides a rather coarse-grain control 
mechanism – but both future code and legacy code can benefit from it. For example, the 
programmer can exploit the API calls to specify a memory region to be protected, and the 
OS can mark memory regions such as AES or RSA tables used by crypto libraries during 
load time. 

B. Controlling the use of locking mechanisms:  
The proper use of PLcache will not allow any program to lock cache lines without OS 
oversight. Otherwise, a process may, maliciously or naively, lock excessive amounts of 
data in the cache, causing a security or fairness problem, respectively. An adversary can 
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also selectively lock certain lines to interfere with other processes. In PLcache, the 
hardware only provides the locking mechanisms, and the software should ensure their 
proper use.  

In one usage model, the programmer and compiler can specify and optimize what to 
lock, and request the lock through the API or system call interface. The OS then 
determines if the lock is allowed based on the resource usage as well as security policy 
etc. This might impose an upper bound on the number of cache lines that a process can 
lock and might allow only trusted processes to lock cache lines. For our segment/page-
based PLcache mechanism, the OS can make this decision during the API call for locking 
a memory region, denying this service when necessary. If the call is successful, the OS 
sets the LL bit of the page/segment, and may optionally access the corresponding lines on 
behalf of the caller such that the data are locked in the cache when the call completes.  

For our ISA-based PLcache mechanism, one simple usage model is to allow only 
trusted programs to issue the lock and unlock instructions.  Another usage model is to 
have the application first request a memory region of proper size via API or system calls 
that is “lockable” by the caller. The user-level application then uses lock and unlock 
instructions to access that region to lock/unlock lines in cache without making further 
system calls. Note that the user-level lock/unlock instructions will be treated as normal 
memory instructions if the accesses are outside the “lockable” region. To implement such 
a system, in addition to the ISA extension, a page/segment level mechanism similar to the 
LL bit should also be implemented, which would allow the OS to mark a region of 
memory as “lockable”.   

In summary, the two basic locking mechanisms can be implemented in various ways 
to meet different needs. The system designer and the software developer should 
understand the security implications of the design and make sure the locking mechanisms 
in PLcache are properly employed. 

C. Cache line ID management:  
Any hardware implemented field has a limit on the number of items that it can represent. 
Hence, an n-bit ID field of a cache line limits the maximum number of processes that can 
own lines in the cache at any one time to 2n. This does not limit the total number of 
concurrent software processes that the OS can support. For example, processes that do 
not need to be isolated for side channel attack protection can share the same ID value. In 
most systems, the majority of the processes are normal processes that do not possess 
critical information. They do not need to be protected against each other and can share 
the same ID value, e.g., ‘0’. Other OS concepts and techniques that manage limited 
system resources may also be applicable here. For example, processes that will be 
blocked for a long time, e.g., waiting for disk services, can be temporarily swapped out 
and the cache line ID freed and allocated to other processes.  
 
3.3.2 Random Permutation Cache (RPcache) 

We propose a Random Permutation Cache (RPcache) for the randomization-based 
approach. In contrast to the PLcache, this approach allows cache sharing, but randomizes 
the resulting interference, so that no useful information about which cache line was 
evicted can be inferred.  
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An attacker can observe another process’s cache access only if that process changes 
the attacker’s cache usage, i.e., evicts the attacker’s cache lines. If the process evicts its 
own cache lines, the attacker has no way to know that. By knowing which cache lines 
have been accessed by the victim process, the attacker can infer critical information about 
the victim process. In RPcache, each time such cache interference occurs, we randomize 
it such that the interference carries no useful information. 

3.3.2.1 Architecture description 
We assume a generic set-associative cache where M bits of the effective address, the set 
bits, are used to index the cache set array. The number of cache sets in the array is 2M and 
each cache set contains N cache lines for an N-way set-associative cache, including 
direct-mapped caches where N=1. 

A. Permutation of memory-to-cache mapping 
A key operation the RPcache performs is the permutation of the memory-to-cache 
mapping. Conceptually, this is done by using a level of indirection in indexing the cache. 
In RPcache, the memory-to-cache mapping for a process is stored in a permutation table 
(PT), as shown in Figure 3-5. The table has the same number of entries as the number of 
cache sets, and each entry contains a different M-bit number which indicates the new set. 
For each cache access, the PT is indexed with the M set bits of the effective address to 
obtain the new set bits, which are then used to index the cache set array. A complete 
randomization of the memory-to-cache mapping can be achieved by a random 
permutation of the contents of the table entries. This can be decomposed into a series of 
swap operations, each of which exchanges the contents of two entries. Swapping the k-th 
and the i-th table entries means changing the memory-to-cache mapping, k  S and i  
S’, to the new mapping k  S’ and i  S. This indirect indexing scheme is the logical 
explanation and is not necessary in real hardware, as we will show later.  

In the RPcache, a number of permutation tables are added and each table can be used 
by one or more processes to access the cache. For example, an encrypting process can use 
one table and all other non-critical processes use another. The number of such tables 
implemented depends on needs and cost. In PC systems where only occasionally a 
process needs to be protected, one table should be enough. All other processes can use 
the original mapping that does not need a remapping table. The memory-to-cache 
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mapping needs to be updated from time to time, during the execution of the process, as 
described later. Similar to PLcache, a P bit and ID field are also added to each cache line.  

B. Randomization of cache interference 
We first define terms we will use in our discussion.  

Name Description 

R , S R is the cache line being replaced in cache set S. 

R’ , S’ 
R’ is the cache line being replaced in another cache set S’ which is 
randomly selected. 

D The memory block being fetched into the cache. 

PX The P-bit of cache line  X, e.g., of R, R’ or D. 

In the case of cache interference between the victim and attacker processes (external 
interference), the interference occurs only when the victim evicts a line of the attacker. In 
RPcache, rather then replacing line R, another cache set S’ is randomly selected with 
equal probability. The new line D that is to be put into the cache then replaces a line R’ in 
S’ instead of R in S. The memory-to-cache mappings of S and S’ are swapped such that 
next time when the victim process wishes to access D, he will access the correct cache 
line. From the attacker’s point of view, when he detects a cache miss, the cache miss can 
be caused by the victim’s access to any cache set, with equal probability. Hence he can 
learn nothing about the address that the victim accessed. Note that after swapping the 
memory-to-cache mapping of S and S’, if the process wishes to access another cache line 
originally in set S, it will now access set S’. It will miss and bring another copy of the 
line into set S’ although set S still has it. To avoid this undesirable aliasing, the cache 
lines in S and S’ that belong to the current process should also be swapped. However, for 
efficiency we invalidate all such lines in S and S’ and write them back if they are dirty. 
Future accesses to them will get them correctly from the next level of the memory 
hierarchy. Since the selection of S’ is independent of S, R and D, it can be pre-computed 
and the write-backs can be performed in the background to hide the associated overhead. 

In the case of cache interference from other code in the victim’s own process (internal 
interference), a similar idea can be applied. To distinguish the memory region to be 
protected from such internal interference, two fields, a P bit and ID field are added to 
each cache line (shown in Figure 3-5), similar to the L bit and ID field in the PLcache. 
An internal cache interference occurs if the new line D is not-protected while the old line 
R is protected, or if D is protected and R is not-protected. As the attacker can not directly 
observe internal cache interference (since the evicted lines belong to the victim himself), 
the attacker can only observe the overall effect like the encryption time in Bernstein’s 
attack. If such internal interference is rather fixed, or repeatable, like the eviction of AES 
table entries at fixed locations, the attacker can learn the fixed interference by performing 
a large number of trials, observing the cipher’s execution time for each trial, and using 
statistical analysis of these times. Therefore by randomizing every internal cache 
interference there will not be any repeatable interference (which carries information) that 
can be observed by the attacker. To randomize internal cache interference, each time 
when the new line D and the old line R have different P-bit values, R is not replaced. D is 
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returned to the execution core if it is a load, or written to the next level of the memory 
hierarchy if it is a store, without replacing any line in the cache. At the same time, a 
cache set S’ is randomly selected, and a line R’ in S’ is evicted. Then the original cache 
interference on R is now on R’ which is purely random. 

The mechanisms for controlling which cache lines should be protected are similar to 
those used in the PLcache except that no new instructions are needed. In addition to the P 
bit and ID field in each cache line, a PP bit is also added to segment descriptors or the 
TLB entries. By using the segment/page based protection mechanism described for the 
PLcache, the OS and programmer can specify the memory region to be protected. In 
addition, if a section of code is marked as protected, i.e., the code segment descriptor or 
the ITLB entry has its PP bit set, any cache accesses issued by the protected code will set 
the P bit of the touched cache lines. This gives a convenient way for the OS to protect 
critical modules, e.g., the crypto libraries. The OS only needs to set the PP bit of the code 
pages of such modules.  

C. Cache access handling 
Figure 3-6 shows the flow chart of the cache access handling procedure. A cache hit in 
the RPcache is the same as a normal cache hit except that the P-bit of the cache line needs 
to be updated, based on the value of the PP-bit. During a cache miss, a line R in set S is 
chosen using the normal cache replacement policy. If R belongs to another process, a 
random set S’ is selected. The new line D then replaces R’ in S’ and the memory-to-
cache mapping for S’ and S is swapped. Note that in the last column of Figure 3-6, “Fix 
mappings for lines already in S and S’ ” means invalidating (and flushing if dirty) all 
lines in S and S’ that belong to the current process, except for the new line D, to avoid 
accessing those lines with old mapping after the mapping of S and S’ is swapped. This is 
also explained in section 3.3.2.1 (B).  

If R belongs to the same process, two cases need to be considered, as shown below. 
 

Figure 3-6. Cache access handling procedure for RPcache 
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Case Description 

1 If PD == PR, R is replaced by the new line like in a normal cache miss. 

2 If PD != PR,  R can not be replaced and the access is performed without replacing R. R’s 
replacement information is updated so that it will not be selected for eviction next time. 
This avoids repeated misses in set S. At the same time S’ is randomly selected with 
equal probability among all cache sets, and R’ in S’ is evicted, based on the normal 
cache replacement policy for blocks in a set. 

 
3.3.2.2 Low-overhead RPcache implementation 
Using an extra level of indirection in cache indexing can introduce extra delay into the 
cache access time. For an L2 or L3 cache, a straightforward table lookup implementation 
may be good enough since one extra cycle in L2 or L3 cache loads will not cause much 
performance loss. However, for an L1 cache, which is often the most delay-sensitive 
module in a processor, an extra cycle on a cache hit may be unacceptable. We now show 
that indirect indexing for our RPcache can be implemented, without requiring an extra 
cycle, nor extending the cycle time latency. 

Figure 3-7 shows the modified decoder circuitry for the RPcache based on the 
common implementation with the 3-to-8 NAND pre-decoder and the second stage NOR 
gates. Rather than having a fixed connection for each input of the NOR gate with one 
output of a 3-to-8 NAND pre-decoder, each input line of the NOR gate is connected via 
switches to all of the 8 output lines of the pre-decoder. The switches are controlled by a 
register called the permutation register(PR), and at any time only one switch is on. Each 
permutation register is one entry of the permutation table in Figure 3-5. Note that we omit 
the MUX in Figure 3-5 for clarity. Compared with the original decoder, the only extra 
delay in the critical path is caused by the switch transistor. The path from the PR to the 
output of the NOR gate is not the critical path since the PR can be read out early in the 
pipeline instead of at the beginning of the cache access cycle: once the instruction is 
known as a memory-accessing instruction and to which process it belongs, the PRs can 
be read out and properly selected by the MUX. The delay caused by the switches is 
mainly due to the drain capacitance of the switch transistors which increase the load 

Figure 3-7. Address decoder circuitry of the RPcache 



 

 

46

capacitance of the 3-to-8 NAND pre-decoders. To overcome this, we implement multiple 
copies of the pre-decoders, and let each of them drive a portion of the vertical lines such 
that the load of each NAND gate does not increase much. We also manually adjust the 
transistor sizes along the critical path, including the address bit drivers, the NAND gates, 
and the switches. We also insert a buffer between the address bit driver and the pre-
decoders. We model this using cacti-3.2 tool [270], assuming a 0.18um technology. Table 
3-3 shows the simulated results, where we first optimized the access time to less than 5% 
increase, then optimized the power to less than 10% increase. The increase in percent is 
relative to the unmodified cache modeled in cacti-3.2. Our results show that we can 
achieve approximately the same cache access time (within 3%) with less than 10% 
increase in power consumption. This is a straight forward implementation and further 
circuit optimization can certainly lead to even better designs.  

Table 3-3. Timing and Power Estimation of RPcache 

RPcache  16K 2way 32K 2way 16K 4way 32K 4way 

Access 
time(ns) 

1.225 
(+2.1%) 

1.331 
(+1.7%) 

1.293 
(+1.1%) 

1.344 
(+3.3%) 

Power (nj) 
1.205 

(+8.6%) 
1.282 

(+1.3%) 
1.792 

(+6.1%) 
1.906 

(+2.1%) 

 

3.3.3 Evaluation 

3.3.3.1 Security analysis 

A. Security analysis of the PLcache 
In a PL cache, the critical cache lines of the victim are locked in the cache. This leads to 
two consequences: 1) the victim’s accesses to these lines will always hit in the cache 
without causing any evictions of the attacker’s cache lines; 2) accesses to non-critical 
lines will not evict locked lines. Consequence 1 eliminates external cache interference 
due to cache misses, thus defeats the Percival-type attacks. Consequence 2 stops internal 
cache interference due to cache misses and defeats Bernstein-type attacks. Furthermore, 
if the software preloads critical lines before any use, all accesses to them will hit in cache, 
thus avoiding hit-based cache interference. This defeats attacks based on cache hits such 
as the cache collision attacks.  

B. Security analysis of the RPcache 
To analyze the security of RPcache’s randomization technique, we model the information 
leak channel via cache misses as a communication channel and use information theory to 
prove that the channel capacity is zero. As the information leak can be exploited in 
various ways, e.g., time-driven, trace-driven or access driven attacks, our analysis has to 
be valid in general. Our approach is to prove that in the best case – when the attacker has 
the greatest power to observe the information leak, the channel capacity is zero. When the 
attacker has less power, he cannot do better – thus still getting zero information. Note that 
the power of the attacker indeed determines the type of the attack. For example, if the 
attacker is able to observe the outcome of each memory reference instead of just the total 
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number of cache misses, choosing to launch a time-driven attack rather than a trace-
driven attack would waste his observation power without bringing him any extra 
advantages. Therefore our analysis is valid for different types of attacks. Also note that 
this analysis is independent of the techniques used to recover the information, e.g., the 
statistical methods used in time-driven attacks. Such techniques only affect how much 
information can be recovered from the information that has been leaked. If the 
information leak itself is zero, then statistical techniques cannot recover any information. 

In cache-based side channel attacks, in the best case for the attacker, the attacker is 
able to observe every eviction caused by the victim without error and know exactly which 
cache line is evicted. This can be modeled as a classic discrete time synchronous channel, 
as shown in Figure 3-8. The input symbol of the channel is the line number of the cache 
line accessed by the victim that would cause an eviction and the output symbol is the line 
number of cache line for which the attacker observes an eviction. Note that the same 
physical cache line may have different line numbers from the victim and attacker’s points 
of view (due to different permutation tables they use). In traditional caches, an eviction at 
a given line number caused by the victim is normally observed at the same line number 
by the attacker, due to the common memory-to-cache mapping. This leads to the channel 
model shown in Figure 3-8(a). In contrast, due to random permutations in RPcache, an 
eviction caused by the victim can be observed at any line number by the attacker with 
equal probability, as shown in section 3.3.2.1 and in Figure 3-8(b) —which is the channel 
model for the RPcache. In other words, given an input symbol i, the probability that it is 
observed as an output symbol j is equal for any j. We then have the following theorem. 

Theorem 1: In an RPcache, the capacity of the side channel based on cache line 
addresses is zero. 

Proof:  
Let Pr(j|i) denote the conditional probability that given the input symbol i, the output 
symbol j is observed:            

Figure 3-8. A channel model of the cache-address-based side channel 

(a) In traditional cache                   (b) In RPcache                       
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Pr(j|i) = Prob(output = j | input = i) 

The set of such conditional probabilities is called the channel matrix, which 
determines the channel capacity. For RPcache the following relation holds: 

  Pr(j|i) = Pr(j’|i) for any i,j and j’ 

In information theory, it is straightforward to prove that a channel with such a 
channel matrix has a zero capacity [271].  □ 

In the above proof we do not consider the real timing of the input symbol arrival rate, 
i.e., the physical time between successive evictions. Indeed, in communication systems, 
information can be modulated over the time interval between two successive symbol 
transmissions. However, in cache-based side channel attacks, little useful information is 
leaked out in this way and none of the current software cache-based side channel attacks 
rely on this type of leakage. 

C. Remarks 
PLcache is a design in favor of minimal hardware complexity, and software has the full 
control on how the provided basic hardware mechanisms are used. Like any other 
security mechanisms, a naïve use of PLcache may still be insecure [272]. PLcache relies 
on software making proper use of the hardware mechanisms to achieve security. For 
example, to prevent information leakage on the first accesses to an AES table, the whole 
table should first be loaded (and locked) by the AES program. Secure design with an 
unmodified PLcache as well as PLcache-based variants have been presented  [273]. 

In contrast to PLcache, RPcache is more complex in hardware but needs less software 
involvement. However, RPcache may not be able to defeat hit-based attacks (also called 
cache collision attacks) [272], if used without any help from software. As we have 
pointed out in section 3.2.2, while information leakage due to cache misses can easily be 
mitigated by hardware, information leakage due to hits is more suitable to be mitigated 
by software. Therefore, RPcache is designed to be efficient and effective in mitigating 
miss-based attacks such as Percival’s attack [121], Bernstein’s attack [114] and Osivk’s 
attack [118] against AES. Software-based mitigation methods that were previously 
vulnerable due to miss-based interference, object preloading and no object sharing, can 
then become more secure when running on RPcache and thus can mitigate a wider range 
of attacks.  

3.3.3.2 Performance evaluation 
We implemented the PLcache and the RPcache on M-Sim v2.0 [274] which is a multi-
threaded microarchitectural simulation environment based on simplescalar3.0d. AES is 
used to evaluate the performance impact of the new cache architectures on code being 
protected. The SPEC2000 benchmark suite is used for evaluating the performance impact 
on general purpose workloads. In SPEC2000 benchmark simulation, the appropriate 
number of instructions are fast forwarded, ranging from 100 million to 2.1 billion 
instructions. Cycle-accurate simulations are then performed for 100 million instructions. 
Table 3-4 shows the simulation parameters used.  
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Table 3-4. Simulation parameters 

Simulation Parameters Value 

Decode/Issue width 4/4 

Integer ALUs 4+1 multi/div unit 

Floating-point ALUs 4+1 multi/div unit  

ROB size 96 

Physical RF size 96 each for Int/FP 

Fetch Policy for SMT Icount 

L1 instruction cache 64KB,2-way, 32B lines 

L2 unified cache 512KB, 8-way, 64B lines 

Cache access time 2 cycles L1, 12 cycles L2 

Memory access latency 200 first chunk, 4 inter 

L1 data cache ports 2 

LSQ entries 48 

 
A. Performance impact on the protected code  
Figure 3-9 shows the performance of the OpenSSL 0.9.7a implementation of AES on a 
processor with a traditional cache with no protection for side-channel attacks (Baseline), 
an L1 PLcache and an L1 RPcache. A total of 5 Kbytes of data need to be protected in 
this AES implementation. The simulated program performs the generation of 1 KByte 
packets and the encryption of the packets, and runs alone on the processor. To examine 
the effects of the cache capacity and the configuration on performance, we vary the cache 
size from 4K to 32K and simulated the direct-mapped, 2-way and 4-way set-associative 
configurations for each size.  

Our results show that PLcache is sensitive to the cache size and configuration. When 
the size of the protected memory (5KB) is larger than the cache capacity (4KB cache), 
the performance is always bad because all cache lines are locked. Implementing the 
PLcache as a direct-mapped cache is also not a good idea since once a line is locked, it 
generates a lot of conflict misses. For cache sizes larger than the protected data, with set-
associativity at least 2, the PLcache can achieve comparable performance to the 
traditional cache.  

In contrast, the RPcache consistently achieves almost the same performance as the 
traditional cache, regardless of the cache capacity and configuration. The performance 
impact caused by the random cache evictions in RPcache is negligible: worst case 1.7% 
(on 4K directed-mapped cache) and 0.3% on average.   

We also simulate the L2 PLcache and L2 RPcache. As the L2 cache is large enough 
to hold the working set, no performance degradation is observed. 

B. Performance impact on the whole system due to the protected code 
The PLcache and RPcache may impact the performance of the system during the 
execution of the protected code, e.g., the performance of other general purpose workloads 
running concurrently while encryption is being done for a file. In the simulation, we 
assume that the protected code (AES) is running concurrently with another thread. We 
use an 8Kbyte direct-mapped L1 D-cache and a 32Kbyte 4-way L1 D-cache to bound the 
cache impact. The 6 bars per SPEC2000fp or SPEC2000int benchmark in Figure 3-10 
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show the simulations of the baseline, PLcache and RPcache for 8K 1-way L1 D-cache, 
then for 32K 4-way D-cache.  

For an 8Kbyte direct-mapped cache, PLcache causes an average performance 
degradation of 12% and 14% on floating point benchmarks and integer benchmarks, 
respectively. The RPcache causes 0.3% degradation on floating point benchmarks and 
0.07% improvement on integer benchmarks. The improvement is a result of the swap 
operations of the RPcache which avoid many conflict misses. On a 32Kbyte 4-way cache, 
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the PLcache achieves a 0.2% performance improvement on both integer and floating-
point benchmark sets. This is because the 32Kbyte cache is large enough to hold the 
working sets for both threads and the protected code benefits from the locked cache lines 
that avoid misses on these lines. The performance degradation for the RPcache is 0.3% 
on FP suite and 1.2% on INT suite, respectively. The increase in performance 
degradation is due to the higher overhead associated with the swap operations for a set-
associative cache. However, the absolute degradation is still very small. We also 
examined the effect of implementing the L2 cache as a PLcache or RPcache. The effect is 
again insignificant.  

Although we only use AES as the protected code in our simulations, our conclusions 
are not specific to AES. The sensitivity of PLcache’s performance to the cache 
configuration and capacity (relative to the size of the protected memory region) is due to 
the locking behavior and is not a result of any AES-specific factor. The robustness of the 
RPcache’s performance is due to the fact that we allow sharing – and our design 
intentionally minimizes the restrictions on sharing. 

3.3.3.3 Comparison with prior-art 
Table 3-5 summarizes the advantages of our PLcache and RPcache solutions compared 
with the prior-art partitioned cache solution, in terms of both security and performance. 

Table 3-5. Comparing with prior-art Partitioned Cache 

Security &  
Performance 

Partitioned 
Cache 

Our 
PLcache 

Our 
RPcache 

Prevents external 
Interference? 

Yes Yes Yes 

Prevents Internal 
Interference? 

No Yes Yes 

Relative 
Performance 

Low Medium High 

 
Security: All three approaches can prevent information leakage via external cache 
interference. Partitioned cache and PLcache provide private partitions to a process which 
are not accessible by other processes. RPcache randomizes the interference so that it 
carries no useful information. The partitioned cache can not, however, defend against 
attacks based on internal interference; a private partition still allows code within a 
process to contend for cache lines and cause interference, as in Bernstein’s statistical 
attack. PLcache does not have this problem, because it explicitly locks the desired lines in 
cache, and other parts of the same process cannot interfere with these cache lines. 
RPcache randomizes the interference – hence it carries no useful information. 

Performance: A partitioned cache does not allow a process which uses very few cache 
lines to make its unused cache lines available to other processes which may need more 
cache lines than they have in their partitions. Hence, it has the lowest performance among 
the three approaches. PLcache can achieve better performance because it has a locking 
mechanism that allows it to minimize the size of flexible private partitions, leading to 
better cache utilization. RPcache allows different processes to share cache slots and 
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therefore has the smallest performance degradation. In addition, the performance of the 
partitioned cache and PLcache depend on software to specify proper partitioning of the 
cache, while the performance of the RPcache is very robust, with little dependence on the 
software and the underlying hardware cache architecture. 
 

3.4 Summary 

The PLcache and RPcache are the realizations of two leakage-blocking approaches. The 
PLcache achieves flexible cache partitioning through cache line locking mechanism and 
mitigates cache based attacks via interference elimination. The RPcache allows cache 
interference but randomizes it such that it carries no useful information. The PLcache 
requires minimal hardware cost, but more software interventions. Its performance as well 
as security relies on the software to make proper use of it. In contrast, the RPcache needs 
a little more hardware but provides much more robust security as well as performance, 
without needing inputs from the programmer. As shown in our evaluation, both cache 
architectures can provide desired security from information leakage, with little impact on 
performance. 
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Chapter 4  
 
 

Improving Cache Performance while 
Improving Cache Security 
 
 

4.1 Overview  

Due to the restrictions imposed by security requirements, design for security and design 
for performance are usually at odds. In chapter 3 we have shown that security can be 
achieved with little impact on performance with the proposed PLcache and RPcache. In 
this chapter, we show that designing for security, using the randomizing approach of 
RPcache, can even improve performance and bring more benefits. We present a novel 
cache architecture, Newcache, that randomized dynamic memory-to-cache mapping with 
three other architectural features that enhance performance and power-efficiency. The 
proposed architecture can achieve the same level of security as RPcache, facilitate 
efficient implementation of cache partitioning/locking, and at the same time achieve even 
higher performance than traditional caches. The proposed cache architecture is also 
power efficient -- it consumes as little power as a traditional direct mapped cache. 
Furthermore, the proposed architecture can bring additional benefits including fault 
tolerance, hot-spot mitigation and further optimization for low power.  

 

4.2 The Proposed Cache Architecture  

The proposed cache architecture, Newcache, features four architectural characteristics to 
achieve performance, power efficiency as well as security. To enable fast cache access 
time and high power efficiency, Newcache adopts the direct-mapped architecture. 
Dynamic memory-to-cache mapping and a longer cache index are introduced to achieve 
low miss rates. To improve security, our cache enhances the randomization approach, 
which is achieved by dynamic memory-to-cache mapping and a new security-aware 
cache replacement algorithm (SecRAND). The performance-enabling features also allow 
the cache partitioning/locking mechanisms to be implemented efficiently without 
incurring the performance problems as in traditional caches. 
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4.2.1 Dynamic-Remapping and Logical Direct Mapping 

The proposed cache implements dynamic memory-to-cache remapping, meaning that a 
memory block can be mapped to any desired cache line at run time. Logically, this can be 
achieved by using a level of indirection. The index bits of the address are first used to 
lookup a ReMapping Table (RMT), which returns the index of the real cache set that the 
address is mapped to. By changing the contents of a RMT entry, an address can be 
mapped to an arbitrary cache line. The RMTs are updated seamlessly by the cache 
replacement algorithm – whenever a cache line replacement occurs, the corresponding 
RMT entry is updated. The indirection overhead to realize dynamic re-mapping can be 
avoided by clever circuit implementation (as we will show in section 4.2.4). 

The proposed cache also adopts the direct-mapped architecture to inherit its fast 
access time and power efficiency. To avoid excessive conflict misses, a longer cache 
index is introduced. Unlike in traditional direct-mapped caches where using more index 
bits exponentially increases the cache size, the proposed cache exploits the dynamic 
memory-to-cache mapping to achieve low conflict misses without increasing its physical 
size. This is illustrated in Figure 4-1. Assuming that the cache contains 2n physical cache 
lines, it uses n+k index bits rather than n as in a traditional direct-mapped cache. This is 
conceptually equivalent to mapping the memory space to a large logical direct-mapped 
cache with 2n+k lines, referred to as the LDM cache in the rest of the paper. Note that the 
LDM cache does not physically exist and is introduced only to facilitate the analysis and 
discussion of the proposed cache architecture. The dynamic mapping mechanism enables 
the proposed cache to adapt to store the most useful 2n lines at run time, rather than 

Memory

0

2n+k-1

Logical 
DM Cache 

i

j

0

0

j
i

LNregs
Physical 
cache

2n+k-1

2n-1

Figure 4-1. Mapping memory space to the physical cache 
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holding a fixed set of cache lines and missing on others. To remember which lines in the 
LDM cache are stored in the real cache, each physical cache line is associated with a Line 
Number register (LNreg), which stores the (n+k)-bit line number of the corresponding 
logical cache line in the LDM cache. An LNreg physically implements an entry of the 
RMT (ReMapping Table), and changing the line numbers stored in an LNreg maps 
another logical cache line to the physical cache line. Although we assume 2n cache lines 
in the above discussion, the number of cache lines s in the proposed cache can be any 
number – not necessarily a power of two – as long as s < 2n+k.                           

A RMT stores a memory-to-cache mapping. For security as well as performance 
reasons, it is desirable to have multiple mappings, each of which may be used by one or 
more processes. Note that although logically multiple RMTs are required, they are 
physically implemented with one set of LNregs. This is because at any time, for each 
physical cache line storing a logical cache line, only the entry of the RMT associated to 
the logical cache line needs to be stored in the LNreg. The corresponding entries in all 
other RMTs are invalid since no logical cache lines of these RMTs are mapped to the 
physical cache line. Figure 4-2 shows how a single set of LNregs implement multiple 
logical RMTs. To distinguish which RMT the entry in an LNreg belongs to, an RMT_ID 
field is included in each LNreg in addition to the line_num field. 

 
4.2.2 A Summary of the Proposed Cache Architecture 

The proposed cache architecture (Figure 4-3) is very similar to the traditional direct-
mapped cache architecture, with some significant differences summarized below: 

Figure 4-2. Supporting multiple logical RMTs 
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 The address decoder of the proposed cache is modified to implement dynamic 
memory-to-cache mapping. The LNregs are integrated into the address decoder.  

 More address bits, n+k, are used as index to access a cache of size s <2n+k. A 
memory address is mapped into a Logical Direct Mapped (LDM) cache of size 
2n+k, then dynamically re-mapped into the real cache of size s. 

 The number of cache lines is not necessarily a power of two; it can be any s < 
2n+k.  

 Each process is attached to a context RMT ID which specifies the Re-Mapping 
Tables (RMT) it will use. Different processes therefore can have different 
memory-to-cache mappings if they are attached to different context RMT IDs.  

 Each LNreg contains a RMT_ID field of d bits and a line_num field of n+k bits. 
 Each cache line also has a P flag bit, indicating protected cache lines. Each Page 

Table Entry (and/or segment descriptor, if implemented) also has a PP flag bit, 
indicating a Protected Page. This memory marking mechanism is similar to the 
RPcache.  

 A replacement algorithm is needed on cache misses. 

Context RMT_ID: This identifies a hardware context, specifying which RMT is used by a 
process. A process that needs to be protected against information leak from other 
processes should use a different RMT. The OS is in charge of associating a process with 
a RMT_ID when the process is assigned a hardware context for execution. 

Figure 4-3. The proposed cache architecture 
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Address decoder and LNregs: In a traditional cache, the address decoder in essence tests 
a set of conditions (index == 0?), (index == 1?), … (index == 2n-1?) that compare the 
index with a series of constants (0 through 2n-1) and selects one cache line based on the 
outcome of these comparisons. In the proposed cache, the address decoder tests a similar 
set of conditions, except that the condition is a variable, viz., the contents of the ith LNreg, 
[LNregi], for i = 0, 1, …, s-1. The address decoder activates a cache line if the RMT_ID 
field in LNregi matches the d-bit Context RMT_ID and if the line_num field in LNregi 
matches the n+k index bits. The LNregs are updated when cache line replacements occur. 
The new line’s context RMT_ID and index bits are written to the RMT_ID field and 
line_num field respectively. 
 
4.2.3 SecRAND: the Security-Aware Random Replacement Algorithm 

Unlike in traditional direct mapped caches, a cache replacement algorithm is necessary in 
the proposed cache due to the dynamic remapping. During a cache miss, the replacement 
algorithm determines which physical cache line should be selected for holding the new 
logical cache line. Since replacing the logical cache line that the physical cache line holds 
normally means mapping a new memory address to the physical cache line, the LNreg 
(i.e., the physical realization of the logical RMT entry, which stores the corresponding 
memory-to-cache mapping) of the selected physical cache line needs to be updated 
accordingly. There are two types of misses, index misses and tag misses, in the proposed 
cache. An index miss occurs if none of the LNregs matches the given RMT_ID and index. 
None of the cache lines is selected in an index miss. A tag miss occurs if the index hits in 
one LNreg, but the tag of the selected cache line does not match the address tag. A tag 
miss essentially is the same as an ordinary miss in a traditional direct-mapped cache, 
whereas the index miss is a unique type of miss in our proposed cache. Since an index hit 

Figure 4-4. New security-aware random cache replacement algorithm 
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means the match of the RMT ID, tag misses only occur within the same process or 
among processes using the same RMT. Index misses occur early in the hardware pipeline 
during address decoding, before the tag is read out and compared, and this early miss 
signal could be used by the pipeline control logic to improve performance.  

The replacement policies for the two types of misses are different as we show in 
Figure 4-4. The tag misses are conflict misses in the LDM cache since the addresses of 
the incoming line and the line in cache have the same index (as well as the same RMT ID) 
but different tags. Because in a direct-mapped cache at most one cache line can be 
selected at any time, no two LNregs can contain the same index (and the same RMT_ID). 
Therefore either the original line in the cache is replaced with the incoming line or the 
incoming line is not cached. For index misses, the new memory block can replace any 
cache line. While various replacement policies can be used to choose the desired victim 
line to be replaced, we propose a new modified random replacement policy, which we 
call SecRAND, for the proposed cache, which provides improved security as well as 
excellent performance. Figure 4-4 shows the SecRAND replacement algorithm. The 
cache lines involved and the procedures used in the replacement algorithm are described 
in Table 4-1. 

Table 4-1. Definitions and Notations 

Notation Description 

C 
The cache line selected by the address decoder (during a cache hit or 
a tag miss). 

D The memory block that is being accessed. 

R The cache line that is selected for replacement (victim). 

Px 
The protection bit of X. If X is in a cache line, it is the P bit of the cache 
line. Otherwise it is determined by the PP bit of the page/segment that 
X belongs to. 

cache_access(C)  Access line C as in a traditional Direct Mapped cache. 

Victim(C) Select C as the victim line to be replaced.  

victim(rand) 
Randomly select any one out of all possible cache lines with equal 
probability. 

replace(R,D) Replace line R with line D, update LNreg. 

evict(R) Write back R if it is dirty. Invalidate R. 

mem_access(D) Access to line D without caching it in the current level of cache. 

 
Cache hits (1st column in the flow chart) are handled as in a traditional cache. When a 

cache miss occurs, if the LNreg of a cache line C matches the Context RMT_ID and 
index of the memory block D, then this is a tag miss. As a tag miss always indicates a 
matching RMT_ID, lines C and D must use the same RMT, which usually means that 
they belong to the same process. We call this interference internal to a process or 
processes in the same security group. If neither the incoming line (D) nor the selected line 
(C) is protected (2nd column), meaning that the interference is harmless, the miss is 
handled normally like in a traditional cache. If either C or D are protected (3rd column), 
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meaning that the interference may leak out critical information, the replacement 
algorithm randomizes the cache interference due to the conflict between C and D. To 
avoid information-leaking interference, D does not replace C, and since in a tag miss D 
can not replace cache lines other than C, D is sent directly to the CPU core without being 
put in the cache. On the other hand, since a miss should normally cause an eviction, a 
random line is evicted which “substitutes” for the eviction of C as well as randomizes the 
interference. Otherwise the old cache lines tend to stay in cache and new cache lines will 
not get cached. If the miss is not a tag miss, it is an index miss (4th column) – none of the 
LNregs match the RMT_ID and index of D. In this case, C and D may or may not belong 
to the same process. Since for an index miss the new memory block D can replace any 
cache line, a cache line is randomly selected (with equal probability as in the normal 
RAND) and evicted. The interference caused by an index miss therefore is always 
randomized. Detailed security analysis of the SecRAND algorithm will be given in 
section 4.3.4.  
 
4.2.4 Hardware Implementations  

Because of the similarity between the proposed cache and a traditional direct-mapped 
cache, they share most logic and organization in common, which can be implemented in 
the same way as in the traditional caches. The distinct part in the new architecture 
includes the new address decoder and the new SecRAND replacement algorithm. Below 
we focus on these two aspects.  

Figure 4-5. A generic cache organization
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A. The new address decoder design 
In modern cache implementations, instead of using a single huge array, memory cells are 
typically partitioned into sub-arrays to achieve fast timing and low power dissipation. 
Figure 4-5 shows a generic example of such a cache organization. Clocks, address lines, 
and data I/O lines are often routed through an H-tree network to the sub-arrays. The 
address decoder lies in the center of each sub-array, decoding the address into word line 
selection signals, each of which selects a row of memory cells (e.g., a cache line) to 
access. Figure 4-6 illustrates more details of the sub-array structure, including the pre-
decoder logic, row decoder, word line and bit line structures.  

As shown in Figure 4-3, the main difference between a traditional DM cache and the 
Newcache lies in the logic that determines which cache line to select given the input 
address. In a traditional DM cache, the mapping between an input address to a cache line 
is fixed, whereas in the Newcache, the mapping is controlled by the contents in the RMT 
table entries (i.e., the LNregs as shown in Figure 4-3) – given an input address along with 
its RMT id, a cache line will be selected only if the address and RMT id pair match the 
content in the LNreg associated to the cache line. In the physical implementation, this 
logic exists between the pre-decode logic and the row decoder gate in Figure 4-6, where 
the input address is decoded and the cache line select signal is generated. The rest of the 
design is essentially the same, i.e., both caches should have similar sub-array 
organization and routing, and therefore similar wire delay, gate delay, and eventually the 
total access time. Below we describe the physical implementations of the address 
decoders in detail.  

Logically, as depicted in Figure 4-7(a), the traditional address decoder in essence tests 
a set of conditions (index == 0?), (index == 1?), … (index == 2n-1?) that compare the 
index with a series of constants (0 through 2n-1) and selects one cache line based on the 
outcome of these comparisons. In physical implementations, as shown in Figure 4-7(b) 

Figure 4-6. Address decoder and subarray structures 
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which is the most commonly used design, this is reflected in how the 3-to-8 predecoded 
address lines (the long vertical lines in the figure) are connected to each word line driver 
(the horizontal NOR gate in the figure). In other words, each NOR gate is connected to a 
different combination of the predecoded address lines as its inputs, testing one of the 
conditions (index == k?). In the traditional address decoder, the address-to-cacheline 
mapping is fixed, and therefore the physical connections between the predecoded address 
lines and the NOR gate inputs are fixed. In RPcache, the address-to-cacheline mapping is 
dynamic, meaning in the condition (index == k?) k is a variable instead of a constant. 
Physically, this is achieved by using a switch array to control which predecoded address 
line is connected to the input of the NOR gate, as shown in Figure 4-8 (the circuitry in the 
middle). The Newcache address decoder is similar to the RPcache address decoder in the 
sense that the address-to-cacheline mapping is dynamic. Below we discuss three 
implementation alternatives: the Content-Addressable-Memory (CAM) based design 
[275-276] (since the Newcache address decoder logically performs a search in the 
LNregs, looking for a match of the index bits of the address and the RMT_ID), the 
switched-based design in the RPcache which can be directly applied to the Newcache 
address decoder design, and a new improved design.   

A traditional way to implement associative search is through Content-Addressable 
Memory (CAM), i.e., the LNregs are implemented as a CAM array. CAM search 
however is slow and/or power consuming. As shown in [276], the word length of each 
CAM entry is limited to 6 bits to achieve a delay comparable to that of a traditional 
decoder. Furthermore, if implemented as a separate array, the CAM approach would 
require routing the output of the CAM array to the main cache array, which could impact 
cache access time even more since routing delay has become a dominant factor of the 
overall access latency.  

The switch-based design in the RPcache and the proposed new design both integrate 
the comparison logic into the address decoder. By making use of the existing decoding 
logic distributed along with the cache memory cell array, slow CAM search and 
unnecessary routing are avoided. Figure 4-8 shows a comparison of the traditional 
address decoder, the RPcache decoder and the new improved decoder based on the 

Figure 4-7. (a) logical view of the address decoder (b) physical implementation
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commonly used NAND-NOR topology. Note that in real design the exact circuitry may 
vary, but the same principle still applies.  

As we mentioned earlier, the RPcache decoder design is indeed identical to a 
traditional address decoder with one exception. In both decoders, address lines are first 
pre-decoded with 3-8 decoders, i.e., for each 3 address bits, a group of 8 pre-decoded 
lines are generated and sent along the edge of the memory cell array. The row decoder of 
each row then takes one of the 8 lines from each group as its input and generates the word 
line select signal. The connections between the pre-decoded lines and the inputs of the 
row decoders determine on which address value a row is “selected”, i.e., the connections 
determine the memory-to-cache mapping. In traditional caches, the memory-to-cache 
mapping is fixed, and therefore the connections between the pre-decoded lines and the 
row decoder inputs are fixed. In the RPcache, the memory-to-cache is dynamic, and as a 
result the static connections between the outputs of the 3-to-8 pre-decoders and the inputs 
of the final NOR gates in the row decoder are replaced with dynamic connections via 
switches controlled by the permutation registers. The extra hardware cost associated with 

Figure 4-8. Overall structures of the address decoders 
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the dynamic connections is very low: for each switch, a NAND3 is used to generate the 
control signal, and for every 3 address bits, 8 switches and 8 NAND3 gates are needed. 
Note that due to the drain capacitance of the switches the pre-decoded lines may be more 
heavily loaded and may lead to longer delay. This can be resolved by inserting repeaters 
in the wires or having duplicated wires each driving a smaller number of rows.  

In the proposed new design, rather than controlling the connections between the 
predecoded lines and the inputs of the final NOR gates, we control the connections 
between the address lines and the inputs of the decoder. The 3-8 predecoders are removed 
and their logic corresponding to each row – a NAND3 gate, is moved to sit beside the 
word line driver. The switches control how address bits are connected to the NAND3 
gate, and thus control which cache line is activated given an index. This implements the 
dynamic memory-to-cache mapping. The hardware required is less in the new design 
than in the RPcache, i.e., (6 switches, 3 inverters, 1 NAND3 gate) vs. (8 switches, 8 
NAND3 gates) for every 3 address bits. Note that the switches and related circuitry of the 
new address decoder (shown in the upper right corner of Figure 4-8) is only one example 
design and can be further optimized in terms of hardware cost and load on the long wires. 
Since our cache has longer index bits, the output of the NAND3 gate corresponding to the 
extra address bits needs to be ANDed with the output of the NOR gate. This is done by 
replacing the first inverter in the word line buffer string with a NAND2 gate. By properly 
adjusting the transistor sizes of the NAND2 gate, no extra delay is introduced. Compared 
with the RPcache address decoder design, the new design requires less hardware for 
implementing switches, has lower loads of the long wire and routes address lines instead 
of predecoded lines along the edge of the memory cell array, reducing the number of long 
wires and improving power efficiency. 

Since the new decoder design is largely based on the traditional decoder design, the 
extra implementation overhead is minimized. The extra overhead for combinational logic 
is very low. In the example shown in Figure 4-8, for each cache line that probably 
contains several hundreds of memory cells and port switches, the extra circuits required 
only include 3 NAND3 gates, 10 inverters and 18 switches, and all these devices are 
about the minimal size since they are all minimally loaded. The overhead for storage, i.e., 
the LNregs, is also low. We assume that the LNregs are laid out aside the memory cell 
array and implemented with the same memory cells. Since each cache line is associated 
with one LNreg, the overhead of LNregs relative to the overall cache storage is 
(n+k+d)/M, where n,k,d are defined as in Figure 4-3, M is the total number of memory 
cells in each cache line including data, tag and flags. In a 64KB cache with 64-bit address 
and 64-byte cache line size, n=10 and M  64x8+42+6=560, where 42 is an 
approximation of the tag size and 6 is a rough estimation of the number of flags and ECC 
bits. If we allow 4 RMTs and wish to achieve good performance, we can choose d=2 and 
k=4. The relative overhead of memory storage will be 16/560  2.9%. In some cache 
implementations the tag array and the data array may be separated, requiring two sets of 
address decoders. The overhead will be 5.8% in this case. 

B. Implementation issues of SecRAND 
Compared with other commonly used replacement algorithms such as LRU, pseudo LRU 
and FIFO, the random replacement algorithm requires the least hardware cost to 
implement, due to its stateless nature [277]. Similarly, our SecRAND is stateless and 
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enjoys the same advantage. Although SecRAND requires condition checks, these checks 
are simple and stateless, thus can be trivially implemented with simple combination logic. 
The security of SecRAND relies on the quality of the random source. This requires a true 
or pseudo random number generator (RNG or PRNG) on chip. The design of these is out-
of-scope for this dissertation. We assume that for any system interested in security, a 
good RNG or a PRNG [278] is already implemented. 
 

4.3 Analyses and Evaluations  

4.3.1 Performance: cache access time 

The performance of a cache architecture depends on short access times and low miss 
rates. We use CACTI 5.0 [279] to explore the design space and find the optimal access 

Figure 4-9. Cache access time comparison
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Figure 4-10. Dynamic read energy
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times and power consumption. The code corresponding to the address decoder is 
modified to model the logic shown in Figure 4-8. More accurate transistor level 
simulation is also performed using HSPICE. The transistor netlists corresponding to the 
circuit used in CACTI are constructed with the 65nm Predictive Technology Model 
(PTM) [280].  

To accurately model the long wires in the decoder circuitry, we manually extract the 
parameters of long wires based on the geometrical information generated by CACTI. We 
focus on fast L1 caches since these are more impacted than L2 and L3 caches. Figure 4-9 
shows the results on overall cache access time generated by CACTI.  

The extra delay introduced by our proposed cache, referred to as “Newcache” in the 
discussion below, is always within 1% range of the access time of a traditional direct-
mapped (DM) cache. We also compared the access times of commonly used set-
associative (SA) caches that are 2-way, 4-way or 8-way set-associative. The “fast” caches 
are optimized for speed whereas the “normal” caches are optimized for both speed and 
power efficiency. The data are generated by configuring CACTI with fast mode and 
normal mode, respectively. Although a fast SA cache could have an access time close to 
that of our cache, the power consumption is significantly higher – up to 4 times higher 
than our Newcache, as shown in Figure 4-10. Table 4-2 shows the HSPICE results for a 
traditional direct-mapped cache versus our proposed Newcache. In all cases, the extra 
delays are no greater than 5ps, which is less than 1% of the overall access times.  

Table 4-2. HSPICE Results on Address Decoder Delay (normalized results in parenthesis) 

 8KB 16KB 32KB 64KB 

Traditional 0.149ns (1) 0.149ns (1) 0.226ns (1) 0.192ns (1) 

Proposed cache 0.151ns (1.013) 0.151ns(1.013) 0.230ns(1.018) 0.197ns(1.026) 

 
4.3.2 Performance: miss rate analysis 

4.3.2.1 Theoretical analysis 
Cache misses have been classified as compulsory misses, capacity misses or conflict 
misses [281]. Compulsory misses (e.g., on a cold start) are common to all caches. 
Capacity misses (e.g., when the program’s working size exceeds the size of the cache) 
only depend on cache size. Conflict misses depend on both the cache organization (e.g., 
set-associativity) and capacity. To reduce conflict miss rate, a traditional way is to 
increase associativity, which however impacts cache access time and power efficiency. 
Increasing capacity can reduce capacity misses as well as conflict misses. However, this 
is often not feasible in practice due to the limited silicon real estate budget. 

In contrast, we show, for the first time, that conflict misses can be largely 
independent of cache capacity. Our analysis shows that, regardless of its real capacity, 
our proposed Newcache with an (n+k)-bit index has less conflict misses than a traditional 
direct-mapped cache with 2n+k cache lines. The total number of misses in our Newcache 
has the following bounds:  

|Miss(Newcache,2n)||CompulsoryMiss|+|CapactiyMiss(2n)|+|ConflictMiss(DM,2n+k)|  (4.1)  
                       |Miss(Newcache,2n)|  max{|Miss(DM,2n+k)|,|Miss(FA,2n)|}                    (4.2)        
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where Miss(Arch, Size) denotes the set of misses in a cache of type “Arch” with a 
capacity of “Size” and |A| is the number of elements in set A. Detailed analysis can be 
found in Appendix 4. In (4.1), the left side of the equation can be decomposed to the 
same first 2 terms as the right side plus a third term: ConflictMiss(Newcache,2n). Hence, 
(4.1) shows that the conflict misses of our new cache is less than or equal to that of a 
direct-mapped cache with 2n+k cache lines. Indeed, as verified in the next section, this 
bound is asymptotically tight and is a good approximation of the true miss rate in real 
configurations. This means that the conflict misses of our proposed Newcache are largely 
independent of its actual cache capacity. The conflict misses are indeed dependent on the 
size of the larger LDM cache, 2n+k, rather than on the actual cache size, 2n. This property 
of our proposed cache gives cache designers the ability to control the conflict miss rate at 
the desirable level by choosing the proper number of index bits, while choosing the 
capacity independently based on cost or other needs. This avoids the speed and power 
penalty due to higher associativity and allows finer-grained control on allocating capacity 
to the cache and making the best use of the resource. This property also enables other 
benefits that traditional caches can not provide, as we will show in section 4.4. 

4.3.2.2 Simulation results 
For experimental confirmation of miss rates, we simulated our proposed Newcache and 
traditional direct mapped (DM), set-associative (SA) and fully-associative (FA) caches 
on a cache simulator derived from sim-cache and sim-cheetah of the simplescalar toolset 
[282]. We run all 26 SPEC2000 benchmarks for 1 billion instructions with appropriate 
fast forward counts ranging from 2 million instructions to 3 billion instructions. Figure 4-
11 illustrates the accuracy of the bounds we derived in equations (4.1) and (4.2). The 
bounds are normalized to the real miss rate to show the relative accuracy. The simulation 
is done for our proposed caches with 64-byte lines for n = 6 to 10 (i.e., 4K bytes to 64K 
bytes capacity), with cache indices that are k=3 to 4 bits longer. Except for one point, the 
bounds are always within the 10% range of the real miss rate, and when n+k or k gets 
larger, the accuracy increases. Indeed, the derived bounds are asymptotically tight, 
meaning that the equality in (4.1) holds when k and n+k are large. 
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Figure 4-11. Accuracy of the miss rate bounds  
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Table 4-3 compares the miss rates of our Newcache with the DM cache and the 2-
way and 4-way SA caches with LRU replacement. FA caches and 8-way SA caches with 
RAND replacement are also included to show the effectiveness of our SecRAND 
replacement algorithm. The lowest miss rate in each column is highlighted in bold (and 
normalized to 1 in parenthesis). The miss rates of our new caches are in the last 2 rows – 
our Newcache almost always achieves the lowest miss rates achieved in each column by 
traditional caches. 

Table 4-3. Miss Rate Comparison (relative to best miss rate, in parenthesis) 

 4KB 8KB 16KB 32KB 64KB 

DM  0.133 0.093 0.068 0.055 0.048 

SA-2way, LRU 0.101 0.075 0.057 0.045 0.041 

SA-4way, LRU 0.096 0.068 0.053 (1) 0.042 (1) 0.040 (1) 

SA-8way, RAND 0.095 0.071 0.054 0.044 0.041 

FA, RAND 0.090 (1) 0.067 (1) 0.053 (1) 0.044 0.040 (1) 

Newcache  k=4, SecRAND 0.093 (1.033) 0.068 (1.015) 0.054 (1.019) 0.044 (1.048) 0.041 (1.024) 

Newcache  k=6, SecRAND 0.090 (1) 0.067 (1) 0.053 (1) 0.044 (1.048) 0.040 (1) 

 

4.3.3 Power Efficiency Analysis 

We analyze the power efficiency of the proposed cache with regard to two aspects: the 
per access energy of the cache and the overall power consumption. The cache miss rates 
are obtained from simulation of all SPEC2000 benchmarks. The power penalty of misses, 
i.e., the per access energy of L2 cache is obtained using CACTI 5.0.  

Modern caches are usually organized as a set of subarrays to achieve fast timing and 
low power dissipation, as shown in Figure 4-5. The main sources of dynamic power 
include the power for routing address bits in and data bits out via H-trees, and the power 
on word lines and bit lines since they are heavily loaded. As our Newcache is direct-
mapped, only a minimum number of subarrays need to be activated in each access, which 
minimizes the power consumed on word lines and bit lines, giving the low per access 
energy.  

Figure 4-10 shows the dynamic read energy data generated by CACTI. The impact of 
the changes on the overall power consumption compared to DM caches is very low – less 
than 2%. This is because the percent of energy consumed by the modified structures in 
our proposed Newcache architecture is low. The new address decoder (excluding word 
lines since they are not changed) consumes just a few percent more than a traditional DM 
cache, and the whole decoder power consumption is normally less than 5% of the overall 
dynamic power. The LNregs consume little power because they are a small amount of 
memory compared with the size of the cache and have low switching activities – the 
contents of LNregs need to be changed only during an index miss. Furthermore, unlike 
accesses to other memory cells, most accesses to LNregs do not involve power-
consuming bit-line charging and discharging. Only writes to LNregs require bit-line 
operations, which occur only when index misses happen. The increase in leakage power 
in our Newcache is mainly due to the memory cells in LNregs, which is small relative to 
the overall cache. Hence, the leakage power increase is also low. 
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Figure 4-12. Comparison of the overall power consumption 

Figure 4-12 shows the results comparing the overall power consumption normalized 
to our Newcache. We compare traditional SA caches as well as advanced low power SA 
caches – the way-predicting (wp) SA cache. For example, “SA 4w LRU wp0.7” means a 
4-way set-associative way-predicting cache with prediction accuracy of 0.7, and LRU 
replacement algorithm. All caches are 32KB with 64Byte cache lines. The miss rates of 
the cache impact the overall system power consumption. A higher miss rate means more 
accesses to the larger caches or the main memory which consume more power. Our 
Newcache is more power efficient than the others due to its low miss rate and low per 
access energy. On average, the 4-way SA cache consumes 61% more power than our 
Newcache, the 2-way SA cache 20% more, the DM cache 8% more, the 4-way way-
predicting cache 16% and 6% more with 0.7 [283] and 0.85 accuracy [284], respectively. 
 
4.3.4 Security Analysis 

The proposed cache adopts the randomization approach on cache misses to mitigate 
information leakage, which is achieved by the SecRAND replacement algorithm. Similar 
to the analysis of RPcache, we model the information leakage channel as a classic 
discrete time synchronous channel. The input symbol of the channel is the line number of 
the cache line accessed by the victim that would cause an eviction and the output symbol 
is the line number of cache line for which the attacker observes an eviction. Note that the 
same physical cache line may have different line numbers from the victim and attacker’s 
points of view (e.g., in the proposed cache, they may use different RMTs). To make the 
capacity of this channel zero, the randomization should meet the following requirement 
for all protected cache lines: 

jjiijPijP  ,,)|()|(      (4.3) 

where )|Pr()|( iinputjoutputijP  . In other words, given an access at line i by 
the victim that would cause an eviction, the attacker can observe an eviction at any line 
number with equal probability. From the attacker’s point of view, although the attacker 
can observe a cache eviction, he has no idea which cache line was accessed by the victim. 
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Below we show that the proposed cache meets this condition. Given a cache miss that 
causes an eviction that leaks information, the following cases need to be considered. 

1) The miss is an index miss. According to Figure 4-4 (4th column), a random cache 
line R is selected for eviction with equal probability. In other words, for any 
victim’s access that would cause an eviction, all cache lines have the same 
probability to be evicted, i.e., jjiijPijP  ,,)|()|( . 

2) The miss is a tag miss that involves protected cache lines. As shown in Figure 4-4 
(3rd column), the line to be evicted is also randomly selected with equal 
probability, i.e.,  jjiijPijP  ,,)|()|( . 

Clearly, the proposed randomization mechanism satisfies equation (4.3), and thus 
achieves zero channel capacity. 
 
 

4.4 Additional Benefits  

Fault tolerance: Memory-to-cache remapping is a common technique used in fault-
tolerant cache design. In traditional caches, a memory block mapped to a faulty line/set is 
statically remapped to another good line/set [285-287]. Such schemes increase the 
number of conflict misses since the remapped cache line/set is now shared by more 
memory addresses. They also increase the number of capacity misses since the faulty 
lines reduce cache capacity. The proposed cache architecture can provide fault tolerance 
in a similar manner using remapping, but with better performance. As shown in section 
4.3.2, due to the dynamic memory-to-cache mapping of our Newcache architecture, a 
cache of size s with p faulty cache lines is equivalent to a cache of size s-p, which has the 
same conflict miss rate as shown by (4.1). In other words, faulty cache lines in our 
proposed cache only increase capacity misses, but not conflict misses.  

Hot-spot mitigation: Due to spatial and temporal locality, the references to a small 
number of cache lines account for a majority of the total cache references. The more 
frequently accessed cache lines generate more heat, causing hot spots. Such unevenly 
distributed cache line accesses however are mostly avoided in our proposed Newcache. 
The SecRAND replacement algorithm maps memory blocks to randomly selected 
physical cache lines, which avoids clustering of frequently accessed cache lines.  

Optimization for power efficiency: With the ability of mapping memory blocks to 
arbitrary physical cache lines, our Newcache architecture can also facilitate low power 
design. For example, by adaptively turning off cache lines based on a program’s working 
set, the power efficiency of the cache can be further improved with minimal impact on 
performance. An analysis similar to that in the discussion of fault tolerance can show that 
turning off cache lines in the proposed cache will cause fewer additional cache misses 
than in traditional caches.  

Benefits for cache partitioning and locking: In traditional caches such as set-associative 
caches, cache partitioning is not trivial and has many restrictions [269]. A set-associative 
cache can be partitioned in two ways: horizontal partitioning and vertical partitioning. 
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Horizontal partitioning divides cache sets into subgroups, each of which forms a partition. 
One issue with this scheme is that the number of cache sets in each partition has to be a 
power of 2. This severely limits the flexibility of choosing a partition size. In addition, 
the address decoder has to be redesigned so that it can be reconfigured to index different 
numbers of cache sets. Vertical partitioning partitions cache “ways” (degrees of 
associativity) into subgroups. As most caches have limited associativity, the number of 
partitions can be very limited. In addition, the partitions have lower associativity than the 
original cache, thus incurring higher conflict miss rates. Cache line locking is a more 
flexible way to “partition” a cache, as in PLcache [10]. It however also suffers from 
higher conflict miss rates. In a set-associative cache, the locked line(s) in a cache set 
reduce the effective associativity of the set, thus incurring more conflict misses. In 
contrast, as shown in section 4.2, our Newcache does not have restrictions on the number 
of physical cache lines in a cache. Therefore cache partitioning and locking mechanisms 
built upon our proposed cache has the highest flexibility in allocating cache lines to a 
partition. Moreover, as shown in the discussion of fault tolerance, partitioning a cache 
incurs fewer additional cache misses in our Newcache than in traditional caches, thus 
providing better performance. 
 
 

4.5 Summary 

The presence of caches alleviates the increasingly severe memory wall problem, enabling 
high performance. It however introduces security problems, causing information leakage 
and leading to cache-based side channel attacks. As the information leakage is due to the 
inherent cache behavior – cache hits and misses, it is hard to eliminate without 
compromising performance.  

Chapters 3 and 4 aim to identify the root causes of cache attacks and their impact on 
cache designs, understand the proper roles that software and hardware can play in solving 
the problem, and propose effective solutions that can achieve security without 
compromising other design goals such as performance and power efficiency. Our analysis 
shows that each of cache hits and cache misses can cause information-leaking 
interference and have different implications on cache design. We also found that the 
strengths of software countermeasures and hardware countermeasures are complementary: 
Software can be designed to avoid hit-based interference, but has no control over cache 
evictions which cause miss-based interference. Hardware can be designed to avoid miss-
based interference, but cannot prevent hit-based interference without losing the 
performance provided by caching.  

We then described three cache architectures that can mitigate cache side channel 
attacks: the PLcache, the RPcache and the Newcache.  They are based on two general 
approaches for hardware mechanisms that mitigate information leakage in caches. The 
first approach aims to eliminate cache interference whereas the second approach allows 
interference but removes information leakage through randomization. The PLcache is a 
realization of the first approach. It provides cache line locking mechanisms which 
prevent undesirable cache line evictions, thus achieving security. Compared to simple 
static cache partitioning, the PLcache achieves partitioning via locking, which is more 
flexible and reduces cache underutilization. The RPcache is based on randomization. It 
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imposes minimal restrictions on normal cache behavior and introduces little performance 
impact. The randomization technique used by RPcache can achieve provable security, 
based on information theoretic arguments. The experimental evaluations show that the 
proposed cache designs can achieve security with low hardware cost, causing little 
performance impact.     

Finally, we described our Newcache solution, which is a novel cache architecture that 
can achieve security while providing even higher performance and power efficiency than 
traditional caches. It uses the randomization approach like RPcache with a novel dynamic 
memory-to-cache remapping, longer index bits than required by the physical cache size, 
and a random replacement algorithm.  Newcache achieves the low access time and low 
power advantages of Direct-mapped caches and the low miss-rates of set-associative 
caches. In addition, Newcache achieves the security of leak-free operation against 
software cache-based side-channel attacks.  Furthermore, our Newcache architecture can 
improve the performance when providing fault tolerance, hot-spot avoidance and cache 
partitioning or cache locking.       
 

 
 
 
 
 
Appendix 4 

In this analysis, we consider three cache types, our proposed Newcache, DM and FA, as 
explained in Table 4-4. We assume LRU replacement policy for FA caches and 
Newcache for the ease of analytical analysis. RAND and SecRAND algorithm should 
lead to similar properties in a statisitcal sense since they statisically approximate LRU: 
even though each cache line can be evicted with equal probability in each individual 
cache miss, statistically the more frequently accessed lines have higher probability of 
residing in the cache, and a cache line residing in the cache without being accessed for a 
long time has a higher probability of being evicted. 

Table 4-4: Caches considered 

Caches 
Considered: 

Description 

Newcache of 
size s 

our Newcache, with more index bits referring to a larger Logical Direct 
Mapped cache than the size of the physical cache (for simplicity we assume 
s=2n) 

DM cache of 
size 2n+k 

Direct Mapped cache (which is the LDM cache in Fig. 4-1). 
The physical cache of the proposed architecture holds a subset of the lines 
in the LDM cache. 

FA caches of 
sizes 2n  

Fully Associative cache (for calculation of capacity misses) 
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Proof of the upper bound (4.1):  
The proof of the upper bound is based on three facts. We first define the terms that will 
be used. The reuse distance d is the number of distinct block addresses between two 
consecutive appearances of the same block address. Compulsory misses are those due to 
the first access of the data and have a resue distance d = . Capacity misses are those due 
to insufficient cache capacity. In a cache with m blocks, a miss is a capacity miss if the 
block address has a reuse distance d > m. Conflict misses are those that are neither 
compulsory misses nor capacity misses, i.e., d  m. 

Fact 1: An index miss in the proposed Newcache is either a compulsory miss or a 
capacity miss but the opposite is not necessarily true. 

Proof: In an index miss, the index of the address is not found in the LNregs, which 
means that this index either never appeared before, or there were more than 2n distinct 
indices since the last appearance of the current index. In other words, the reuse distance 
of the address is greater than 2n, and hence an index miss is always a capacity miss or a 
compulsory miss. On the other hand, a capacity miss or a compulsory miss is not 
necessarily an index miss. For example, at the first time an address is accessed, the same 
index may already exist in one LNreg due to a previous access to another address with 
the same index, and hence leads to a tag miss. This proves Fact 1. 

Fact 2: A conflict miss is always a tag miss in Newcache but a tag miss is not necessarily 
a conflict miss.This is indeed the contraposition of Fact 1. 

Fact 3: Considering the misses that occur in the cache architectures we examined, the 
following relationship holds:  

  Miss(Newcache,2n)  Miss(DM,2n+k) U Miss(FA,2n)         (i) 
CompulsoryMiss U CapacityMiss(2n+k)  Miss(DM,2n+k) ∩ Miss(FA,2n)           (ii) 

where Miss(Arch, Size) denotes the set of misses in a cache of type “Arch” with a 
capacity of “Size”. 

Proof: In the proposed cache, the index misses are always misses in the FA cache, by 
Fact 1. The tag misses are always misses in the LDM cache since whenever an index 
conflict occurs in the physical cache it must occur in the LDM cache. This proves (i). To 
prove (ii), consider the compulsory misses and capacity misses in the LDM cache. They 
are first a subset of Miss(DM,2n+k) that includes all misses of the LDM cache. Also, since 
they have reuse distances d > 2n+k, they must also be misses in a FA cache of size 2n. In 
other words, they belong to Miss(DM,2n+k) ∩ Miss(FA,2n).  
With (i) and (ii), we have 

|Miss(Newcache,2n)|  
          |Miss(DM,2n+k)| + |Miss(FA,2n)| - |Miss(DM,2n+k) ∩ Miss(FA,2n)|  
          |Miss(FA,2n)|+|Miss(DM,2n+k)| - |CompulsoryMissUCapacityMiss(2n+k)| 
         = |Miss(FA,2n)| + |ConflictMiss(DM,2n+k)| 
         = |CompulsoryMiss| + |CapacityMiss(2n)| + |ConflictMiss(DM,2n+k)|     □ 
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Proof of the lower bound (4.2)  

As mentioned earlier in section 4.x, at any time the real physical cache stores a subset of 
the cache lines in the conceptual LDM cache. Therefore, given an arbitrary memory 
address, if it hits in the physical cache, it must also hit in the LDM cache. On the other 
hand, if it hits in the LDM cache, it may not necessarily hit in the physical cache – it will 
miss if the line being accessed in the LDM cache is not yet mapped into the physical 
cache. We therefore have |Miss(Newcache,2n)|  |Miss(DM,2n+k)|. On the other hand, The 
proposed cache should have higher miss rate than the fully associative cache of the same 
size since it has conflict misses that the fully associative cache does not have, i.e.,  
|Miss(Newcache,2n)|  |Miss(FA,2n)|.     □ 
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Chapter 5  
 
 

Fast Covert Channels in Microprocessors  
 
 

5.1 Introduction  

Over the last few decades, modern processor architectures have evolved dramatically and 
become very complicated. Numerous new features were introduced, which can lead to 
various forms of information leakage. Theoretically, all these information mechanisms – 
including leakage by resource use and leakage by event reporting – can be exploited to 
construct covert channels. In practice, due to high noise level and/or weak control of the 
sender and receiver over the channel media, many of these channels are not very practical. 
This chapter focuses on some very dangerous channels. In our study, we have identified 
extremely fast covert channels in processors – orders of magnitude faster than traditional 
covert channels. These channels are analyzed and potential countermeasures are 
discussed.  

In particular, this chapter discusses Simultaneous Multi-Threading (SMT) based and 
control speculation based covert channels. SMT allows multiple threads to 
simultaneously execute on the same processor and closely interact with each other, 
leading to efficient symbol transmission and channel synchronization. SMT can facilitate 
covert channels exploiting various on-chip resources in general. Control speculation in 
IA-64 processors is a reporting mechanism that allows the direct observation of a variety 
of architectural and micro-architectural events. It provides a convenient and noiseless 
observation mechanism and therefore improves the communication quality.  
 

5.2 SMT-based Covert Channels  

Simultaneous Multi-Threading (SMT) is a processor architecture approach that allows 
multiple threads to simultaneously execute on the same hardware chip, sharing and 
competing for processor resources [288-290]. The main purpose of SMT is to maximize 
the use of on-chip resources and therefore to boost CPU performance with low hardware 
cost. In a SMT processor, almost all on-chip resources are shared, including the function 
units, physical register files, the whole cache system, the execution pipeline as well as 
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various buffers and queues. Some commercial processors have implemented SMT, e.g., 
Intel’s processors with HyperThreading technology [289]. 

SMT provides an ideal environment for the sender and the receiver to interact with 
each other. In most traditional covert channels, the operations of the sender and the 
receiver are serialized. The sender and receiver take turns to execute, which normally 
involves expensive context switches (since the sender and the receiver belong to different 
security domains, context switches between domains usually take a much longer time 
than normal context switches do). In other words, the transmission of each symbol would 
incur two context switches and therefore the highest possible information rate of such 
channels would not exceed half of the frequency that the system can perform context 
switches even if the symbol transmission itself takes zero time. In contrast, SMT allows 
parallel execution of the sender and the receiver and completely avoids the need for 
context switches. Furthermore, compared with other covert channels where the sender 
and receiver can run in parallel (e.g., in multi-processor systems), the resources being 
exploited in SMT processors are manipulated in a much finer-grained and more tightly 
coupled manner. For example, embedding information into and extracting information 
from shared on-chip resources such as caches takes much less time than exploiting high-
level system resources such as file systems or even hardware resources that are off-chip, 
e.g., the main memory. Covert channels in SMT therefore can achieve significantly 
higher information rates than traditional covert channels do.  

Among the on-chip resources that are exploitable, some are extremely easy to use and 
enable very high information rates. For example, due to the large amount of information 
that can be embedded into caches [121], the cache-based channel in SMT is reported to 
be extremely fast – orders of magnitude faster than traditional cache channels. In our 
study, we identified another very fast channel – the functional unit based covert channel 
(the SMT/FU channel). Below we describe the exploit scenario of the SMT/FU channel 
and discuss possible countermeasures for the SMT/FU channel as well as other SMT-
based channels. 
 
5.2.1 Exploiting Scenario of SMT/FU Channels  

In SMT processors, in each cycle, the function units are dynamically allocated to threads 
currently running on the chip. This allows one thread to affect another thread’s execution 
in a very fine-grained manner. For example, if one thread tries to use all the ALUs 
available on the chip for a few cycles, other threads may be slowed down. Such a tightly 
coupled execution environment for multitasking systems is ideal for covert channels, 
especially the covert timing channels.  

Assume that the sender S and receiver R are two processes that belong to different 
security domains, e.g., S is a HIGH security process and R is a LOW security process in a 
MLS system. Figure 5.1 shows the pseudo code of S and R. For descriptive clarity, we 
assume that the system only contains these two threads (some processors indeed support 
only two simultaneous threads, e.g., a class of Intel Pentium 4 HyperThreading 
processors). The effects of other threads on this channel will be discussed in the next 
section. We assume that S utilizes the integer multiplier as the shared resource to 
modulate R’s behavior. R senses the modulated signal by comparing its progression with 
a timer T. To send a bit ‘1’, S calls MULTIPLY() to execute a fixed number of multiply 
instructions, e.g., 100 to 1000 instructions, which tries to use up all the multipliers. It 
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calls NULL() which executes several hundreds or thousands of nop instructions to send a 
bit ‘0’. To sense S’s behavior, R executes multiply instructions at a constant rate by 
calling RUN(). Therefore when S sends ‘1’s, R will be slowed down. Information can be 
recovered by measuring the time it will take for R to execute a fixed number of multiply 
instructions. To sense the slowdown more accurately, R can utilize an over-sampling 
technique. In other words, R performs multiple measurements for each symbol that S 
sends, i.e., R checks timer T more frequently than necessary, e.g., once per 10-100 
instructions.   

As a demonstration, a SMT/FU channel was implemented on a Pentium 4 HT 
processor, which supports two simultaneous threads. Figure 5.2 shows an example of the 
observed waveform, which plots the variation of time in CPU cycles that are needed by 
the receiver to execute a certain amount of operations, e.g., the RUN() function in Figure 
5-1. For illustration purpose, the bit rate is slowed down (~100Kbits per second) during 
the generation of the figure to achieve clearer waveforms. In practice, the transmission 
rate can be much higher. 
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Figure 5.2. SMT/FU channel: observed signal waveform 

int bit; 
… 
… 
do { 
    bit = get_bit(); 
    if ( bit == 1 )  
         MULTIPLY();   
    else 
         NULL();  
} while ( !TX_end() ); 
… 

int time, dt; 
… 
… 
time = 0; 
do { 
    dt = time; 
    RUN(); 
    time = get_time(); 
    STORE(time-dt);  
} while ( !RX_end() ); 
… 

Sender S Receiver R 

Figure 5.1. Pseudo code for SMT/FU channel 
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The SMT/FU channel is a very fast covert channel. The competition for resources is 
performed in each cycle, unlike most known covert channels which rely on system level 
operations for resource management. The system level operations are at a much coarser 
time granularity than a processor cycle. Also, the SMT based channel is inherently easy 
to synchronize. This is because the processor clock is the global clock for both the sender 
and the receiver. In practice, the SMT/FU channel can easily achieve an information rate 
on the order of megabits per second.  

In SMT processors that support more than two threads, the threads other than the 
sender and the receiver also compete for the shared functional units, thus introducing 
noise into the channel. However, the SMT/FU channel can still be effective in that: 

 Coding techniques such as the error-correcting code which are commonly used 
in communications channels can also be applied here to overcome errors due to 
noise and ensure reliable communication.  

 The sender and the receiver can minimize the “noise” from other threads. They 
can choose to utilize the functional units that are usually unused by other 
threads. For example, in a database system, most services are integer 
applications. The floating point units therefore are the ideal resources that can 
be exploited for covert communication. 

 The load of a system is often not uniform. When the system load is light, it is 
very likely that only the sender and the receiver are ready threads in the system. 
The security of the system can be compromised as long as the receiver gets 
chances to receive information from the sender, especially when the covert 
channel is fast. 

 
5.2.2 A Practical Implementation  

This section presents a practical implementation of the SMT/FU channel on a 2.8GHz 
Pentium 4 HT processor. Two implementation issues need to be considered for achieving 
high information rate: the implementation of MULTIPLY(), NULL() and RUN() as 
shown in Figure 5.1, and a synchronization scheme.  

The design goal of MULTIPLY(), NULL() and RUN() is to make the interference 
between MULTIPLY() and RUN() as strong as possible and the interference between 
NULL() and RUN() as light as possible, and at the same time the interference has small 
variations – less noise in timing measurements. There are two ways for MULTIPLY() 
and RUN() to make use of imul instructions to contend for the integer multipliers: 1) 
using independent imul instructions; or 2) using a chain of dependent imul instructions. 
We tested all four possible combinations and found that a MULTIPLY() implemented 
with dependent imul chain and a RUN() implemented with independent imul 
instructions give the best result. The implementation of NULL() has even more options. 
In addition to nop instructions, any instruction that has little impact on RUN()’s 
execution can be used to implement NULL(). We tested “nop”, “xchg %ebx, %ebx”, 
“pause”, and “mov (%ebp), %eax” instructions which are known as equivalent to 
nop instructions. Our experiments show that the implementation with mov instructions 
gives the best result. Figure 5.3 shows the implementation code of the three functions. 
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The bit synchronization can be achieved with the common time stamp counter 
available in most Intel x86 processors. Both S and R can read the time stamp counter 
using rdtsc instructions and learn the current time in processor cycles. In our 
implementation, S and R agree in advance that each bit is transmitted over a time interval 
of 1024 cycles, starting from time “xxx…xx0000000000” to “xxx…xx1111111111”. To 
send a bit, S reads the timer and starts to run a loop of MULTIPLY() or NULL(), 
depending on the new bit that should be sent, when he sees the start of a new 
transmission interval. S stops the current transmission until he observes the start of the 
next transmission interval and starts the transmission of the next bit. To receive the 
transmitted bits, R runs a loop of RUN() and keeps observing the timer. Whenever he 
sees that the boundary of a transmission interval is passed, he records the current received 
bit and starts to receive the next bit. If for some reason S observes a skip of one or more 
transmission intervals, S skips the corresponding number of bits so that the number of 
bits sent is always correct. Similarly, R skips a proper number of bits if he observes a 
skip of some transmission intervals. In this way, S and R are always synchronized. Such a 
channel is a binary erasure channel [271] since the locations of the corrupted symbols 
(the skipped transmission intervals) are known. The channel capacity of this channel is 
(1-Pe) where Pe is the probability of symbol corruption. In our experiments, we did not 
see any skip of transmission intervals before a context switch occurs. Also, the noise in 
the received signal is very low. 

In this implementation, since it takes 1024 cycles to transmit a bit and processor clock 
rate is 2.8GHz, the information rate is 2.8x109/10242.7Mbps. The code can be further 
optimized and achieve a higher information rate. 

 
5.2.3 Countermeasures of SMT-based Channels  

SMT-based channels utilize the parallel execution of the sender and the receiver threads 
and the tightly shared on-chip resources. One can attack either one of these two points to 
mitigate the problem.  

Software/system level approaches: As the OS scheduler controls when a thread is able to 
run on which processor, it is natural to mitigate the SMT-based channels at the system 
level by disallowing parallel execution of the sender and the receiver threads. The 
following approaches can be applied depending on needs: 

MULTIPLY()  
 
… 
asm volatile (“ \ 
    imul $1,%ecx; \ 
    imul $1,%ecx; \ 
    … 
    … 
    imul $1,%ecx; \ 
“); 
…  

Figure 5.3. Implementation code of MULTIPLY(), NULL() and RUN() 

NULL()  
 
… 
asm volatile (“ \ 
    mov (%ebp),%eax; \ 
    mov (%ebp),%eax; \  
    … 
    … 
    mov (%ebp),%eax; \ 
 “); 
…  

RUN()  
 
… 
asm volatile (“ \ 

imul $1, %eax, %ecx; \ 
    imul $1, %eax, %ecx; \ 
    … 

… 
    imul $1, %eax, %ecx; \ 
“); 
…  
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 Disabling SMT: The simplest and most straight forward mitigation technique is 
to disable the SMT feature of a processor. This can be done either at the 
hardware level by choosing non-SMT mode (e.g., in Intel’s HT processors), or 
at the software level by the scheduler which at any time only schedules one 
threads on the processor. The advantage of this approach is its simplicity and 
low cost in implementation. For example, the HT feature of Intel processors can 
be disabled in BIOS, i.e., neither the operating system software nor application 
software need to be modified to support this mitigation method. It however may 
cause performance degradation due to the underutilization of processor 
resources. The degree of performance degradation depends highly on the type of 
the workloads of the system. According to previous work on the evaluation of 
SMT implementation of IBM Power5 [290], disabling SMT may lead to a 
performance loss of up to ~40% in some cases while achieving a performance 
gain of up to ~10% in some other cases. Similar observations were also found in 
Intel’s HT implementation. Disabling SMT therefore may be an acceptable 
solution in some systems while in other systems a better solution is needed. 

 Advanced scheduling schemes: In the literature, Lattice scheduling [68] was 
proposed to reduce the capacity of traditional covert channels in a system. With 
lattice scheduling, the processes of the same security class tend to be scheduled 
together and the transitions between different classes are minimized. This slows 
down the transmission procedure of the covert channel. A similar idea can also 
be applied here to mitigate SMT-based covert channels. The scheduler always 
schedule processes of the same security class to run simultaneously on the 
processor chip. When there is no other process of the same class ready to run, 
only the current process is scheduled to execute. Such an advanced scheduling 
scheme would minimize the waste of resource utilization and lead to better 
performance.  
 

Processor level approaches: In addition to disallowing parallel execution of the sender 
and receiver threads, SMT-based covert channels can be mitigated by eliminating 
information leakage due to resource sharing. A few alternatives of this approach are listed 
below: 

 Resource partitioning: The interference between simultaneous threads can be 
eliminated by partitioning the originally shared resources and allocating 
different partitions to different threads. In processors, resources can be designed 
to have a “partitioned mode”, and when two threads of different security classes 
are executing in parallel, the resources are partitioned rather than shared. This 
may require new architecture design, e.g., the partitioned cache or PLcache 
(described in Chapter 3), or modifications of existing features, e.g., the fairness 
control logic available in the processor.  

 Non-interference sharing policy: If the receiver thread always has higher 
priority in contending resources, i.e., he always wins in competing for resources, 
he will not be able to sense the existence of the sender thread. We refer to such 
a resource sharing policy as the non-interference policy. Such a policy however 
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contradicts the concept of fairness, and may not be a practical solution in many 
systems. 

 Randomization: Information leakage due to resource sharing can also be 
mitigated via randomization. Unlike resource partitioning, resource sharing is 
still allowed but the interference that causes information leakage is randomized 
such that it carries no useful information. A randomization based approach 
therefore can avoid resource underutilization due to partitioning, and can 
achieve good performance. Examples of this are the cache interference 
randomization in the RPcache and the Newcache (described in Chapters 3 and 
4). Randomization techniques, however, are not generally applicable. For 
example, randomly allocating function units to different threads will not get 
better performance and security when compared to static partitioning of 
function unit resources.  

In addition to the above mitigation techniques that avoid or reduce resource sharing, 
the channels can also be mitigated by making the signal observations noisy. Since most 
covert channels in processors take advantage of the high resolution on-chip time stamp 
counter, making the timer unavailable to threads when necessary or reducing the 
resolution of the timer can be a generally effective way to reduce the information rate of 
covert channels. Most modern processors provide a way to control how the on-chip timer 
is accessed. For example, in Intel x86 processors, the operating system can disallow a 
user-level program to access the on-chip time stamp counter by setting the time stamp 
disable (TSD) bit in register CR4. Providing a low resolution timer can be achieved with 
a software method for an existing processor, or with a hardware method that requires 
modification of current processor design. In the first case, the operating system can set 
the TSD bit and force a user-level program to learn time through an API call which 
provides the low resolution time. In the second case, a simple implementation of a low 
resolution timer is to return the value of the on-chip time stamp counter with a proper 
number of LSB bits cleared.  
 

5.3 Covert Channels due to Control Speculation in IA-64  

To hide the long latency that load instructions may introduce, control speculation in IA-
64 allows a load instruction (ld.s) to execute speculatively [291] – this means that the 
compiler can hoist a load instruction before its controlling conditional branch instruction. 
Since the load is executed without knowing if it should actually be executed (depending 
on the result of a conditional branch instruction that precedes it), it may cause an 
exception that should not occur. This exception thus is deferred and not triggered during 
the execution of the load instruction, and will be handled at a later time when it is known 
whether the exception should occur or not. In IA-64, the following mechanism is 
implemented to allow deferral of exceptions. As shown in Figure 5.4, each general 
purpose register is extended with a one-bit flag called the NaT (Not a Thing) bit. If the 
speculative load instruction would cause an exception, the NaT bit of the target register 
will be set. At a later time, this bit is checked, e.g., by using the chk.s instruction, and 
the recovery code will be executed if necessary.  
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Figure 5.5 shows a segment of sample code that utilizes control speculation.  In a 
non-speculative ISA, the load instruction can only be scheduled after the conditional 
branch instruction, while in IA-64 with control speculation, it can be moved far ahead of 
the branch. The ld.s is a speculative load with deferred exceptions. The chk.s is a 
check speculation instruction, which checks the NaT bit of register R1, and triggers any 
exceptions at that point if they should occur.  

 

5.3.1 Exploiting Scenario 

The key idea of control speculation is to defer the exception and allow the program itself 
to handle the exception. In other words, it makes the exception visible to the program. In 
IA-64, this is visible through the NaT bit. In practice, TLB misses or TLB access bit 
violations are typical examples of ld.s exceptions which can be deferred [292]. In 
addition to the deferral of exceptional conditions, some other events, e.g., long latency 
cache misses, may be deferred automatically by hardware based on implementation-
dependent criteria. Such deferral is referred to as spontaneous deferral ([291] vol.2 
pp.2:88).  

The above mechanism inadvertently opens a covert channel in the system. A sender 
can encode information by making a change in the system’s status, e.g., evicting a page 
translation of the receiver from the TLB. The receiver can then observe the change by 
using ld.s instructions which will detect the change and set the value of the NaT 
registers accordingly. Below we assume an IA-64 processor that supports spontaneous 
deferral of L3 cache misses to illustrate the exploiting scenario. Note that although the 
current generation of IA-64 processors does not support spontaneous deferral of long 
latency cache misses, future generations may implement this as indicated in [291] vol.2 
pp.2:88, particularly due to the increasingly larger speed gap between the fast processor 
and slow memory. We wish to emphasize the severity of this channel before real damage 
is done. 

 

NaT  General-purpose register 

0 63 64 

Figure 5.4. 65-bit general-purpose register in IA-64 

Non-speculative ISA 
 
… 
… 
conditional branch 
ld R1 <- [x] 

IA-64 with control speculation 
 
ld.s R1 <- [x] 
… 
… 
conditional branch 
chk.s R1 

Figure 5.5. Sample code for IA-64 control speculation 
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Assume that the processor has an N-way set-associative L3 cache with M cache sets 
in each way. Without loss of generality, Figure 5-6 shows a simplified example where 
N=2 and M=4. Assume that the receiver R accesses a large continuous region of memory 
before it relinquishes the CPU such that the whole cache is filled with R’s memory. We 
also assume that only the receiver R and the sender S exist in the system and S will then 
gain the CPU. S can then selectively replace the cache lines with its own memory by 
accessing its memory at certain addresses. For example, S can access 0x………0 and 
0x………1 to replace both cache lines in the first cache set with its own data. Assume that 
S relinquishes the CPU after it does this and R runs again. R then tries to load 0x………0, 
0x………2, 0x………4 and 0x………6 to R1, R2, R3 and R4 respectively, using ld.s 
instruction. Because the first cache set now only contains S’s data, a miss will occur 
when R accesses 0x………0. Therefore the NaT bit of R1 will be set. Since all other cache 
sets still keep R’s memory, the other 3 loads of R will hit on the cache and the NaT bits 
of R2, R3 and R4 will remain 0. Using the tnat (Test NaT) instruction, the NaT bits can 
be moved to predicate registers and can then be moved to general purpose registers using 
mov instructions. In this way R receives a string of “1000” from S. 

In summary, the following operations are required to set up the covert channel. 
Assume that initially the cache is filled with R’s memory blocks. 

S’s operations: To encode a bit ‘1’ at a cache set i, S manages to access memory at 
proper addresses such that all cache lines in cache set i are replaced by S’s memory 
blocks. To encode a bit ‘0’ at a cache set i, S leaves the cache set unchanged. After all 
cache sets have been encoded, S relinquishes the CPU. 
R’s operations: R first decodes the bits that S encoded at each cache set by using ld.s 
instructions to access a continuous region of memory. If a bit ‘1’ is encoded at a cache set, 
the corresponding ld.s instructions will set the NaT bits of the target registers. R then 
uses tnat and mov instructions to move the decoded bits to general purpose registers. 
After all bits have been decoded, R manages to fill the whole cache with its memory 
again using non-speculative memory access instructions. R then relinquishes the CPU. 

R 

Set# 0 1 2 3 

Way0 

Way1 

L3 Cache 

R R R

R R R R

S 

Set# 

Way0 

Way1 

L3 Cache 

R R R 

S R R R 

Encode 

Figure 5.6. Encoding in L3 cache (N=2-way associativity, M=4 sets) 

Received bits: 1 0 0 0 

R fills the cache 
with its own 
memory blocks 

S encodes a bit ‘1’ at set 
0 by replacing all cache 
lines in set 0 

0 1 2 3 
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In this way each time S can send a “packet” of M bits of information to R. In the 
above discussion, we assumed that S and R are the only threads in the system. When 
other threads exist, including the OS itself, they may also “pollute” the cache by 
replacing cache lines with their own memory contents. Furthermore, we ignored the 
cache line replacements caused by S and R’s own codes. All these issues will introduce 
“noise” to the channel. However, as the L3 cache usually has high associativity, it is 
inherently resistant to such noise. For example, the memory accesses of other threads 
may cause some cache lines of a cache set to be replaced. However, at a cache set, unless 
all cache lines are replaced in the cache set, at least one of R’s ld.s instructions 
accessing that cache set will still hit in the cache. If during the decoding of the bit 
encoded in a cache set, a 1 is decoded only if all R’s accesses to the cache set miss, the 
effect of evictions causing noise is minimized. In a cache with high associativity, the 
probability that a bit is flipped, i.e., all cache lines in a cache set are replaced, is low. 
Furthermore, error-correcting code can also be applied here, which can provide further 
protection against noise. 

Another assumption we made in the discussion is that S and R are scheduled on the 
CPU one after the other. In other words, each “packet” sent by S will be received by R. 
However, in a real system, R may be scheduled on the CPU twice without S being 
scheduled in between. Then R will receive one extra “packet”. It is also possible that S is 
scheduled on the CPU twice without R being scheduled in between. In this case a 
“packet” is dropped. Fortunately since usually the M parameter of an L3 cache is 
relatively large, a few bits in the packet can be encoded as a sequence number. Using this 
method, both the “inserted” packets and the packets that are dropped out can be detected 
and therefore the synchronization is not a problem. Such a channel is indeed an erasure 
channel [271] which is well known in communication theory. A formal discussion on the 
impact of the asynchronism of S and R will be presented in chapter 6. 

 
5.3.2 Information Rate Estimation  

In this section we estimate the peak information rate of the speculation-based covert 
channel, i.e., we assume that S and R are scheduled one after the other and they are the 
only two threads ready to run, e.g., when the load of the system is light. The effect of the 
scheduling algorithm can be estimated separately, as shown in chapter 6.  

In a highly associative cache, using all cache lines in a cache set to encode a bit may 
be overkill since the probability of the “noise” causing all cache lines in a set to be 
evicted is very low. To avoid unnecessarily high overhead for bit encoding, we assume 
that L out of N cache lines in a cache set are exploited by S. The value of L can be 
determined by examining the average conflict miss rate of programs. For example, it has 
been observed in the past that given a fixed cache capacity, increasing the cache 
associativity to above a certain number (e.g., 4-8) does not help much to reduce conflict 
misses, i.e., the probability that a program occupies more than that number of cache lines 
in a cache set is low. We therefore assume that L is no greater than 8. We also ignore the 
bits that are encoded as the sequence number. Let D denote the number of cycles needed 
to replace a cache line. Then to send a packet, the number of cycles that S needs can be 
calculated as: 

DLbST )(       (5.1) 
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where b is the number of ‘1’s in the packet. To calculate the number of cycles needed by 
R to receive a packet, three time components need to be considered: the time for 
decoding a 1 bit, the time for decoding a 0 bit, and the time for refilling cache lines that 
have been evicted. We assume that R performs cache miss detections and cache line 
refilling in a single scan to save time. Since in modern high performance processors, the 
time for accessing slow memory (to refill evicted cache lines) is usually overlapped with 
the time for cache hits and cache probing, the time corresponding to cache accesses that 
hit in the cache and the speculative loads that probe the cache for miss detection can 
largely be hidden in the time that is spent in accessing main memory. We therefore make 
an approximate estimation:   

   DLbSTRT  )()(      (5.2) 

The peak information rate can then be calculated as [17]: 

   
cTRTST

Mf
R

2)()(max 
      (5.3) 

where Tc represents the cycles needed for process context switch and f is the operating 
frequency of the processor. 

To have a sense of the information rate in real systems, we consider the following 
system: the L3 cache is 16-way associative and 2MB in size with 128-byte cache lines. 
Therefore N=16 and M = 1024. Assume that L = 4 and on average half of the bits in a 
packet is ‘1’s, i.e., b = M/2 = 512. D is estimated as 200 cycles which is a normal 
memory access delay. We assume that on average context switch time Tc is around 10000 
cycles and the processor operates at 2GHz. With these parameters we can calculate Rmax 
as: 
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5.3.3 Countermeasures  

A straight forward method to block the speculation based channels is to disallow a 
process to handle exceptions by itself. This requires that the processor provide 
mechanisms that allow the OS to control the ability of processes on exception handling. 
Fortunately, the existing IA-64 processors (i.e., Intel’s Itanium processors) allow the OS 
to switch the processor mode which deals with exceptions in different ways. For example, 
the Itanium processor can be configured in a no-recovery mode which only defers fatal 
exception conditions. In other words, the application code will not be able to handle most 
exceptions, including the TLB/cache misses. A drawback of this countermeasure is that it 
may introduce considerable performance degradation. Compilers that make heavy use of 
speculations to expose more parallelism [293-294] may need to handle exceptions 
frequently and therefore rely on light-weight exception handling mechanisms to avoid 
high performance penalty. Having the OS handle exceptions would significantly increase 
the exception handling overhead. A possible way to circumvent this problem is to 
augment the processor with the finer-grained control of the exception handling mode. 
Instead of having a single switch that controls the entire chip, if each hardware context, 
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representing a process or a thread, is tagged with its capability in handling exceptions and 
the hardware reports exceptions differently based on the tag, the OS can avoid the low 
performance no-recovery mode whenever possible. For example, in a Multi-Level 
Security (MLS) system where each process has a security level, e.g., a High security level 
or a Low security level, to prevent information from being exposed to the Low security 
processes which are untrusted, the OS may assign no-recovery mode only to the Low 
security processes. The OS can optimize performance even further, by tracking the 
system resource usage. For example, if at a moment all processes that are actively sharing 
the system resources belong to the same security level or security domain, there is no 
need to worry about information leakage between these processes, and the OS can allow 
all processes to enjoy the light-weight exception handling mechanism. The OS needs to 
selectively assign no-recovery mode to processes when processes from different security 
levels or domains are active at the same time. 

Note that as mentioned in chapter 1, control speculation is a mechanism that causes 
leakage by event reporting, i.e., it does not produce the events that leak information but 
only exposes the events that were originally not visible. For a given channel medium, 
information can be extracted using different observation mechanisms. For example, 
although the information embedded in the L3 cache can be observed using control 
speculation, disabling control speculation does not really close the channel – the 
information can also be observed based on cache access timing. Therefore although 
closing the observation mechanisms is necessary – it makes it harder for the observer to 
extract information from the channel medium, it is only part of the efforts that eventually 
close the covert channels. 
 
 

5.4 Remarks 

Compared with traditional covert channels, the new covert channels in processors that we 
described are extremely fast. Table 5.1 shows a comparison of the information rates of 
new covert channels in processors and traditional OS-level and hardware-level covert 
channels. Three traditional covert channels are included for comparison. The bus 
contention channel [61] exploits the shared bus in multiprocessor systems. The inode 
table channel encodes a bit by making the inode table either full or not full. The upgraded 
dir channel uses the existence of a folder to indicate if a 1 or a 0 is sent.  
 

Table 5.1. Information rate1 comparison of covert channels 

Architectural level covert channels Traditional covert channels 

SMT/Cache SMT/FU 
Control 
Spec. 

Bus-contention 
channel 

Inode Table 
Channel 

Upgraded Dir 
Channel 

~3.2M2 ~2.7M ~2.4M ~1K ~50 ~0.5 

 1 in bps (bits per second). 
 2 Data obtained from [121] on a 2.8GHz Pentium 4 HT processor. 
 
Note that the information rates of traditional covert channels were obtained in computers 
in 1990’s and the same channel in modern computers should be much faster. However, 
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even if we assume a linear increase in such traditional covert channel rates with a 100X 
increase in processor clock rate, the processor-based covert channels are still orders of 
magnitude faster than the traditional hardware-based (bus contention channel) as well as 
OS-based covert channels.  

Also note that although this chapter mainly focuses on covert channels, the same 
information leakage mechanisms that lead to fast covert channels may be exploited in 
side channel attacks as well. For example, in the access-driven cache based side channel 
attacks, the attacker currently relies on timing measurement to distinguish cache hits and 
cache misses, which is noisy and not 100% accurate. If however in a processor the 
control speculation mechanism allows the detection of long latency cache misses (e.g., 
via supporting spontaneous deferrals), the attacker would then be able to distinguish 
cache hits and misses without any noise or errors, e.g., by using the same exploiting 
method as described in section 5.3.1. This would greatly help improve the cache based 
side channel attacks. In general, control speculation provides a reliable way for attackers 
to collect information like various hardware level events that were previously invisible to 
software, and hence may improve existing side channel attacks or even introduce new 
attacks.  

We also note that although the SMT/FU based channel is not as helpful as the control 
speculation based channel in exposing information that would allow the inference of data 
or address information of a program, it may still reveal information about the instruction 
mix, e.g., helping the identification of different operations in crypto algorithms like 
squaring operations versus table lookups, if these operations are significantly different in 
terms of instruction mix.   
 

5.5 Summary 

This chapter presents our work on the identification and analysis of new fast covert 
channels in processors. Two classes of covert channels are discussed, including the SMT-
based covert channels and the control speculation based covert channels. SMT is a 
processor architectural feature that allows multiple threads to execute simultaneously on 
the same chip, sharing and competing for most on-chip resources on a per cycle basis, 
which maximizes the resource utilization. SMT allows the sender and the receiver of a 
covert channel to run in parallel, avoiding bit transmission overhead due to expensive 
context switches. At the same time, the tightly-coupled resource sharing in SMT 
processors allows faster interaction between the sender and the receiver through resource 
contention, i.e., information bits can be transmitted and received more quickly. These two 
factors significantly increase the information rate of covert channels in SMT processors. 
Another processor architectural feature that enables fast covert channels is control 
speculation. Control speculation allows a program to handle various types of exception 
events, as well as other events such as long latency cache misses, by itself, i.e., these 
originally invisible events are now directly visible to the program. Control speculation 
therefore provides a convenient and noiseless observation mechanism for covert channels. 
To illustrate the severity of these two types of covert channels, two specific covert 
channels are presented: the SMT/FU channel exploits the shared functional units (the 
integer multipliers) and the control speculation based channel makes use of the L3 cache 
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as the channel media. The analysis and experiments show that these two channels can 
achieve very high information rates – on the order of mega bits per second – which is 
orders of magnitude faster than traditional covert channels. This chapter also discusses 
possible software and hardware countermeasures for both classes of covert channels.  
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Chapter 6  
 
 

On Covert Chanel Modeling and Analysis  
 
 

6.1 Introduction  

Despite decades of work in the area of covert channel modeling and analysis, there are 
still some fundamental questions that have gone unanswered in the past. One of these is 
about the classification of covert channels as storage channels versus timing channels. 
While this classification was widely used in practice, there are covert channels that are 
hard to classify. Researchers admitted that the difference between storage channels and 
timing channels is unclear. In this chapter, we will present an abstract channel model 
which helps improve the understanding of the nature of covert channels and clarify some 
misconceptions. It can also help identify new channels.  

Another question that this chapter will cover is about the capacity estimation of 
covert channels. In the literature, covert channels are often modeled as certain forms of 
communication channels, to which information theory can then be applied for calculating 
channel capacities. There are also experimental methods that directly estimate the 
channel bit transmission rate based on measured results as well as some best-case 
assumptions. Both types of methods assume that the channels are synchronous or the 
synchronization overhead is negligible. This assumption is valid in the sense that the goal 
is to estimate the maximum attainable information rate over the channel. However, one 
significant difference between covert channels and real communication channels is that 
covert channels are not actually “channels” intended for communications. They are 
typically not synchronous and the asynchronism is indeed an inherent property of covert 
channels. To fully capture the properties of covert channels, the impact of asynchronous 
nature on capacities also needs to be characterized. The existing capacity estimation 
methods obviously can not capture the asynchronous aspect of covert channels due to 
their assumption of synchronous models. In this chapter, we address several fundamental 
questions that were not answered in the literature, which however allow us to fully 
characterize covert channels in channel capacity estimations.  
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6.2  Storage Channel and Timing Channel Revisited  

Intuitively, the key difference between covert storage channels and covert timing 
channels is whether the channel exploits timing characteristics. This explanation however 
is vague: the exact meaning of “exploiting timing characteristics” can hardly be defined 
accurately. Indeed, the definition of “time” itself is vague. When the sender and the 
receiver do not have access to time references, which is often the case in covert channels, 
they have to derive their own view of time using other methods, e.g., via the observation 
of some events. Their view of time may be totally different, and can be uncorrelated to 
the real physical time. Such ambiguity has led to questioning of the classification in the 
literature [26]. Some researchers even believed that there is indeed no difference between 
these two types of covert channels [17]. Without a clear definition of storage channels 
and timing channels, it would be impossible to answer questions such as “are all 
storage/timing channels identified? Can all storage/timing channels be identified?”  

Another reason that makes the classification of some covert channels hard is that such 
channels exhibit characteristics of both. For example, in the disk arm channel described 
in chapter 2, the information is embedded into the position of the disk arm, which is a 
typical characteristic of storage channels, while the extraction of the information is by 
comparing the completion timing of a few disk accesses.  

In the subsequent sections, we will present an abstract model of covert channels, 
which consists of two parts: 1) basic resources and mechanisms that allow information 
leakage in processors as the components of a communication channel, and 2) a channel 
use model. The channel use model addresses the issue with regard to the definition of 
time and models the asynchronous nature of covert channels. We will then illustrate how 
existing work can fit into this proposed model, with confusions clarified, and propose a 
new categorization of covert channels.   

 
6.2.1 Information Leaking Mechanisms in Processors 

Since information leakage is a form of information transfer and distribution, it can be 
considered as a communication problem. We model an information leakage channel as a 
communication channel, as shown in Figure 6-1. The proposed channel consists of a 
sender, a receiver, and the channel medium. The sender modulates information onto the 
channel medium through a modulation mechanism, and the receiver extracts the 
information from the medium through an observation mechanism.   

Despite the similarity between the information leakage channel and a traditional 
communication channel, there are several key differences. First, the sender in an 
information leakage channel may not always transfer information on purpose. For 
example, in side channel attacks, the sender is the victim that by no means wishes to 
transmit information and the information is leaked out unintentionally. Second, unlike in 
communication systems where the mechanisms for accessing the channel medium are 
optimized for the sender and the receiver, in information leakage channels, the sender and 
the receiver may not have much control on what mechanisms they can use to access the 
channel medium, and the mechanisms (i.e., the modulation and observation mechanisms) 
are not designed for communication and often not suitable for communication. The focus 
of this work therefore is not how to design an efficient communication system, but what 
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modulation/observation mechanisms are available in a processor and how these 
mechanisms can be exploited for information leakage.  

 

 

Figure 6-1. An abstract channel model for information leakage 

 

6.2.1.1 Types of Channel Mediums 
The ways with which the sender encodes information into the channel medium and the 
receiver extracts information from it, often depend on the channel medium’s properties. 
The channel medium, i.e., the resources in processors, can be categorized as two types: 

Stateful resources: A stateful resource is one where its use has effect on later uses of the 
resource.  For example, whether a memory access will hit or miss in caches is dependent 
on previous memory accesses. Examples of stateful resources include all kinds of caches 
such as data and instruction caches, TLBs, branch predictors as well as other components 
with a memory effect. 

Stateless resources: A stateless resource is one where each use is independent of previous 
uses. For example, the use of buses and combinatorial functional units with no memory 
has no effect on their later use. 

 
6.2.1.2 Modulation Mechanisms and Observation Mechanisms 
Modulation mechanisms allow the sender to modulate information on the channel 
medium. The information can be modulated through temporal encoding or spatial 
encoding. In temporal encoding, the information is encoded into the amount of time a 
resource is used. For example, in a uniprocessor system, a process can modulate 
information over its CPU time, e.g., by using a longer CPU time to indicate a 1 and a 
shorter CPU time to indicate a 0. In spatial encoding, the information is expressed with 
the spatial status of the resource. For instance, the sender can encode information into the 
cache by selectively evicting cache lines. Figure 6-2 shows an example that encodes four 
bits into a direct mapped cache with four cache lines. The receiver first manages to 
initialize the cache state by loading his data into the cache to occupy all cache lines. The 
sender then selectively evicts the receiver’s cache lines: the eviction of a cache line 
means a 1 and no eviction means a 0. In this example, the encoded bits are 1011.  

Similarly, the observation mechanisms may extract information by exploiting 
temporal characteristics, or spatial characteristics of the resource. Temporal observation 
mechanisms always involve timing measurements while spatial observation mechanisms 
do not. A good example of the use of temporal observation mechanism is the detection of 
cache misses. By using the rdtsc instruction (read timer) in x86 processors, a process 
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can measure the number of cycles it takes for a memory access to complete, which 
indicates whether a cache hit or miss has occurred. A good example of spatial 
observation mechanisms is the reporting mechanism mentioned in section 1.3.2. For 
instance, in IA-64 processors that support control speculation, a process can directly learn 
if a page fault has occurred by checking the value of a NaT (Not a Thing) register.  

 

 

Figure 6-2. Spatially encoding four bits into a four-entry direct mapped cache 

 The type of observation mechanism used to extract information can be independent 
of the type of the modulation mechanism used to encode the information, i.e., spatially 
encoded information may be extracted with both spatial and temporal observation 
mechanisms, and temporal encoded information may be extracted with both temporal and 
spatial observation mechanisms. For example, to extract a bit expressed by the presence 
of a page in memory, a process can detect if an access to the page generates a page fault 
by measuring the access delay – a temporal observation mechanism, or by checking the 
value of a NaT register in an IA-64 processor – a spatial observation mechanism. 

The modulation and observation mechanisms are closely related to the leakage by 
resource use and the leakage by event reporting discussed in section 1.3.2. Indeed, the 
mechanisms that leak information during resource use can always be used as modulation 
mechanisms since they allow information about object values and addresses to be 
modulated over the resources being used. The reporting mechanisms on the other hand 
provide ideal spatial observation mechanisms as the information embedded in the channel 
medium can be directly read out from architecturally-visible registers. Compared with 
other observation mechanisms, e.g., those employing timing measurements, the reporting 
mechanisms allow convenient and noiseless observation.  

The type of channel medium also has an impact on how modulation and observation 
mechanisms can be used. Compared with stateful resources, stateless resources usually 
have more restrictions. Since stateless resources cannot remember the encoded 
information, the receiver normally has to be able to run in parallel with the sender so that 
observations can be made in time before the encoded information disappears. For 
example, in the bus contention channel, the sender and the receiver have to be running 
simultaneously on two processors that share the bus, both contending for the bus to 
modulate information over the bus usage as well as observe the information from the bus 
usage. The use of a stateful resource does not have such restrictions and therefore can be 
used in more situations. 



 

 

92

6.2.2 A Channel Use Model of Covert Channels 

A fundamental difference between a covert channel and a real communication channel is 
that the sender and the receiver in covert channels often don’t have the same “view” of 
time, e.g., the time elapse rate observed by the sender and the receiver can be totally 
different and uncorrelated to physical time. Another significant difference is that the 
sender and the receiver in covert channels are typically much more restricted in accessing 
the channels, e.g., they often don’t have the control on when they can use the channel and 
may not be able to perform an operation when they wish to. The reasons are twofold. 
Firstly, as a commonly adopted countermeasure against covert timing channels, good 
time sources are typically not allowed to be exposed to the sender and the receiver (e.g., 
user processes in operating systems). Secondly, in computer systems, the resource 
management is typically out of the sender and the receiver’s control, i.e., the sender and 
the receiver may not use chip resources or make an operation unless the resource 
manager allows them to do so. This is particularly true in systems where covert channels 
are a concern. For example, in such systems not only the resource manager (e.g., the 
process scheduler) is not under the sender and the receiver’s control, very often specific 
methods like lattice scheduling [68] and fuzzy time [25] are also adopted to further 
mitigate covert channels. As a result, in a covert channel, it may be very hard for the 
sender and the receiver to reliably cooperate with each other. Also they often can not rely 
on time to gain synchronization, e.g., by agreeing on a fixed operation interval, since 
their view of how time elapses may be totally different.  

Due to the above reasons, we model the sender and the receiver as entities that 
operate independently in transmitting and receiving bits and do not have the ability to 
reliably coordinate with each other. The access patterns to the channel that the sender and 
the receiver may have are determined by the nature of the system (e.g., the specific 
scheduling algorithm that is being used) and therefore are considered as a property of the 
channel instead of something under the sender’s or the receiver’s control. Note that the 
sender and the receiver may still be able to coordinate if there are mechanisms (e.g., a 
feedback path) outside the covert channel being discussed, but with only the forward 
channel as depicted in Fig 6.1, they can’t. The effect of mechanisms allowing 
coordination will be discussed in section 6.3.  

With such a channel model the channel is clearly not synchronized. Bits sent by the 
sender may drop out – if the receiver does not make an observation promptly, and extra 
bits may be inserted – if the sender does not send a bit between two adjacent channel 
observations at the receiver side. Also the sender and the receiver are not aware of bit 
insertions and dropouts as they don’t know and cannot predict if the sender has sent a bit 
or the receiver has made an observation on the channel. Note that since the error rates of 
the channel, e.g., the bit dropout/insertion rate, are determined by the sender and the 
receiver’s asynchronous access patterns to the channel, they indeed represent the 
asynchronous aspect of the channel.   

An implication of not having a common interpretation of time is that the meaning of 
“exploiting timing characteristics” is vague and can hardly be defined accurately. For 
example, a sequence of events that have temporal effects on the sender may become a 
single event that carries no timing information at all in the receiver’s view – if during the 
time when the events happen the receiver has a much slower “clock” it may only see the 
accumulated results of all the events. The sections below rigorously define time used in 
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our channel model and describe how channel symbols are constructed – which relies on 
the definition of time. 

In the broadest sense, as suggested in [26], “the passage of time can be characterized 
by sequences of events which can be distinguished one from another by the observer.” 
For example, the time presented by a time stamp counter in a processor can be viewed as 
a sequence of events which increment a value, and each event is distinguishable due to 
the corresponding counter value. We adopt this view of time and the definition of a clock 
as a time reference. 

In a covert channel, the sender and the receiver need to find time references (i.e., 
sequences of events, which may not resemble a real clock at all and may be totally 
uncorrelated to real physical time) to construct their own view of “time”. To obtain the 
current time, the observer needs to make an observation and compare the observation 
event with the time reference event sequence. The order of the events provides the 
observer with the current time. In other words, if the observation occurs between events 
Ti and Ti+1, the observer knows that the current time Ti < t < Ti+1. The difference between 
Ti and Ti+1 is the resolution of the “clock”.  

The above discussion shows that, all forms of timing measurements in essence are the 
comparison of the order of events. We therefore define: 

Definition 6.1: Given an observer and his reference event sequence T = <Ti>, the 
observer’s view of the time can be defined as the comparisons of the ordering of the 
observation events Oi and the events in T.  

Note that the choice of the event sequence is often channel specific and may vary 
significantly. Some channels may seek event sources that approximately represent 
physical time. For example, the sender or receiver can construct his own timer by 
launching a thread that self-increments a counter by executing a loop. Other channels 
may choose an event sequence that does not resemble a timer at all. In the disk arm 
channel where the order of completion of two disk accesses carries the information, the 
completion event of one of the disk accesses itself can be chosen as the reference. Such 
an event sequence does not really represent the real time. 

With this definition of time, we can clarify the difference between covert storage 
channels and covert timing channels. For clarity of the discussion, we model a computer 
system as an abstract machine where a process is modeled as an active subject and its 
states are modeled as passive objects. A subject consists of sequences of operations that 
manipulate the value of objects. 

From the observer’s point of view, information can only be delivered to it via the 
things that it can “see”. By “see”, we mean any means by which the observer can learn 
the value of an object. We then define an observer’s visible space as follows: 

Definition 6.2: The visible space V of an observer is the set of all objects that the 
observer can see. V(i) is a snapshot of the visible space at the i-th observation, i.e., Oi,  
made by the observer.  

In a covert channel, to transfer information to the receiver, if the sender is able to 
change the value of an object in the receiver’s visible space VR, he can directly encode 
information in the value of that object. In this case, VR is the symbol space of the covert 
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channel. For example, if VR contains a single binary object, the symbol space is {0,1}. If, 
however, the sender has no way to alter the value of any object in the receiver’s visible 
space, he can not directly encode information into VR. As illustrated below, he can still 
transfer information by encoding information into the extended symbol space VR

2, VR
3,…, 

etc., where VR
2= VR

 VR, VR
3= VR

 VRVR,…, and so on. In the binary case, VR
2= {0,1}  

{0,1} = {00, 01, 10, 11}.   
When the sender cannot alter the value of any object in VR, if he can impact the order 

of value changing events of some objects in VR, he can encode information into the 
extended symbol space. Below is an example. Consider a VR that contains two binary 
objects a and b, with initial values of 0 and 1, respectively. a is going to have a 0  1 
transition and b is going to have a 1  0 transition. These transitions will occur anyway 
and the sender has no way to change the transitions. The sender however is able to 
control the order of these transitions. Let VR(i) and VR(j) denote the two snapshots of the 
receiver’s visible space when he makes his i-th and j-th observations and the two 
transitions are observed in these two snapshots. The sender can encode 1 bit of 
information into the extended symbol space VR(i)  VR(j) by controlling which transition 
occurs first, e.g., if a’s transition occurs first, a 0 is sent, otherwise a 1 is sent. Let a 

symbol in VR(i)  VR(j) be denoted as 







)()(

)()(

jbib

jaia
, where x(t) is the value of object x in the 

t-th observation. The symbol 







11

01
 would indicate a 0 and 








10

00
 would indicate a 1. 

Indeed, the above two types of information transfer methods reveal the difference 
between storage channels and timing channels. In the first method, to receive a bit of 
information, the receiver only needs to do a single observation and no comparison of 
event order is involved. The second method however encodes information in the order of 
events and requires multiple observations to receive a bit. Since timing measurements are 
essentially comparisons of event orders, the first type of channels do not involve timing 
measurements whereas the second type of channels do. The classification of storage 
channels versus timing channels therefore can be based on this distinction. 

Definition 6.3: A covert channel is a storage channel if the information to be 
transmitted is encoded into the receiver’s visible space VR. A covert channel is a timing 
channel if the information can only be encoded into an extended symbol space VR

n, n > 1. 
 

6.2.3 On Covert Channel Classification 

Although section 6.2.2 has clarified the issue of the vague definition of time, there are 
still covert channels that are hard to classify. These channels, e.g., the disk arm channels, 
exhibit characteristics of both storage channels and timing channels. Indeed, the difficulty 
in the conventional classification is due to the lack of recognition of the modulation 
mechanism and the observation mechanism as we proposed in chapter 3 and shown in 
Figure 6.1. In a covert channel, the transmission of information always involves two steps: 
1) modulating information over the channel medium via the modulation mechanism at the 
sender side, and 2) extracting information from the channel medium via the observation 
mechanism at the receiver side. Each step can exploit either spatial or temporal methods. 
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It is therefore natural for covert channels to have mixed characteristics of storage 
channels and timing channels. 

The above discussion indeed shows that the conventional classification of storage 
channels vs. timing channels is incomplete. A clearer classification should take both 
modulation mechanism and observation mechanism into account. We first make the 
following definitions. Let VS and VR denote the visible spaces of the sender and the 
receiver, respectively. VS is the set of all objects that the sender is able to access. 

Definition 6.4: A modulation mechanism is spatial if the information is directly 
encoded in VS, or temporal if the information can only be encoded in the extended symbol 
space VS

n, n > 1. 
Definition 6.5: An observation mechanism is spatial if the information can be directly 

extracted from VR, or temporal if the information must be extracted from the extended 
symbol space VR

n, n > 1. 

Indeed, the classification based on Definition 6.3 is a classification from only the 
receiver’s perspective.  We propose a new classification of covert as follows:  

SS channels: covert channels that exploit spatial modulation and spatial observation. 
Example: the file lock channel [17].  

ST channels: covert channels that exploit spatial modulation and temporal 
observation. Example: the disk arm channel [36]. 

TS channels: covert channels that exploit temporal modulation and spatial 
observation. Example: see example 6.1 below. 

TT channels: covert channels that exploit temporal modulation and temporal 
observation. Example: the CPU time channel (Example 2 in Section 2.2.1).  

Example 6.1: the selective observation channel 
For clarity, we assume a simple system that contains only the sender, the receiver, 

and a random number generator (RNG). The RNG is visible to both the sender and the 
receiver, and neither the sender nor the receiver can affect the RNG’s output. The sender 
has no way to communicate with the receiver, but can somehow control when the 
receiver can make an observation, e.g., by occupying the CPU until he wishes to let the 
receiver make an observation. The information transfer can then be achieved as follows. 
The sender keeps observing the RNG and checks if its value equals to the current symbol 
he wants to send, e.g., if the least significant 3 bits is “000”. He will not let the receiver 
make an observation until he sees that the value to be sent appears in the output of the 
RNG. In this way, the sender can select the desired values for the receiver to observe. In 
this channel, in order to send a symbol, the sender has to check if a desired event occurs 
right before his current observation event, which is a temporal modulation method. The 
receiver simply reads the output of RNG to receive the symbol, which is clearly a spatial 
observation method. Hence, this selective observation channel is a TS channel. 
 
6.2.4 Remarks 

The above discussion not only clarifies the problem in covert channel classification, but 
also shows how covert channels can be constructed. This can help us understand the 
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capabilities as well as limitations of existing covert channel identification methods and 
also identify new covert channels. For example, our definitions and classifications can 
help to understand which covert channels can be identified and which can not be 
identified by the popular shared resource matrix (SRM) method [15]. The identification 
of a covert channel in the SRM method is based on the analysis of subjects’ capabilities, 
M (modify) or R (read), in accessing resources. A potential covert channel from A to B is 
identified if subject A has M access to a resource and subject B has R access to the 
resource. This indeed only captures the information transferred in symbol space VS and 
VR. The covert channels in which A does not have M access to the resource but is able to 
encode information in the extended symbol space VS

n or B does not have R access to the 
resource but is able to extract information from VR

n can not be identified. In other words, 
the SRM method can identify SS channels, but may not be able to identify ST, TT, or TS 
channels. It is possible that the definition of M and R can be made more general to catch 
certain temporal effects and allow the identification of more covert channels. This 
however is based more on experience and can not be generally applied. Our new 
definitions and classification can also help identify new types of covert channels. For 
example, to the best knowledge of the author, the class of TS channels we defined has not 
been reported in the literature.  
 
 

6.3 Capacity Estimation of Asynchronous Covert Channels  

6.3.1 Capacity Degradation 

As explained in section 6.2, unlike traditional communication channels, covert channels 
are often asynchronous, and the sender and the receiver may not be able to reliably 
coordinate with each other, causing symbol insertions and dropouts. For example, 
consider a uniprocessor system where the communicating subjects are processes. To 
transmit a symbol, the sender has to make a change in the system and the receiver 
receives it by detecting the change. As there is only one CPU in the system, at any time 
only one of the two processes can be active. In other words, the sender has to relinquish 
the CPU after it sends a symbol so that the receiver can get the CPU to read the symbol. 
In most operating systems, the scheduler determines when and who can gain the CPU. 
Depending on the scheduling algorithm, it is very likely that the sender is woken up twice 
without the receiver being able to run in between, or the receiver is woken up twice 
without the sender being able to run in between. In the former case a symbol is dropped, 
while in the later case an extra symbol is inserted.  

In addition, unlike in communication channels, coherent time references are often 
unavailable in covert channels. Coherent time reference plays an important role in many 
communication systems. Even without other synchronization methods, the operations of 
sender and the receiver can be synchronized as long as the local timers at the two sides of 
the channel are coherent enough. Being aware of this, and because time references are 
known as key components in exploiting covert timing channels, high assurance systems 
normally disallow processes to access timers and have even made efforts to remove all 
event sources that can serve as such time references to user processes [25].  

Note that although the operations of sending and receiving symbols are asynchronous 
in most covert channels, one may still synchronize the symbol transmission with certain 
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techniques. Figure 6-3 shows an example. The sender makes a change on the S-R 
variable once a symbol is sent; the receiver checks the S-R variable and reads the symbol 
when ready; the receiver then makes a change on the R-S variable to inform the sender; 
the sender checks the R-S variable and sends the next symbol once the last symbol has 
been received.  

There may be other methods that can maintain the correct order of operations, but in 
essence they do the same thing: let the sender know if the receiver has read the previous 
symbol and let the receiver know if a symbol has arrived. With such information, each 
time when the sender is able to perform an operation it can determine whether a new 
symbol can be sent. At the receiver side, each time when the receiver is able to make an 
observation, he is able to tell if a new symbol is ready to receive. However, due to the 
asynchronous nature of the covert channels, it is very likely that the sender finds that the 
previous symbol has not been read by the receiver and it has to give up the CPU and wait 
for the next chance, wasting some time. Similarly, some time is also wasted at the 
receiver side. The channel capacity is therefore reduced. This observation distinguishes 
our work from previous work where the synchronous model excludes this part of the time 
in symbol transmission – only the time associated with transmitted symbols was taken 
into account.  

Intuitively, lack of synchronization should make communication harder. It’s however 
unclear how asynchronism would impact channel capacity, how synchronization would 
help, and what the cost would be. The sections below address all these questions. 

 
6.3.2 Capacity Estimation 

To show the impact of asynchronism on channel capacity, we answer two sets of 
questions: 

1. Existence and capacity: Without any form of synchronization, is reliable 
communication still possible? If the answer is yes, what’s the capacity of such 
channels? 

2. Construction and capacity: How can reliable synchronization mechanisms be 
constructed for asynchronous covert channels? What is the capacity of such a 
synchronized channel? Compared with the capacity of an inherently synchronous 
channel, what is the degradation of capacity due to the asynchronous effect? 

The first question indeed is asking if synchronization is always necessary. Previous 
work all assume a synchronized form of communication. But it is not clear if it is the only 
way to achieve reliable communication. In fact, another interesting question is: can an 
asynchronous form of communication have higher information rate than the synchronous 
one as the overhead associated with synchronization is totally avoided? 

6.3.2.1 Deletion-insertion channel 
As explained above, asynchronous operations at the two sides of the channel may lead to 
loss of real symbols and insertion of false symbols. Such a channel can be modeled as a 
deletion-insertion channel. We adapt the definition in [295]  as follows: 
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Definition 6.6: A binary deletion-insertion channel is a channel with four parameters: Pd, 
Pi, Pt and Ps, which denote the rates of deletions, insertions, transmissions and 
substitutions, respectively. 

The symbols to be transmitted are imagined entering a queue, waiting to be 
transmitted by the channel. Each time the channel is used, one of four events occurs: with 
probability Pd the next queued bit is deleted; with probability Pi an extra bit is inserted; 
with probability Pt the next queued bit is transmitted, i.e., is received by the receiver, and 
with probability Ps of suffering a substitution error (see Figure 6-4). 

A deletion-insertion channel should not be confused with an erasure channel. In an 
erasure channel, channel symbols may be corrupted or lost, which is similar to the 
substitution or deletion in a deletion-insertion channel. However, the receiver of an 
erasure channel knows exactly which symbols are corrupted or dropped while in a 
deletion-insertion channel, the receiver knows nothing about any deletion, insertion or 
substitution (corruption) of symbols. This makes the recovery of a message much harder. 

6.3.2.2 Capacity of deletion-insertion channels 
Intuitively, a channel with symbol insertions and drop-outs is hard to use and not efficient. 
However, as maintaining synchronized communication also introduces overhead, we 
wish to know how fast the information can be delivered over such channels, compared to 
the synchronized channels. 

Doburshin [296] first showed that the fundamental theorem of information theory 
concerning the existence of an upper bound for the transmission rate, for which the error 
probability can be made arbitrarily small, holds. This implies that reliable communication 
is possible even if no reliable synchronization mechanisms are available. However, 
deriving the capacity of such a channel is very hard, and the exact capacity is still 
unknown after decades of research. A variety of approximations of the capacities and 
numerical bounds can be found in [297-298].  

Despite availability of several capacity bounds, we give an upper bound of the 
capacity for the purpose of comparison with synchronized channels. Consider a deletion-
insertion channel and an erasure channel which are identical except that in the erasure 
channel the location of symbol drop-outs and insertions are known. Because the two 

Figure 6-3. Synchronization mechanism 
using two variables 

Figure 6-4. Insertion-Deletion channel 
with probabilities Pd, Pi, Pt 
and Ps, of deletions, 
insertions,  transmissions 
and substitutions 
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channels are identical except that the erasure channel has more knowledge about the 
transmission errors, the capacity of the deletion-insertion channel is no greater than the 
capacity of the erasure channel.  

Theorem 6.1. An upper bound of the capacity of a deletion-insertion channel is the 
capacity of the erasure channel: 

Cmax = N(1-Pd)      (6.1) 

where N is the number of bits per symbol and Pd is the deletion probability.  

The derivation of the capacity of an erasure channel can be found in many 
information theory textbooks such as. Note that here we use the term erasure channel to 
refer to the one that is identical to the corresponding deletion-insertion channel except 
that the locations of symbol insertions/drop-outs are known. In the rest of the paper, we 
will use erasure channel to refer to this specific erasure channel unless otherwise 
specified.  

The above capacity bounds including (6.1) are very hard, if not impossible, to achieve 
in practice. Using existing coding schemes such as convolutional code and watermark 
code, some work [295, 299-300] have shown reliable communication over such channels. 
However, they all showed that the capacity is quite low and in practice sophisticated 
coding techniques are required.  

 

6.3.2.3 Synchronization and capacity estimation 
To answer the second set of questions for constructing reliable synchronization for 
asynchronous covert channels, we consider fundamental synchronization methods and 
investigate how these methods impact channel capacity. Synchronization can be achieved 
with or without feedback. Figure 6-5(a) shows the most general form of a feedback based 
synchronization mechanism. It consists of only a feedback path without any assumption 
on how the feedback path is used, and specific techniques can all be explained with this 
general abstraction. For example, in Figure 6-3, two synchronization variables are used, 
one serves as the feedback path and the other serves as the feed forward path. The 
feedback variable is one form of the feedback path in Figure 6-5(a). The feed forward 
variable can be viewed as a special use of the feed forward channel in Figure 6-5(a): part 
of the feed forward channel is dedicated for synchronization and the rest of the channel 
transmits data. Note that such separation of the feed forward channel is not necessary – it 
is indeed not optimal. Given a fixed bandwidth of the feed forward channel, using a 
separate feed forward synchronization variable reduces the effective bandwidth for 
information transmission. This will be proved in subsequent sections.  

Covert channel S R Covert channel S R

E 
(a) Feedback  

Figure 6-5. Two fundamental synchronization methods. 

(b) Common event source 
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Synchronization can also be achieved without feedback. The sender and the receiver 
may luckily share a common time reference (or at least have time references that are 
coherent at the two sides of the channel) and thus are naturally synchronized. 
Alternatively, the sender is able to use some method to let the receiver know of his 
operation timing. Indeed, these two methods are essentially the same from the perspective 
of synchronization. They both allow the sender and the receiver to have a common view 
of time, i.e., they virtually have a common time reference, as shown in Figure 6-5(b).    

In the following discussion, we assume that the feedback path and the two paths from 
the event source E to the sender S and the receiver R are perfect. This simplifies the 
analysis, and is also a requirement for deriving the maximum information rate. To focus 
on the synchronization problem, we assume that the channel is noiseless, i.e., Ps = 0 and 
Pt = 1 – Pi – Pd where Pd and Pi and Ps are the probabilities of symbol deletion, insertion 
and substitution, respectively. 

 
A. Channels with feedback 
We now show that the capacity of a channel with deletions can achieve the capacity of an 
erasure channel by utilizing feedback. We then extend the result to channels with 
insertions.  

Lemma 6.1. The upper bound of the capacity of a deletion channel with perfect feedback 
is the capacity of the erasure channel. 

Proof: Consider a deletion channel with a deletion probability Pd and its corresponding 
erasure channel. Add perfect feedback path to both of them. Since the erasure channel 
knows where the symbol drop-outs occurs which the deletion channel does not know, the 
erasure channel knows more information than the deletion channel. Therefore the erasure 
channel with feedback will gain equal or higher capacity than the deletion channel with 
feedback. Since an erasure channel is a memoryless channel and it is well known that 
adding feedback will not increase the capacity of a memoryless channel [271], the upper 
bound of the capacity of a deletion channel with perfect feedback is the capacity of the 
erasure channel.         □ 

In Lemma 1 we only show an upper bound of the capacity, we now show that the 
bound is tight. 

 
Theorem 6.2. The capacity of a deletion channel with perfect feedback equals the 
capacity of the erasure channel. 

Proof: Here we construct a protocol by which the capacity of the erasure channel can be 
achieved. The protocol is as follows: let the receiver notify the sender via the feedback 
path once it receives a symbol. The sender will keep resending the symbol until it knows 
that the symbol has been received. Therefore no dropouts will occur. While the 
probability of deletion is Pd, a symbol gets through with probability of 1- Pd, therefore 
the effective information rate is N(1-Pd), which is the capacity of an erasure channel with 
an erasure probability Pd. Since the upper bound of the capacity (Lemma 6.1) can be 
achieved, it is the actual capacity.      □ 
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When symbol insertions are present in the channel, a theorem similar to theorem 6.2 
can be proved. We first define an extended erasure channel as follows: 

Definition 6.7: An extended erasure channel is a channel where symbols may be inserted 
and/or dropped but the locations of all insertions and dropouts are known.  

Lemma 6.2. The upper bound of the capacity of a deletion-insertion channel with perfect 
feed back is the capacity of the equivalent extended erasure channel, i.e.,  

Cupper-bound = N(1-Pd). 

The proof is similar to that for Lemma 6.1. Note that the insertion probability Pi does 
not affect this upper bound. This can be explained as follows. Under the assumption of 
noiseless asynchronous channels, the symbol insertions are due to the receiver’s double 
(or multiple) channel observations before the sender sends a new symbol. If the receiver 
checks the channel more frequently, Pi will increase. This however should not change the 
capacity of the extended erasure channel, given that the symbol transmission rate of the 
sender does not change. This is because given a time interval, although the receiver 
receives more symbols due to his higher channel observation rate, the inserted symbols 
will simply be discarded in the extended erasure channel since the receiver knows exactly 
which symbols are inserted, and therefore the number of effective symbols received 
remains unchanged, i.e., the capacity is not affected by Pi.  

A lower bound of the capacity can also be derived with a constructive protocol, based 
on the synchronization variables as shown in Figure 6-3. It can be shown that under 
certain conditions, this lower bound and the upper bound shown in Lemma 6.2 
asymptotically converge. 

Lemma 6.3. A lower bound of the capacity of a deletion-insertion channel with perfect 
feed back is: 

  dboundlower PNC  11       (6.2)  

where N is the number of bits contained in each symbol. 

Proof: A simple protocol can be constructed based on the synchronization mechanism 
depicted in Figure 6-3. Assume that one of the N bits contained in a channel symbol is 
reserved as the S-R variable which serves as the feed-forward synchronization variable 
and is initialized to a value that the sender and the receiver have agreed upon a priori, e.g., 
‘0’. The protocol is as follows: let the receiver notify the sender via the feedback path 
once it receives a symbol and let the sender notify the receiver via the feed-forward S-R 
variable by flipping its current value once it sends a new symbol. The sender will keep 
resending the symbol, without changing S-R variable’s value, until he knows that the 
symbol has been received. On the other hand, when the receiver gets a chance to access 
the channel, he checks the S-R variable. If the value remains unchanged, no new symbol 
has been sent from the sender, and the receiver will simply wait for the next chance to 
access the channel. If however the value of the S-R variable did change, he reads the 
channel and notifies the sender via the feedback path that he received a new symbol. 
With such a protocol, no drop outs will happen since the sender will not send a new 
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symbol until the receiver tells him that the current symbol has been received, and no 
insertions will happen since the receiver can always tell if he is reading an old symbol 
that he has received. Since in each symbol the effective number of bits used for carrying 
true data information is (N-1) bit, and the probability of a symbol successfully getting 
through the channel is (1-Pd), the information rate of the channel with this protocol is (N-
1)(1-Pd). Note that insertion probability Pi does not matter here because regardless of 
how many insertions the receiver has received, the receiver always knows that they are 
insertions and can simply discard them. It has no impact on the rate that the sender sends 
symbols as we have explained in the proof of Lemma 6.2. □ 

The above capacity can be achieved using this protocol and therefore is a lower-
bound of the actual capacity. Under certain conditions, e.g., when N  ∞, this lower 
bound and the upper bound shown in Lemma 6.2 asymptotically converge. In other 
words, with such a simple protocol, the theoretical channel capacity can practically be 
achieved if N is sufficiently large. In systems where N is small, more advanced coding 
scheme may be used to achieve higher information rate than this lower bound. 

Theorem 6.3. A lower capacity bound of Lemma 6.3 and the upper capacity bound of 
Lemma 6.2 asymptotically converge when N  ∞.  

Proof: the proof is straight forward  
   
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B. Channels with common event source 
There may be several ways to exploit a common event source E for synchronization. For 
example, E can be a self-incrementing counter which serves as a common clock for the 
sender and receiver. However, as we show below, exploiting E will not get higher 
capacity than using a feedback path in general.  
 

If one more path from R to E is added, as shown in Figure 6-6(a), E may gain more 
information. Therefore an equal or higher information rate may be achieved than without 
the added path. In the best case, E and R communicate with each other without any 
overhead, i.e., they indeed can be regarded as one single party and such a configuration 
actually becomes the synchronization method using feedback, as shown in Figure 6-6(b). 
Therefore a similar system using feedback will get equal or better performance for 
channel capacity.  

Covert channel S R

E 

Covert channel S R
E

Figure 6-6. Using common events won’t get better capacity than using feedback

(a) (b) 
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6.3.3 Remarks 

We have answered the two sets of questions we posed. For the first question, we show 
that reliable communication over non-synchronous channels without synchronization is 
possible, but it is not as effective as synchronized communication and requires 
complicated coding schemes. For the second question, we show that the capacity of an 
asynchronous channel with either feedback or a common event as the synchronization 
mechanism has a capacity that is equal or close to N(1-Pd). Comparing to the ideal 
synchronous channel which has a capacity of N, that means the capacity degradation due 
to asynchronous effects is roughly proportional to Pd, the probability of deletions. 

According to the above discussion, with a good feedback path, synchronization is not 
a problem for a covert channel in general. Furthermore, with the help of the feedback, the 
theoretical capacity of the channel can be practically achieved using a very simple 
protocol. This has interesting implications for a multi-level security (MLS) system. Since 
the legal information flow (from low to high) can serve as a perfect feedback path, one 
may always exploit it to achieve the channel capacity. In other words, covert channels in 
MLS systems are relatively easy to exploit in general and tend to be fast.  

Note that since we’ve shown that the capacity degradation due to asynchronous 
effects is roughly Pd, to estimate the capacity of a given covert channel, one could first 
use traditional methods to estimate the physical capacity C. The probability of deletion Pd 
should then be estimated. The real capacity can then be estimated as C(1-Pd). Note also 
that the capacity degradation modeled in our method is independent of the 
synchronization mechanisms used and does not include any specific overhead introduced 
by such mechanisms. Such degradation is inherent due to the asynchronous nature of 
operations. It is unavoidable even if efficient mechanisms are deployed.  

The study of the capacity of asynchronous channels not only provides a more 
accurate capacity estimation, but also provides an estimation of the covert channel 
reduction effectiveness of different system implementations. Since the asynchronous 
effects of the covert channel are often determined by the system implementation, e.g., the 
scheduler algorithm, the results can also be used to evaluate the effectiveness of 
candidate system implementations, parameterized with Pd , in reducing covert channel 
capacities.  

Finally, although our results are derived in the context of capacity estimation of 
covert channels, it may provide meaningful insights to researchers in other areas. 
Recently some ongoing work [301] in the communication community also shows interest 
in the capacity bounds of channels with asynchronous behaviors. Although the problems 
and models are different, similar insights may apply. It would be interesting to study the 
connections in future work.  

 
 

6.4 Summary  

In this chapter, some fundamental questions about covert channels that went unanswered 
in the past are discussed and clarified. With respect to the conventional classification of 
covert channels as storage channels vs. timing channels, two sources of ambiguity are 
discussed. The vague definition of time is first clarified and a new definition is proposed. 
Definition 6.1 shows that from an observer’s perspective, the view of time can be 
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accurately modeled as the order of the observer’s observation events and the reference 
event sequence. The classification of storage channels and timing channels is then shown 
incomplete by introducing the concept of modulation and observation mechanisms. 
Based on the channel model proposed in chapter 3, the mixed characteristics of some 
covert channels that make the conventional classification difficult are shown as a natural 
property of covert channels, since both modulation mechanisms and observation 
mechanisms can exploit either spatial or temporal characteristics. We proposed a clearer 
classification of covert channels which categorizes them into SS, ST, TS, and TT 
channels. This new classification can help show the capabilities and limitations of 
existing covert channel identification methods and can help find new types of covert 
channels. 

With respect to capacity estimation of covert channels, this chapter discussed the 
impact of the asynchronism of covert channels on channel capacities. We attempt to 
answer two sets of fundamental questions. The first set of questions ask if 
synchronization is always necessary and what is the capacity of channels without 
synchronization mechanisms. Our answer is that reliable communication over 
asynchronous channels without synchronization is possible, but it is not as effective as 
synchronized communication and requires complicated coding schemes. The second set 
of questions ask how synchronization mechanisms can be constructed and what the 
inherent impact of asynchronism is on channel capacity. We show that synchronization 
can be achieved by using feedback or a common event source, and regardless of the form 
of the synchronization mechanism used in a covert channel, the capacity degradation due 
to asynchronous effects is roughly proportional to Pd, the probability of symbol deletions. 
Such degradation is inherent due to the asynchronous nature of operations. It is 
unavoidable even if efficient mechanisms are deployed. With the recognition of this 
inherent impact, covert channel capacity can be estimated more accurately. Furthermore, 
as Pd is typically determined by the system implementation, e.g., the scheduler algorithm, 
it can also be used to evaluate the effectiveness of candidate system implementations, 
parameterized with Pd , in reducing covert channel capacities. 
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Chapter 7  
 
 

Conclusions 
 
 
Microprocessors as the central processing units of modern computer systems are highly 
shared by different programs, processes or virtual machines. Like in any shared resources, 
interference between users often reflect the activities of the users and thus leak out useful 
information. Even worse, several unique properties make microprocessors an even better 
place for information leakage. First, microprocessors are fast, and channels based on 
processor level interferences hence can often be orders of magnitude faster than those at 
software level. Second, a microprocessor is the most information-rich point for attackers 
to snoop because any information in the system essentially has to be processed in the 
central processor, and thus has the possibility to be leaked out. Third, the processor level 
sharing often breaks software level isolation mechanisms like virtual machines (VMs). 
For example, two logically isolated VMs can still be running on the same physical 
microprocessor and share caches. It has been demonstrated in several recent work that 
sensitive information like cryptographic keys can be leaked out through shared caches. 
Last, the increasing prevalence of mobile computing and cloud computing makes the 
information leakage problem even more challenging. User data won’t be constrained in 
local systems forever. Instead, they will be travelling through and exposed to a much 
wider spectrum of platforms, including public platforms like public clouds. This may 
significantly increase the risk of leaking out sensitive user information, and users often 
don’t have much control over the problem.  

In the past, related research are mostly in the area of side channel attacks and covert 
channel analysis, which focused on either specific hardware/software targets such as 
cryptographic devices and software ciphers, or system and software level covert channel 
issues. Unlike the previous work, this dissertation focuses on architectural and micro-
architectural level information leakage problems, which did not receive much attention in 
the past. The results demonstrate that, in modern microprocessors, there are rich 
mechanisms that allow covert channels that are much faster than traditional ones, and 
enable significant side channel attacks that can impact not only embedded devices but 
also general purpose systems.  
 



 

 

106

7.1 Contributions 

This dissertation focuses on processor architectural and micro-architectural level 
information leakage problems and the contributions are of two categories. The work first 
investigates real attacks that are of high significance, analyzes concrete problems and 
proposes novel and effective solutions. The work then generalized the problem with 
abstract modeling and classification, based on which theoretical analyses are performed. 
The generalized discussion helps clarify misconceptions that were unanswered in the past 
and allows better modeling and clearer classification of information leakage channels. 
The better understanding of the nature of the problem also helps identify new information 
leakage channels.  

More specifically, the main contributions of the dissertation include: 

 (in chapter 3): A thorough study of the cache-based side-channel attacks, which 
are the most significant processor level attacks. This work addresses the problem 
by identifying and attacking the common root cause of all cache-based software 
side-channels and thus avoids being attack specific. Solution strategies were 
identified based on efficient dynamic partitioning (e.g., the PLcache) and sharing 
with interference randomization (e.g., the RPcache). The latter strategy uses an 
information-theoretical analysis to show that we can eliminate or mitigate most 
cache based attacks without compromising performance and has theoretically 
proved the cache leakage security.  

 (in chapter 4): A new cache architecture, Newcache, that is not only secure but 
also high performance. The proposed new cache architecture inherits the short 
access time from the Direct Map cache architecture while still maintains low miss 
rates by employing dynamic address remapping. A simple security-aware random 
replacement algorithm is also proposed which makes the cache immune to most 
cache based attacks. Moreover, the proposed architecture can bring additional 
benefits in terms of fault tolerance, thermal and power optimization, and more 
performance-friendly cache partitioning and locking mechanisms.  

 (in chapter 5): Identification of several new fast covert channels, which are based 
on popular features in modern processors such as Simultaneous Multi-Threading 
(SMT) and the IA-64 control speculation feature. The new channels are 
prototyped and demonstrated to be orders of magnitude faster than traditional 
channels. Various countermeasures to these channels are also discussed. 

 (in Chapter 6): Development of an abstract framework, which allows the 
information leakage problem to be discussed in a generalized form. The 
framework is constructed in a way that past work such as the categorization of 
timing and storage channel, channel analysis and identification methods like SRM, 
can be related and explained within the framework. The framework is more 
general and can clarify misconceptions that went unanswered in the past, reveal 
the limitation of existing work, and help identify a new type of covert channel. It 
allows more rigorous and accurate channel classification and may better facilitate 
channel analysis and identification.  

 (in Chapter 6): With regard to channel capacity estimation, all past work based the 
capacity calculation on synchronized channel models (though sometimes 
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implicitly). This work for the first time pointed out that because covert channels 
are typically not intended for communications, they are inherently asynchronous 
and hence there is inherent capacity degradation due to the asynchronism, which 
was not recognized in the past. To fully understand the effect of the channels’ 
asynchronous nature, this work answered two sets of fundamental questions: 1) is 
reliable communication possible without any form of synchronization, and if the 
answer is yes, what’s the capacity of such a channel? 2) How can reliable 
synchronization mechanisms be constructed for asynchronous channels? What is 
the capacity of such a synchronized channel? What is the degradation of capacity 
due to the asynchronous effect? Answering these questions not only allow more 
accurate channel capacity estimation but also helps understand how covert 
channels can be constructed effectively and how to mitigate them.  

 

7.2 Future work 

The first area that future research should continue to pursue is the search for new 
vulnerabilities and exploits. While many problems have been identified, e.g., those based 
on caches, branch predictors, control speculation and simultaneous multi-threading etc., 
more are yet to be explored. For example, despite the intensive studies on the leakage of 
address information (e.g., through external address bus directly or through cache hit/miss 
patterns or branch predictors indirectly), the leakage of data flow information was not 
receiving much attention in the literature. Indeed, architectural features like value 
prediction and data speculation can leak out information in a similar way as caches do. 
Similar to the timing effects of cache hits and misses, correct predictions lead to shorter 
execution time and wrong predictions cause the program to run longer. The data-
dependent execution time therefore can leak out information about the data values being 
processed. Some functional units like the divide units may also exhibit data-dependent 
latencies and thus are vulnerable to the information leakage problem. More recently, 
researchers have applied the concept of speculation in arithmetic logic design to improve 
performance, which essentially optimizes the circuit such that the critical path circuit is 
fast but does not guarantee 100% correctness, and in very rare cases the result is incorrect 
which requires extra cycles to recalculate the right result. As a result, functional units like 
adders that are implemented in this way may also exhibit data-dependent timing and thus 
can leak out information. Indeed, as the basis of a large variety of performance 
optimizations, the concept of speeding up the common cases while allowing slow speed 
in rare cases is fundamentally insecure because the patterns of fast and slow operations 
almost always leak out useful information. In the literature, all these issues were not 
investigated and their implications in terms of security are not clear. 

Another line of research that future work should pursue is software and hardware 
defenses that ensure security without compromising performance. The design of 
cryptographic algorithms that are immune to side channel attacks, on general purpose 
processors in particular, is one such topic. Another interesting direction is compiler 
techniques as well as other software approaches that allow not only small kernels like 
crypto ciphers but also larger software programs to be resistant to information leakage. 
Software/hardware co-design is also an area receiving more attention, as software and 
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hardware often have strengths that are complementary to each other. For example, in the 
case of cache based attacks, while hardware design can easily avoid inter-process 
interference (e.g., via cache partitioning or randomized line replacement), it is hard for 
hardware to eliminate interferences within a process because the interferences are often 
due to expected behavior and are unavoidable. For example, if two pieces of code in the 
same process try to access the same memory address, the first access will interfere with 
the second access, i.e., by making the second access hit in the cache and thus observe a 
short access time. This is exactly what a cache is expected to do to improve performance, 
and thus hardware has no way to avoid this unless caching is completely turned off.  
From the software side, however, while the software programmer can not control how 
other processes can interfere with the software she is developing, she has the ability to 
design the code to be free of interference from itself. Therefore while software or 
hardware alone can not avoid all cache interferences, software/hardware co-design may 
together solve the problem. 

The third area that future research should explore is the methodologies that allow 
more systematic analyses of processors for information leakage problems. Systematically 
analyzing a complicated processor is certainly very hard, however it is also very 
important as whole system security relies on knowing and defending against attacks in all 
aspects instead of defeating just one or a few of them. Most existing work are rather ad-
hoc and attack specific. To the best knowledge of the author, no established work has 
been reported in this area.  
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