

Information Leakage Due to Cache and
Processor Architectures

Zhenghong Wang

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

ELECTRICAL ENGINEERING

Advisor: Prof. Ruby B. Lee

November 2012

© Copyright by Zhenghong Wang, 2012.

All rights reserved.

iii

Abstract

When users share resources, interference between users often reflects their activities and
thus leaks out information of a user to others. Microprocessors, and their associated cache
memories, are typically one of the most shared resources in a computer system.
Compared with traditional software-based and system-level information leakage channels,
the ones in microprocessors are often much faster and more reliable – and hence more
dangerous. They can also bypass existing software-based protection and isolation
mechanisms, and can nullify any confidentiality or integrity protections provided by
strong cryptography. Because of the ubiquitous deployment of microprocessors and the
fact that the attacks are effective on essentially all modern processors, such
microprocessor-level information leakage exists in almost all computing systems and has
become a serious security threat to a wide spectrum of platforms and users.

Motivated by the increasing importance of the processor and cache information
leakage problem, this dissertation aims to investigate the information leakage problem in
microprocessors in a more generalized manner. The goal is to first understand the
fundamental, rather than attack-specific, mechanisms that enable information leakage,
and then propose countermeasures that attack the root causes and thus are generally
effective. The dissertation also attempts to develop a theoretical model of information
leakage channels, which can help analyze existing channels, identify new channels,
evaluate their severity, and avoid such channels in future designs.

The dissertation starts with concrete practical issues that are of high importance. It
first analyzes the recent cache-based software side-channel attacks, revealing their
common root cause, then proposing novel cache designs that can effectively defend
against all attacks in this category without compromising performance, power efficiency
and cost. The proposed Newcache design can even improve performance over traditional
cache architectures. The dissertation also analyzes existing processor architectures,
identifies several new covert channels that are much faster than traditional channels, and
discusses alternative countermeasures. The dissertation then generalizes the problem of
covert channels with abstract modeling and analysis, which clarify the ambiguity in
traditional classifications of covert storage versus timing channels, help identify new
channels and reveal limitations of existing covert channel identification methods. The
dissertation also recognizes that asynchronism is an inherent characteristic of covert
channels that should be properly captured in channel capacity estimation. Quantitative
results are presented.

iv

Acknowledgements

It would not have been possible to write this doctoral dissertation without the help and
support from many people. There are no words adequate to express my deep gratitude to
all of them.

First of all, I would like to thank my thesis advisor, Professor Ruby Lee, for the
patient guidance, constant encouragement and insightful advice she has provided
throughout my time as her student. During the hard times in my thesis writing, in
particular after I had started a fast-paced job in Silicon Valley and fathered two children,
it was her patience and persistence that drove me to get through all the difficulties and
keep making progress. I truly enjoyed working with her and feel lucky for being one of
her students.

I am grateful to Professor Andrew Appel and Professor Mung Chiang for taking time
to read the thesis as well as providing invaluable feedback and suggestions that help
clarify the work. I also thank the faculty and staff of the Princeton University Department
of Electrical Engineering for all the help and advice they gave me during my study in
Princeton.

I thank the members of the PALMS group for their direct and indirect help in
improving the work. I enjoyed the fun and inspiring discussions with them. I also thank
all my friends, who helped make my life and study in Princeton more enjoyable.

Finally, I would like to thank my family. My wife Yan has provided endless support
in all aspects of my life. My lovely son Eddie and daughter Eileen came to this world just
in time to make my thesis writing more challenging. They however bring great happiness
and helped me truly understand the meaning of the word “cherish”. My parents and
sisters have always cared for me, loved me, and supported me, even when they are
thousands of miles away. To them I dedicate this thesis.

v

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Information Leakage: Practical and Theoretical Issues 1
1.2 New Issues due to Processor Architectural Features 3
1.3 Dissertation Overview 6

2 Related Work 8

2.1 Covert Channels 8
2.2 Side Channel Attacks 16
2.3 Information Hiding 24
2.4 Miscellaneous Unintended Data Exposure 27
2.5 Scope of this Dissertation 28

3 Cache-based Side Channel Attacks: Analysis and Countermeasures 29

3.1 Overview 29
3.2 Attack Analysis 30
3.3 New Cache Designs for Mitigating Software Cache Attacks 37
3.4 Summary 52

4 Improving Cache Performance while Improving Cache Security 53

4.1 Overview 53
4.2 The Proposed Cache Architecture 53
4.3 Analyses and Evaluations 64
4.4 Additional Benefits 69

vi

4.5 Summary 70
Appendix 4 71

5 Fast Covert Channels in Microprocessors 74
5.1 Introduction 74
5.2 SMT-based Covert Channels 74
5.3 Covert Channels due to Control Speculation in IA-64 80
5.4 Remarks 85
5.5 Summary 86

6 On Covert Channel Modeling and Analysis 88

6.1 Introduction 88
6.2 Storage Channel and Timing Channel Revisited 89
6.3 Capacity Estimation of Asynchronous Covert Channels 96
6.4 Summary 103

7 Conclusions 105

7.1 Contributions 106
7.2 Future Work 107

References 109

vii

List of Figures

Figure 1-1 An input-dependent loop 4
Figure 2-1 A generic process of message embedding and retrieving 25
Figure 3-1 (a)Timing characteristic generation (b)Key-byte searching algorithm 31
Figure 3-2 Timing characteristic charts for byte 0 32
Figure 3-3 A cache line of the PLcache 38
Figure 3-4 Cache access handling procedure for PLcache 39
Figure 3-5 A logical view of the RPcache 42
Figure 3-6 Cache access handling procedure for RPcache 44
Figure 3-7 Address decoder circuitry of the RPcache 45
Figure 3-8 A channel model of the cache-address-based side channel 47
Figure 3-9 Performance comparison of AES code 50
Figure 3-10 Performance impact on overall throughput 50
Figure 4-1 Mapping memory space to the physical cache 54
Figure 4-2 Supporting multiple logical RMTs 55
Figure 4-3 The proposed cache architecture 56
Figure 4-4 New security-aware random cache replacement algorithm 57
Figure 4-5 A generic cache organization 59
Figure 4-6 Address decoder and subarray structures 60
Figure 4-7 (a)logical view of the address decoder (b)physical implementation 61
Figure 4-8 Overall structures of the address decoders 62
Figure 4-9 Cache access time comparison 64
Figure 4-10 Dynamic read energy 64
Figure 4-11 Accuracy of the miss rate bounds 66
Figure 4-12 Comparison of the overall power consumption 68
Figure 5-1 Pseudo code for SMT/FU channel 76
Figure 5-2 SMT/FU channel: observed signal waveform 76
Figure 5-3 Implementation code of MULTIPLY(), NULL() and RUN() 78
Figure 5-4 65-bit general-purpose register in IA-64 81
Figure 5-5 Sample code for IA-64 control speculation 81
Figure 5-6 Encoding in L3 cache 82
Figure 6-1 An abstract channel model for information leakage 90
Figure 6-2 Spatially encoding four bits into a four-entry direct mapped cache 91
Figure 6-3 A synchronization mechanism using two variables 98

viii

Figure 6-4 Insertion-deletion channel 98
Figure 6-5 Two fundamental synchronization methods 99
Figure 6-6 Using common events won’t get better capacity than using feedback 102

ix

List of Tables

Table 3-1 Optional ISA extension for PLcache 39
Table 3-2 Potential API calls for PLcache 39
Table 3-3 Timing and power estimation of RPcache 46
Table 3-4 Simulation parameters 49
Table 3-5 Comparing with prior-art partitioned cache 51
Table 4-1 Definitions and notations 58
Table 4-2 HSPICE results on address decoder delay 65
Table 4-3 Miss rate comparison 67
Table 4-4 Caches considered 71
Table 5-1 Information rate comparison of covert channels 85

1

Chapter 1

Introduction

The term “information security” is often interpreted as the protection of information and
information systems from unauthorized access, use, disclosure, disruption, modification,
or destruction. The basis of information security consists of three components:
confidentiality, integrity and availability. Confidentiality is the concealment of
information, ensuring that information is accessible only to authorized parties. Integrity
means guarding improper or unauthorized information modification or destruction.
Integrity includes data integrity – the content of the data, and also origin integrity – the
source of the data. Availability is the access to, and use of, information and resources in a
timely and reliable manner.

Information leakage is a direct threat to confidentiality. It leads to the disclosure of
information to someone who should not learn the information. In many situations, the
leaked information may not be the ultimate target of an attack. It may help compromise
integrity or availability as well and facilitate further steps of the attack, e.g., gaining
higher privilege or even taking over the whole system. In practice, despite huge efforts in
securing computer systems, the information leakage problem exists, more or less, in
almost all practical systems.

1.1 Information Leakage: Practical and Theoretical Issues

Many factors contribute to the wide existence of the information leakage problem – some
are due to practical reasons whereas others lie in the fundamental theory upon which the
systems are built.

Among the practical issues, design flaws and implementation errors are common
causes of information leakage problems. Design flaws may be introduced at various
levels in the development phase. At the system level, incorrect assumptions and/or an
insufficient threat model often lead to bad design decisions and flawed system
architecture. A good example is the first generation XBOX gaming console. Among
many mistakes that Microsoft made [1] (from the hackers’ perspective), transmitting the

2

secret key in plaintext over the HyperTransport bus between the CPU chip and the
Southbridge chip1, which is directly visible to the hackers, is the worst one. The rationale
behind this design decision was probably the fact that the HyperTransport bus was so fast
that no logic analyzer at that time could sniff the bus, and it is a cheaper design. But it
turned out to be an underestimation of the hackers’ resources and expertise. Custom
hardware was quickly developed and the attack succeeded [1].

When getting into low level implementations, the chances of developers making
mistakes become higher due to the increasing amount of details involved. In complicated
system design that involves developers with various skill levels producing millions of
lines of code, having errors in implementation is essentially inevitable.

The common use of less secure programming languages, e.g., C, has also contributed
to many of the implementation bugs. Unlike other high-level programming languages like
Java, they are more vulnerable to security issues like the buffer overrun problem [2-3],
which has been recognized as a major threat to software/system security. In reality, not
all these errors can lead to information leakage, but many of them do cause issues, e.g.,
the well known “kernel memory disclosure” problem, which exposes the content of
kernel memory to unprivileged users [4].

In addition to the mistakes made in the design and development stage, information
leakage problems can also be introduced in the later stages of the system life cycle, e.g.,
after the system is placed online, or even after the life of the system has ended. Security
problems in live systems are often due to incorrect configurations and/or bad practices in
system management and maintenance, e.g., inappropriate security policies for users and
data objects or simply bad passwords. There can also be problems after a system or some
of its components are dead. Sensitive information should be securely shredded or
carefully scrubbed, or it has to be properly protected or migrated to other live systems.
Dead components, particularly storage devices, should be carefully processed before they
leave the trusted sites. It is not difficult for an attacker to recover data from a dead hard
drive. Advanced technology can even recover data from a hard drive that has been
overwritten with 0’s [5].

Theoretically, all these practical issues can be avoided, given sufficient time, effort
and resources. However, there are some types of information leakage, which lie in the
fundamental theoretic model on which systems are built, that are unavoidable even with
perfect design, implementation, configuration and maintenance.

One theoretical issue originates from the process of abstraction, in which the physical
system is abstracted into a logical model, which preserves only the properties of interest
and discards the rest. In reality this is a very common practice as it allows most of the
development efforts to be independent of physical devices. However, any protection
mechanisms developed upon the logical system model would be effective only for the
aspects that are modeled. Information may still leak out via the physical aspects that are
not modeled in the system, e.g., through acoustic or electro-magnetic emission, power
variation, or even thermal activities. Attacks based on these issues are often referred to as
side channel attacks. One may argue that if the system model includes all aspects of the
physical system, the design may be immune to side channel attacks. However, that would
only be possible for very simple devices, assuming it is possible to enumerate all physical

1 The Southbridge is one of the two chips in the chipset on a PC motherboard. It typically handles the I/O
devices such as USB, audio, ISA bus, PCI, IDE channels etc.

3

properties. For most practical systems, it is infeasible to consider all physical aspects of
the system in the design and implementation.

Another example of a theoretical issue relates to covert channels, which are often
referred to as channels that are neither designed nor intended to transfer information [6].
One type of covert channels, the covert storage channels, make use of entities not
normally viewed as data objects to transfer information from one process to another.
Another type of covert channels, the covert timing channels, exploit the temporal
characteristics of events to transfer information. As an example of a covert storage
channel, the file lock attribute can be used to transfer information. One process can lock a
file to encode a bit ‘1’ and unlock the file to encode a bit ‘0’, and another process can
retrieve the bit by checking if the file is locked. As an example of a covert timing channel,
information can be leaked out by modulating the use of CPU time, e.g., a process can try
to use as much CPU time as possible to indicate a bit ‘1’, and try not to use any CPU time
to indicate a bit ‘0’. Other processes can extract the information by observing the system
response time.

Due to the essentially unlimited number of ways in exploiting various objects and
resources in a system, covert channels widely exist in practically all computer systems.
Despite extensive work on covert channel analysis, systematic identification and
elimination of covert channels remains a very difficult problem.

1.2 New Issues due to Cache and Processor Architectural Features

In the literature, information leakage problems were mostly studied in the area of covert
channels and side channels which focused on either specific hardware/software targets
such as cryptographic devices and software ciphers, or system and software level covert
channel issues. Information leakage due to hardware processors (including their tightly
coupled caches) did not receive as much attention in the past.

Compared with information leakage at other levels of a system, information leakage
at the processor level is unique in several aspects. First, as the central processing unit of a
system, processors are typically the most shared resources in the system – often among
all users who may belong to different security domains, and therefore is an ideal place for
inferring information from interference between users. Second, microprocessors are fast,
and covert or side channels based on processor level interferences can often be orders of
magnitude faster than those at the software level. Third, the processor level sharing often
breaks software level isolation mechanisms like virtual machines (VMs). For example,
two logically isolated VMs can still be running on the same physical microprocessor and
share caches. It has been demonstrated in several recent work that sensitive information
like cryptographic keys can be leaked out through shared caches. Fourth, in a processor
the clocks are usually derived from common oscillating sources. This makes
synchronization easier, e.g., between sender and receiver in covert channels, and
therefore leads to faster covert channels.

The situation is getting even worse over the last few decades. The advances in
process technology have enabled billions of transistors to be integrated into a single chip,
allowing more on-chip resources to be allocated for new architectural and micro-
architectural features that enhance performance, power efficiency, etc. Such new

4

additions however were often designed without being carefully examined for security.
Furthermore, the increased system complexity increases the difficulty of identifying and
mitigating of information leakage channels.

To understand the information leakage problem in processors, we first need to know
what information can be leaked out, by what means. A program running on a processor
may leak information due to various reasons, some dependent on processor features while
others not. Information leakage due to a program’s inherent characteristics, e.g., its
algorithmic computation complexity, is often independent of the type of processor on
which the program is running. Figure 1-1 is a simple example of this. Since the number
of iterations is determined by the program input, the execution time of this code segment
would reveal the value of the input (whether it is small or large), no matter what type of
processor it runs on.

On the other hand, other types of information leakage by a program may depend on
what processor it is running on. For example, a program doing table lookups may have
constant execution time if the table lookups take constant time. This may be true if the
program runs on a processor without caches and the memory accesses take constant time.
However, if the underlying processor has a cache, constant table lookup time may not be
possible. A table lookup that hits in the cache would take shorter time than one that
misses in the cache. In this dissertation, we focus on such information leakage that is
specifically caused by cache and processor architectural features.

1.2.1 Information Sources in Processors

Despite various forms of information leakage and the resulting attacks, in this dissertation
they are categorized into two types, as we will explain below. Most modern processors (if
not all) are based on the stored-program architecture, which consists of a processing unit,
that performs operations to manipulate data, and memory storage, that keeps instructions
as well as data. The instruction memory and the data memory can be unified, e.g., in Von
Neumann Architecture, or separated, e.g., in Harvard Architecture. Programs running on
such architectures involve two types of operations: fetching and storing the instructions
or data, and processing the instructions or data. The first type of operations deal with the
object location information, and the second type of operations deal with the values of the
objects. These two types of information – the object location and the object value – are
the main sources of information leakage in processors.

…

/* loop counter is dependent on program input */
int cnt;
cnt = input();
for i = 0 to cnt do begin
 …; /* some work done here */
end;
…

Figure 1-1. An input-dependent loop

5

According to the type of operations that a processing unit is involved in, most
components in real processors can be categorized into two classes. Components such as
the instruction decoder and functional units such as ALUs are units that manipulate or
transform object values. Components such as caches, TLBs, and branch predictors
perform or facilitate object fetching and/or storing operations and process information
about the object locations. During the operations of such components, information about
the operations being performed can often be leaked out, which is the basis of real
information leakage attacks. In the next section, basic mechanisms of information
leakage will be summarized and examples given.

1.2.2 Basic Leakage Mechanisms

Information leakage mechanisms in processors mostly fall into two categories. The first
type of leakage occurs during the operation of the information-leaking component. For
example, the branching unit may exhibit different power consumption characteristics,
indicating a taken branch or a non-taken branch. Another example is the memory system.
When performing a memory access operation, the memory system may exhibit input-
dependent delay – due to cache hit or miss, and can leak information about the input, i.e.,
the address of the access. Since such information leakage is due to the use of on-chip
resources, we refer to this type of leakage as leakage by resource use.

Another type of information leakage is due to reporting mechanisms that exist in
many modern processors. For the purpose of debugging and performance analysis and
tuning, modern processors often implement event monitors and counters accessible to
system software as well as application software. Such reporting mechanisms allow a
program to learn information about other programs that it may not be able to observe via
the first type of information leakage. We refer to this type of information leakage as
leakage by event reporting. Note that leakage by event reporting does not require direct
use of resources.

Leakage by resource use
Based on what type of information is leaked, leakage by resource use can be value-
dependent leakage, address-dependent leakage, or hybrid leakage.

Value-dependent leakage: If a processing unit exhibits input-dependent behavior, it may
leak out information about the value of the object being processed, causing value-
dependent leakage. For example, functional units may exhibit input-dependent power
consumption and leak out information about the input value, e.g., its hamming weight.
Some simple CISC processors may implement complex instructions with micro programs,
which could lead to variable execution cycles and leak information about the value of the
instruction operand.
Address-dependent leakage: If a processor component operates on an object’s location
information, i.e., its address, it may cause address-dependent leakage. The branching unit
and memory system including caches, Translation Lookaside Buffers (TLBs), etc., are
good examples of this. A prefetching unit may also exhibit different behaviors for
different access patterns, leaking out information about the memory access history.
Hybrid leakage: The leakage of object values and location information can sometimes
be twisted together. For example, value prediction [7-8] and speculative execution [9]

6

may speculate on operand values and lead to different execution paths for correct and
incorrect prediction or speculation, respectively. The leakage of object values in such
mechanisms, however, is through the variations of the objects’ addresses.

Leakage by event reporting
Unlike leakage by resource use, leakage by event reporting usually does not involve
operations that generate information-leaking variations of object values or locations.
Instead, it exposes events that are already generated. For example, the performance
counters in Intel processors can record information about a wide range of events
including the number of cache misses, or retired branches, or TLB references, or micro-
operations (uops) of various types, etc. In addition to the dedicated reporting mechanisms,
other processor architectural features may also expose events that are originally invisible
to a program. For example, control speculation in IA-64 allows a program to see the
occurrence of an individual event such as a cache miss with a long delay, a page fault, an
access right violation, etc.

Due to the different nature of the two types of information leakage mechanisms, the
leaked information has different characteristics. Leakage by resource use usually exposes
primitive information of individual operations, e.g., values or locations of certain objects,
whereas leakage by event reporting usually exposes composite “high” level events that
represent the overall program behavior. Leakage by resource use therefore is commonly
exploited in attacks that require accurate knowledge of certain internal objects of a
program, e.g., side channel attacks, whereas leakage by event reporting is more suitable
for constructing covert channels – it provides a large set of mechanisms that allow the
receiver of the channel to observe various aspects of the behavior of the sender, which is
ideal for covert channels.

1.3 Dissertation Overview

Despite the extensive research in the areas of covert channels and side channel attacks,
the information leakage problem due to microprocessors did not receive as much
attention in the past. Existing work include the information leakage through the memory
bus, covert timing channels based on CPU or bus contention, and cache based covert
channels and side channel attacks, etc. We review all this in detail in chapter 2. All these
work however addressed only specific attacks and the coverage is very limited. To the
best knowledge of the author, a comprehensive and systematic examination of
information leakage at the processor architectural level is not available.

This work is motivated by the fact that there are rich and unique mechanisms in
microprocessors which allow unintended and undesired information leakage, and the lack
of a thorough investigation of the problem in the past. It aims to analyze and understand
information leakage at processor architectural and micro-architectural level, and research
suitable countermeasures before irreparable damage is done. The work first investigates
real attacks, especially on processor caches, that are of high significance, analyzes
concrete problems and proposes novel and effective solutions. The work then generalizes
the problem with abstract modeling and classification, based on which theoretical
analyses are performed. The generalized discussion helps clarify past misconceptions and

7

allows better modeling and clearer classification of information leakage channels. The
better understanding of the nature of the problem also helps identify new information
leakage channels.

The rest of the dissertation is organized as follows. In chapter 2 we review related
past work, including covert channel analysis, side channel attacks, steganography as well
as other information hiding techniques. In chapters 3, 4, and 5, concrete information
leakage problems of significant importance are first addressed. Chapter 3 [10] analyzes
the recently reported cache based side channel attacks and reveals the common root cause
of these attacks. Novel cache architectures, including the PLcache and RPcache, are then
proposed as universal countermeasures to such classes of attacks. In chapter 4 [11], we
present Newcache, another novel cache architecture that improves performance even as it
improves security. The proposed cache architecture inherits the short access time and
high power efficiency from the direct mapped cache architecture, and at the same time,
enjoys low miss rates comparable to a highly associative cache. It also can prevent
information leakage in caches and hence is immune to the cache-based side-channel
attacks. In addition, it can bring several other benefits such as fault tolerance, power and
thermal optimizations. In chapter 5 [12], we present new fast covert channels we
identified in processors, and propose corresponding countermeasures. The theoretical
aspect of the information leakage problem is addressed in chapter 6 [13-14]. As the basis
of further theoretical analysis, the information leakage mechanisms are first generalized
and an abstract channel model is constructed. The ambiguity in traditional classifications
of covert storage and timing channels is explained and we propose a new classification
that resolves this ambiguity. This chapter also presents new results on channel capacity
estimation, pointing out that asynchronism is an inherent characteristic of covert channels
that should be properly captured in channel capacity estimation. Finally, Chapter 7
summarizes the contributions of the work and discusses possible directions of future
work.

8

Chapter 2

Related Work

In the most general sense, information leakage can be defined as any unwanted
information distribution or transfer. It may occur anywhere in a system and the
information can be leaked out in vastly different ways. In practice, information leakage is
often a result of access control failure, which leads to direct exposure of information to
unauthorized parties. Information can also be leaked out indirectly, even when the system
has properly designed and implemented access control. In a computer system, the
operations that process data can cause interference observable to others, from which
certain information of the data being processed can be inferred. Many covert channels
and side channel attacks are based on such indirect information leakage. Information
leakage may occur at various levels of the system. For example, application software may
fail to properly clear cryptographic keys after use, system software may contain bugs that
allow exposure of kernel memory to unprivileged processes, and hardware circuits may
exhibit data dependent behaviors such as various power consumption or operation timing.
Information leakage can be unintended leakage, e.g., due to buggy software that
accidentally expose one’s private data to others. Information can also be leaked out
intentionally, e.g., by a Trojan horse that deliberately sends out information. Due to the
abundance of information leakage mechanisms, information leakage was studied in a
wide range of research areas in the literature, each of which investigates certain aspects
of the problem in a particular context. In this section, the related work including covert
channels, side channel attacks, information hiding and miscellaneous unintended data
exposure are first reviewed. The relationship between the main focus of this work and the
past work is then summarized, and the scope of this dissertation clarified.

2.1 Covert Channels

2.1.1 Definitions of Covert Channels

In the literature, the term “covert channel” was used to refer to a variety of
unconventional communication mechanisms. This section gives an overview of covert
channels, reviews the existing definitions, and clarifies the subject of discussion.

9

The notion of covert channels was first introduced by Lampson [6]. He examined
nontraditional means of information transfer, which he referred to as “covert channels”,
in the context of program confinement. In such a context, there are normally two parties
(e.g., processes in a computer system) involved in a covert channel: the sender S and the
receiver R, who are disallowed by the system security policy to communicate in one or
both directions between them. S and R therefore have to retort to nontraditional ways to
exchange information. Lampson’s definition of covert channels was [6]:

Definition 1: channels that are neither designed nor intended to transfer
information.

This definition points out the nature of covert channels but does not provide
information on how covert channels can be constructed. Definitions 2 and 3 define covert
channels from an implementation perspective.

Definition 2: channels that use entities not normally viewed as data objects to
transfer information from one subject to another [15].

Definition 3: channels that are a result of resource allocation policies and resource
management implementation [16].

Unlike in normal communication channels, information transferred in covert channels
is usually encoded into objects not used for data storage (e.g., control objects rather than
files or messages), or modulated over the use of shared resources, causing interference
among processes from which information can be indirectly inferred. Below are two
examples of such covert channels:

Example 1: the file lock channel [17]
In systems that provide file locking capability, the status of the file lock can be exploited
to transfer information between processes. The sending process S can lock a file to
indicate a 1 and unlock it to indicate a 0. The receiving process R can then extract the bit
by checking the status of the lock.

The file lock channel is a representative example of covert channels under Definition
2. There are also other means to construct covert channels, among which exploiting
shared resources, e.g., the CPU time, is the most common one.

Example 2: the CPU scheduling channel
In multi-tasking systems, the CPU is shared among multiple processes, each of which is
given a certain amount of CPU time. A process can modulate information over its own
use of CPU time and interfere with other processes. For example, the sender S can use as
much CPU time as possible to indicate a 1 and use little CPU time to indicate a 0. The
receiver R can recover the information by comparing its own progress with a timer. A
slow down of R’s execution would indicate a bit 1 sent by S.

Definitions 2 and 3 however can hardly cover all covert channels due to the unlimited
number of ways that covert channels can be constructed with. For example, Definition 2
did not consider the covert channels based on the timing of events. Furthermore, although
all the previous definitions are intuitively clear, they are informal and ambiguous, and

10

thus can hardly be used in systematic covert channel analysis with automatic tools. In
[17-18], security policy was introduced into the definition of covert channels, which
removes much of the ambiguity.

Definition 4: channels that allows a process to transfer information in a manner
that violates the system's security policy [18].

Definition 5: given a nondiscretionary (e.g., mandatory) security policy model M
and its interpretation I(M) in an operating system, any potential
communication between two subjects I(Sh) and I(Si) of I(M) is
covert if and only if any communication between the corresponding
subjects Sh and Si of the model M is illegal in M [17, 19].

In particular, Definition 5 pointed out the irrelevance of covert channels with
discretionary security policies [17]. Implementations of discretionary policy models
within operating systems cannot determine whether a program may release information in
a legitimate manner [20], hence any user can make use of the legitimate communication
channels rather than covert channels to leak out information. Compared with exploiting
mechanisms not intended for communications as in covert channels, leaking information
through legitimate channels is much faster, more convenient and harder to detect, in
particular with the help of steganography as well as other data hiding techniques.

Definitions 4 and 5 are particularly interesting in the context of Multi-Level Security
(MLS) systems where mandatory security policies are widely used and formally defined.
DoD’s Trusted Computer System Evaluation Criteria (TCSEC) [18] has adopted such a
definition. In this dissertation, a combination of Definitions 1 and 5 is adopted as the
definition of covert channels. This is not to create a new definition, but to clarify the three
characteristics of covert channels. More specifically, by “covert channel” we refer to a
channel that:

1. exploits mechanisms that are not designed for communications,
2. violates the system’s security policy M, where M is a non-discretionary policy,
3. involves an insider that intentionally sends out information.

Note that the third characteristic was not explicitly stated in definitions 1 to 5, but was
indeed assumed in the context of discussion, e.g., insider attacks in MLS systems. This
distinguishes covert channels from other unintentional information leakage problems.

In addition to the covert channels defined above, there are also other uses of the term
“covert channels” in the literature which however refer to different areas of work. For
example, steganography is often regarded as a form of covert channel [21-22]. Definition
6 is a definition used in such areas.

Definition 6: A covert channel is a parasitic communications channel that draws
bandwidth from another channel in order to transmit information
without the authorization or knowledge of the latter channel's
designer, owner, or operator [22].

Unlike covert channels that exploit unintended mechanisms to transfer information,
steganography hides information in legitimate text such as ordinary files and network

11

packets. Since the main interest of this area of work is the covertness (i.e., the secrecy) of
the communications (not just the information being transferred), and because the term
“information hiding” was not yet invented at that time [23], the term “covert channels”
was also used in this area. In this dissertation, according to our definition of covert
channels, steganography will not be discussed in the scope of covert channels but will be
discussed as a form of information hiding technique.

The definition of covert channels in this dissertation also distinguishes side channels
from covert channels. Although information leakage in covert channels and side channels
may be based on the same physical mechanisms such as operation timings, side channel
attacks assume no insiders and thus are unintentional information leakage. The targets of
side channel attacks are mostly crypto ciphers which by no means would intentionally
leak out information.

2.1.2 Covert Channel Classification

In the literature, covert channels are often categorized into two types: covert storage
channels and covert timing channels [18, 24-26]. Covert storage channels usually make
use of objects not intended for data storage whereas covert timing channels exploit the
temporal characteristics of events to transfer information. For example, TCSEC [18]
adopted the following definitions:

Covert storage channels: covert channels that “would allow direct or indirect writing
of a storage location by one process and the direct or indirect reading of it by another”.
Covert timing channels: covert channels that “would allow one process to signal
information to another process by modulating its own use of system resources in such
a way that the change in response time observed by the second process would provide
information”.

The file lock channel described in section 2.2 is a typical covert storage channel,

which makes use of the file lock object to carry the information. The sender is able to
“write” a bit to the file lock, though indirectly, and the receiver can “read” the file lock
value. Many other mechanisms in operating systems can be exploited as well. For
example, by allowing a process to detect whether a directory exists or not even though
the process does not have enough security clearance to access the directory, an insider
can send bits out by creating and removing a directory known by the receiver. Resource-
exhaustion channels are another common class of storage channels. Based on the
information bit to be sent, the insider can choose to use up, or not, the shared resources.
The receiver then makes an allocation of the exploited resource and observes if the
allocation fails, or not, to infer the bit. The CPU scheduling channel is a representative
covert timing channel as the information is modulated over the observer’s response time.
Other shared resources can also be exploited to construct covert timing channels in a
similar way. Indeed, almost all mechanisms that allow a process to impact the system
performance can be exploited as timing channels [21].

In addition to those in standalone systems, covert channels exist in networks as well.
Examples of covert storage channels in networks include those based on the pattern of the
network packets’ destination address, unused header bits and certain packet fields, and
examples of covert timing channels include those based on packet rate, packet timing,

12

network protocols such as the Medium Access Control (MAC) protocol of wireless
networks, etc. [27-34]. A survey of network covert channels can be found in [35].

The classification of covert channels as storage channels vs. timing channels is clear
and helpful in covert channel analysis most of the time, and thus was widely accepted and
used in the literature. However, researchers admitted that the difference between storage
channels and timing channels is actually unclear [17, 23, 26] and there are covert
channels that are hard to categorize. Below is an example:

Example 3: the disk arm channel
When servicing a sequence of disk access requests, the operating system often re-orders
the requests to avoid unnecessary seek operations, i.e., the radial movements of the disk
arm, which are very expensive in terms of time. Due to the similarity between the
problem of scheduling a disk arm and that of scheduling an elevator in a tall building, the
elevator algorithm is commonly used for disk access optimization, i.e., the disk arm
keeps moving in the same direction until there are no more outstanding requests in that
direction and then switches the direction. This allows a covert channel as described below.
Assume that the inner-most cylinder is numbered 0 and the outer-most is numbered N.
The receiving process R first initializes position of the disk arm to cylinder N/2 by
requesting accesses to that cylinder. R relinquishes CPU after this access is completed.
The sending process S can then encode a bit of information by accessing either cylinder 1
or N-1 to send a bit ‘0’ or ‘1’, respectively. To receive the bit sent by S, R issues two
requests – one to cylinder 0 and the other to cylinder N, and observes the order of
completion of the two requests. If the access to cylinder 0 completes first, it means that
the disk arm’s movement is N/2  1  0  N, indicating that S accessed cylinder 1 and
thus a bit ‘0’ is sent. If R’s access to cylinder N completes first, the disk arm’s movement
is N/2  N-1  N  0, meaning that S accessed cylinder N-1 and thus a bit ‘1’ is sent.

This channel was categorized as a storage channel by Karger [36]. His argument was
that the disk arm is a storage object whose value is the position of the disk arm and there
is no timing measurement involved in this channel. However, Wray, the second author of
the paper, regarded the disk arm channel as a timing channel. He argued that the disk
itself is a timer and observing the ordering of events is a kind of timing measurement [26].
In fact, the ambiguity of the difference between storage channels and timing channels is
due to the non-rigorous definitions of the two types of channels. For example, the rigor in
the definition of timing channels relies on the rigor in the definition of time, which
however is ambiguous as illustrated in [26]. To the best knowledge of the author, this
ambiguity is still unresolved.

2.1.3 Covert Channel Analysis

Dealing with the covert channel problem usually involves three steps: covert channel
identification, capacity (or bandwidth) estimation, and covert channel handling. Covert
channel identification attempts to find all, or as many as possible, covert channels in the
system. Once identified, covert channels must be measured for their severity. A common
metric is the channel capacity, or channel bandwidth, which measures how fast
information can be sent over the channel. Depending on the needs, covert channels can be
audited, mitigated, or eliminated.

13

2.1.3.1 Identification
Covert channel identification requires the analysis of all or a subset of system documents,
including high level system specifications, system reference manuals, implementation
source code and hardware manuals. A common approach of covert channel analysis is
flow analysis. Information flow can be derived from the documents by attaching
information flow semantics to the statements of the specification or programming
language. In a program, data dependency and control dependency lead to information
flow. For example, both assignment statement “x:=y” and if-else statement “if (y==c)
x:=a else x:=b;” causes information flow from variable y to variable x. Examples of more
information flows in programming language statements can be found in [20, 37-38]. The
derived flows are then checked with the flow policy which is a representation of the
system security policy. Such a procedure can be automated for analysis over formal
specifications and source code, which has been adopted in several tools, including the
SRI Hierarchical Development Methodology (HDM) and Enhanced HDM (EHDM) tools
[39-40], the Ida Flo tool [41] and the Gypsy tools [42-44]. Information flow analysis can
be further augmented with more semantic components. In [45] Tsai presented a method
based on the analysis of programming language semantics, kernel code and data
structures, and the resolution of aliasing of kernel variables. Together with the
information flow analysis, direct and indirect visibility and alterability of kernel variables
are examined and potential covert storage channels are identified.

Information flow analysis methods shown above however are not suitable for
specifications written with informal languages. In [15] Kemmerer proposed the Shared
Resource Matrix (SRM) method which can be applied to both formal and informal
specifications. The SRM approach requires the construction of a shared resource matrix
from the specifications being analyzed. The matrix consists of visible/alterable shared
resources and their attributes as columns and user-visible primitives as rows. Each entry
of the matrix can be marked as either R or M if the corresponding primitive can reference
(read) or modify (alter) the corresponding attribute. To identify indirect references to
resource attributes, a transitive closure needs to be performed on the entries of the matrix.
To detect potential covert channels, each column containing row entries with either an R
or an M is analyzed since the resource attributes of these columns may be exploited for
covert channels. A process that can alter an attribute can send information to a process
that can read the same attribute, which may form a potential covert channel. Further
analysis of the identified potential covert channels is then performed to determine if they
are indeed exploitable. Some potential covert channels identified by the SRM method
may be in parallel with an overt channel, or have the same process as both the sender and
the receiver, or can only pass information that is already known by the receiver. Such
channels are not real covert channels.

Based on similar information and procedures used in the SRM method, Porras and
Kemmerer proposed the Covert Flow Tree (CFT) method [46] that allows the search for
covert communication scenarios with a graphical tool. The dependency information is
first analyzed, which identifies the resource attributes that should be further analyzed.
The trees are then constructed for such attributes. The left branch of the tree is the series
of operations caused by the sender to alter the attribute and the right branch is the
operations that enable the receiver to perceive the modification. Potential channels are
then analyzed as in the SRM method to determine if real covert channels exist.

14

Noninterference analysis is another popular covert channel analysis method, first
introduced by Goguen and Meseguer [47]. It is based on the concept that “one user
should not be aware of any activity of another user that he does not dominate” [48] and
does not examine flows directly. By modeling the system as a state machine, a precise
definition of noninterference can be expressed with the effects of the system’s input
history on a user’s view of the system state and output. Loosely speaking, if user X does
not interfere with user Y, deletion (or purge) of any or all X’s inputs from the system’s
input history should not change Y’s output. Formal definitions of noninterference can be
found in [47, 49-50]. In practice, analyzing the entire history of the system inputs is
infeasible, and the “Unwinding Theorem” solves this problem [51]. The “Unwinding
Theorem” allows noninterference to be checked by examining the properties of the
machine’ state transition function, avoiding analysis of history traces. Noninterference
analysis is advantageous for avoiding the discovery of false illegal flows. Its main
drawback is that it requires the construction of the state machine and the selection of
users’ “view” functions that captures the system state visible to the user, which are
nontrivial. Noninterference analysis was popular and has been applied to several systems
including the SAT abstract model [52].

In summary, covert channel identification is a difficult problem which has not been
completely solved despite all of the above work. On the one hand, the lack of formal
specifications in real system designs disallows the use of the formal security-provable
techniques, and at the same time analysis of informal specifications can not ensure
security. Furthermore, it is really hard, if not impossible, to enumerate all possible
information transfer mechanisms and include them into the system model. Under the
“incomplete” system model, the ignored mechanisms can lead to covert channels even if
the security of the system is theoretically proved.

2.1.3.2 Capacity Estimation
The task of capacity estimation of a covert channel is to estimate the maximum attainable
bit rate of information transfer over the channel. Millen [53] first connected information
flow models to Shannon’s communication theory [54] and introduced the notion of covert
channel capacity as a measurement of the covert channel information rate.

Unlike in most traditional communication channels, the times required for sending
different bit values in many covert channels are different and depend on the history of bit
transmission. Such channel properties are better captured by a state machine model as
proposed by Millen in [55]. Millen assumed that the channels are noiseless, without
interruption from processes other than the sender and the receiver, and the time required
for the synchronization between the sender and the receiver is negligible. Such
assumptions are valid in the context of estimating the maximum information rate. With
the help of information theory, capacity of the state machine channels can be calculated
once the transition overheads are determined. Information theory based capacity analysis
was also applied to various other types of channels. The related work include
Moskowitz’s work on the capacity of certain noisy timing channels [56], the simple
timing channels [57], the Timed-Z channels [58], Kang’s work on the pump [59-60],
Gray’s work on the bus-contention channel [61], Giles’s work on channels based on
packet timing [62], and Venkatraman’s work on network channel capacities [63], etc.

The information rate of a covert channel can also be estimated with informal methods.
In this dissertation, such estimation is referred to as bandwidth estimation rather than

15

capacity estimation although some past work used these two terms in an exchangeable
manner. Capacity estimation gives the theoretical upper bound (which is tight) of the
information rate whereas bandwidth estimation gives an approximation of the bound.
Bandwidth estimation usually adopts simpler equations as an approximation for the rate
calculation. Examples of such work can be found in [17, 64].

2.1.3.3 Covert Channel Handling
The purpose of covert channel handling is to minimize the damage of covert channels to
system security. The ultimately secure way to deal with covert channels is to eliminate
them. Some covert channels can be closed by redesigning the system. For example, the
file lock channel can be blocked by disallowing a user to check the lock status of a file
that he is not entitled to access. However, handling all covert channels in a system via
channel elimination is practically impossible. For example, closing covert channels based
on shared resources would essentially require strict resource partitioning or no resource
sharing at all. Such an approach may be applicable to small system modules without
sacrificing system usability and performance, but applying it to the whole system would
normally impose too many restrictions on the system design and eventually lead to
unusable systems.

Another covert channel handling strategy is through deterrence. The main deterrence
method is channel auditing. If a known covert channel involves operations that are
normally infrequently used and has low capacity, handling it via auditing can be a good
choice. It is easy for the auditing system to detect the use of such a channel with
reasonable expenses on recording, and before the channel use is detected only a tolerable
amount of information can be leaked out. Channel auditing however has several
fundamental problems. Not all covert channels are suitable for auditing, and some of
them are simply undetectable. The use of a covert channel is usually detected afterwards,
sometime long after the occurrence and the damage has been done. The analysis of audit
data is nontrivial and could be very time consuming. More details about the problems of
channel auditing can be found in [65].

The third method of covert channel handling is based on capacity reduction. Such a
method does not eliminate the covert channel completely, but makes it much slower. One
class of the work aimed to reduce capacities of timing channels by playing tricks with
time. Popek and Kline proposed to restrict each process to see only virtual time, which
depends solely on its own activity [66]. By making the time of each process less
correlated to each other, the capacities of timing channels between these processes are
reduced. Hu proposed to use “fuzzy time” [25] in the system, which makes all timing
sources visible to the processes noisy. Giles et al. proposed the timing jammer to mitigate
the packet timing channels [62, 67]. Noisy timing measurement would generally lead to
lower capacity of most timing channels. Another approach for reducing covert channel
capacity is to slow things down such that given the same amount of time, less information
can be transferred. The most straight forward implementation is to slow everyone down,
e.g., by adding delay to every system call in a system [23]. In [68] Hu proposed the
lattice scheduling technique which makes use of the secrecy class attributes of processes
to make decisions. The lattice scheduler reduces the frequency of transitions between
processes that could be the two ends of the covert channel and slows down the
transmission procedure. Resource partitioning can also be used to reduce covert channel
capacity. Gray proposed probabilistic partitioning to mitigate the bus-contention channel

16

[61]. Reducing covert channel capacity is also an interesting topic in the design of
legitimate communication channels between security domains, e.g., from the low security
level to the high security level. To ensure reliable communications, feedback mechanisms
are usually needed to send back reception acknowledgements to the sender who is at the
low security level, which leads to covert channels. To reduce the capacity of such covert
channels, the pump and its variants were proposed [59-60, 69-70]. By placing a buffer
between Low and High, the acknowledgements from High to Low are decoupled into two
separate ACKs, one from the buffer to Low and the other from High to the buffer. By
properly controlling the ACK times, the capacity of the covert timing channel can be
reduced without compromising the reliability and performance of the legitimate
communication channels.

The covert channel problem in general is a hard problem. It is believed impossible to
make any realistic systems free of covert channels. There is always a trade-off between
the level of security and the performance, usability, cost, etc.

2.2 Side Channel Attacks

2.2.1 Overview

Side channel attacks are a special class of attacks that are based on indirect information
leakage due to a systems’ physical implementation. During the operation of a system, the
variation of the system’s power supply current, operation timing, electromagnetic
radiation and/or acoustic emission can all carry information – often referred to as side
channel information – which reveals the system’s internal states and the data being
processed. Although theoretically side channel information can be exploited to attack all
kinds of systems, in practice the targets of the attacks are mostly implementations of
cryptosystems, particularly simple cryptographic devices such as smart cards.

Side-channel cryptanalysis is different from classical cryptanalysis although they both
aim to break cryptosystems. Classical cryptanalysis views the target cryptosystem as an
abstract mathematical object and attacks the weakness of the mathematical composition
itself, whereas side-channel cryptanalysis views the target as a particular physical
realization and attacks the system physically rather than mathematically. Although side-
channel cryptanalysis is much less general than classical cryptanalysis due to its
implementation-specific nature, it is often much more powerful. Classical cryptanalysis
typically requires a huge amount of computation and is only able to shrink the search
space for the secrets. If the cipher is mathematically strong, classical cryptanalysis may
be practically ineffective. In contrast, side-channel cryptanalysis often can recover more
secret information – sometimes the full crypto key – in a much shorter time. It can be
very effective even in attacking mathematically strong ciphers.

2.2.2 Classification of Side Channel Attacks

In the literature, side channel attacks are usually classified in two different ways.

Passive vs. active: In passive attacks, the attacker does not interfere with the target
system and only observes the system’s normal behavior. In active attacks, the attacker

17

tries to tamper with the system’s normal operations, e.g., by introducing faults into the
computation, and deduces useful information from the system’s responses.

Invasive vs. non-invasive: Invasive attacks usually involve physical deconstruction of
some parts of the target system, e.g., depackaging a chip, to gain access to some internal
components such as an internal data bus. Non-invasive attacks only exploit externally
available information such as power supply current, operation timing etc. In [71],
Skorobogatov et al. introduced a new type of attacks – the semi-invasive attacks. These
attacks require depackaging the chip to gain access to the chip surface, but do not tamper
with the chip further to probe internal components.

Note that the above two classification methods are orthogonal. For example, a passive
attack may require depackaging a chip to gain access to the necessary information
sources, and an active attack does not always imply an invasive attack – faults can be
introduced with nondestructive methods, e.g., by heating the chip.

Although invasive attacks often allow the attacker to gain access to more information
which makes the attack more powerful, in practice non-invasive attacks seem to receive
more research and engineering effort due to economic reasons. Invasive attacks often
require special equipment such as a scanning electron microscope or a probing station
which are expensive and usually not available for individuals. Non-invasive attacks do
not have this requirement and can be adopted more widely.

2.2.3 Representative Attacks

Side channel attacks are extremely implementation-specific and this review does not
attempt to list all of them. Below we briefly introduce representative attacks in each
category and give references to other related work.

2.2.3.1 Power analysis attacks
The power consumption of a cryptographic device often carries much information about
the operation taking place and the data being processed in the device. In [72] Kocher et al.
first presented attacks based on power analysis – referred to as simple power analysis
(SPA) and differential power analysis (DPA).

The power measurements involved in power analysis are usually referred to as traces.
A trace consists of a set of measurement samples, e.g., the power supply current, during a
cryptographic operation. Due to the physical characteristics of the device, the device’s
internal states and the operations taking place in the device are transformed into the
variation of the power consumption, which is recorded in the traces and can be recovered
directly or statistically.

Simple Power Analysis (SPA): SPA refers to the technique that analyzes variations in the
power traces that are directly distinguishable. Such large-scale variations are usually due
to the execution of different operations. In implementations with software running on
processors, different instruction sequences exhibit different power consumption profiles.
In pure hardware implementations, different function modules consume different amount
of power. In real attacks, SPA can identify operations with unique properties, e.g., round
operations in ciphers like DES and AES – they cause repetitive patterns in power traces.

18

A more significant application of SPA is to identify conditional branches, which exhibit
different SPA characteristics when executing different paths. In some RSA
implementations, the conditional branches in exponentiation operations are controlled by
the secret key bits. Finding out the branching direction would directly lead to the
recovery of the secret key bit. Identifying conditional branches was also adopted in SPA
to recover information from the DES key schedule computation, DES permutations, and
various string or memory comparison operations [72].

Differential Power Analysis (DPA): DPA aims to recover information from subtle
variations in the power traces that SPA can not exploit and thus is more powerful. In
particular, the power variations correlated to a device’s internal states are usually very
small and overshadowed by the large-scale signals and measurement noise. Statistical
techniques are employed in DPA to amplify the weak signal of interest and remove the
effects of noise as well as other unrelated signals. Although the exact form of DPA is
attack-specific, the underlying ideas are similar. In a typical DPA, the attacker first
selects an internal state to exploit – often an intermediate result of the cryptographic
computation that depends only on the plaintext or ciphertext, and a small part of the
secret key (meaning a small search space). The effects of the selected state on power
consumption therefore carry information about the secret key. Multiple power traces are
normally needed to provide enough samples for statistical analysis. The key recovery
procedure typically involves tests of a small number of hypotheses on the secret key
values in the search space using the power measurement samples. Below is an example.

Let S(C,"b",Ks) denote the function – often referred to as the selection function – that
describes the relation between the selected state b (e.g., a binary bit), the system input or
output C (e.g., the plaintext or ciphertext), and the secret Ks (e.g., a byte of the secret key).
The outcome of the selection function S(C,"b",Ks) is the value of the state b given the
values of C and Ks. In DPA, the attacker knows the C value for each trace T. He guesses
possible values of Ks in the search space and tests if the hypotheses are true. To test a
hypothesis, each power trace is classified as a 1-trace or a 0-trace based on the outcome
the selection function given the trace’s C value and the guessed value of Ks. A 1-trace has
a corresponding b=1 and a 0-trace has a corresponding b=0. The hypothesis can be tested
by computing the difference between the averages of 1-traces and 0-traces:

 








0

1
0

1

1
1 0

1

1

1 M

j
bj

M

i
bi T

M
T

M
T (2.1)

where M1 and M0 are the numbers of 1-traces and 0-traces, respectively. For a correct
guess of the Ks value, the classification of 1-traces and 0-traces is correct and the mean
computations in (2.1) average out the noise in 1-traces and 0-traces while maintaining the
bias caused by b. The subtraction then removes the common signals that is unrelated to b.
T therefore measures the power variation due to different values of b. If the hypothesis
is wrong, the traces are incorrectly classified and the computed T is roughly zero. The
attacker tests hypotheses on all possible key values in the search space. The key value
with a corresponding T that is sufficiently different from zero is likely the correct guess.

More advanced power analysis techniques were also available. An important
improvement of DPA is high-order DPA [73-75]. Instead of assuming that at some point
of the computation the intermediate state value is correlated to the power consumption as
in classical DPA, high-order DPA considers effects of the state at multiple points in the

19

power consumption curve. The resulting differential function – the equation (2.1) in the
case of classical DPA – has a high-order form. High-order DPA is able to break
countermeasures that defeat classical DPA [76]. Another important improvement on
power analysis is the template attack [77-78]. Template attacks rely on precise modeling
of noise, with which the attacker is able to fully extract information from a single sample.
Template attacks however require the attacker to possess an experimental device identical
to the target system on which he can do experiments of his choice.

Power analysis has been demonstrated very effective in attacking various
implementations of almost all major cryptosystems. Numerous reports were published on
attacks on software as well as hardware implementations of DES [72, 79-83], AES [84-
91], RSA [92-95], Elliptic Curve Cryptosystems (ECC) [96-100], RC4 [77], IDEA, RC6
and HMAC [101]. A comprehensive review of power analysis can be found in [102].

2.2.3.2 Timing analysis attacks
Operation timing is another important source of side channel information. The variations
in execution time can be the result of multiple factors: the operation’s inherent
computation complexity, software implementation issues such as branches and
conditional execution of operations, and hardware dependent effects such as cache misses
and variable branching penalty.

The idea of timing analysis of cryptosystems was first introduced by Kocher in [103]
where he analyzed implementations of Diffie-Hellman, RSA and RSS. A timing attack
was then practically implemented against an RSA implementation with Montgomery
algorithm [104]. The attack was further improved in [105-106] and was able to recover a
512-bit secret key with 5000~10000 timing measurements. Timing analysis was also
applied to RSA implementations that use Chinese Reminder Theorem (CRT). The
resulting attack was very powerful – a 1024-bit secret key can be recovered using about
370 time measurements [107]. In addition to attacks targeted at local machines, timing
analysis even allows attacks over networks. In [108], a remote attack against the
OpenSSL implementation of RSA was demonstrated practical, despite the high noise
level in real world networks. This work was further improved in [109]. Timing attacks
were also applied to block ciphers such as AES [106].

Most of the early work on timing analysis were based on a black-box model, i.e., only
externally available signals (normally the running time of the entire cryptographic
operation) are accessible to the attacker. This is particularly true in attacks on embedded
devices such as smart cards where the timings of the internal sub-operations are normally
unavailable. Timing analysis attacks under such a model therefore rely on statistical
analysis and require a considerable number of time measurements. The recent cache
attacks, however, have demonstrated that information leakage in processor caches
enables richer forms of attacks based on both black-box analysis and white-box analysis.
The attacks are generally effective – almost all processors with caches are vulnerable, and
can be used to attack embedded devices as well as general purpose systems. Cache
attacks have received significant interest due to their wide impact.

In the literature, Page first described theoretical attacks based on information leakage
in caches and categorized the attacks into two types: trace-driven attacks vs. time-driven
attacks [110]. The attacker in trace-driven attacks is able to detect the outcome of each
victim’s memory reference in terms of hit or miss whereas in time-driven attacks, the
attacker can only see an aggregated profile, e.g., the total number of hits or misses.

20

Although Page’s work is not specifically in the context of timing analysis, most existing
cache attacks employ timing analysis due to the convenient timing measurements with
the high accuracy timers widely available in modern processors. Also, some processor
features such as Simultaneous Multi-Threading (SMT) allow an attacker to run in parallel
with the victim on the same chip and observe the victim’s memory references in real time
which exposes information about the internal sub-operations of the target cryptosystem.
In addition to the trace-driven and time-driven types of attacks, a cache attack can also be
classified as an access-driven attack [111]. The attacker in an access-driven attack is able
to learn not only the cache’s hit/miss behavior but also which cache lines/sets are touched,
individually or in an aggregated manner.

The first practical cache attack was implemented by T sunoo et al. [112-113] in
2002 and 2003. The attack exploits the cache collisions in DES code and was a time-
driven attack. In 2005, Bernstein showed the vulnerability of software AES
implementations due to evictions of AES table entries in the cache and presented a time-
driven attack that was able to recover a large portion of the key (the exact number of key
bits that are recoverable depends on the cache configuration of the target system) [114].
This attack was further improved in [115] by exploiting the second round operation of
AES – in addition to the first round operation, and was able to recover the full key.
Bonneau et al. [116] proposed another time-driven attack that requires less timing
measurements than in Bernstein’s attack. This attack relies on cache collisions – cache
hits due to accesses to the same AES table entry – rather than cache evictions of AES
table entries. In [117], Aciiçmez et al. pointed out the infeasibility of the existing cache
attacks as remote attacks and proposed a real remote attack. A significant amount of
timing measurements however are required. In addition to time-driven attacks, Osvik et al.
also described several variants of cache attacks against AES in [118] and [119], in which
the attacker is able to detect individual internal operations such as AES table lookups by
making use of Simultaneous Multi-Threading (SMT). The attacker runs simultaneously
with the victim process on the same chip where the cache is shared. Due to the cache line
evictions caused by the victim, the attacker is able to learn which cache lines/sets are
touched by individual memory references of the victim. The resulting attacks are very
powerful. In [120], Neve et al. improved the attacks by making use of the final round
operation of AES and making the use of SMT not necessary. Similar techniques were
also adopted by Percival in his attack against RSA [121]. The full 1024-bit secret key can
be recovered in a single encryption.

In addition to cache based attacks, other processor architectural features can also be
exploited in timing attacks. Aciiçmez et al. have demonstrated successful attacks against
RSA by exploiting branch prediction units in modern processors [122-124].

2.2.3.3 Electromagnetic analysis attacks
Electrical currents produce electromagnetic fields. Electromagnetic analysis makes use of
the information carried in the electromagnetic (EM) field of the target device during its
operation and extracts the information of interest. Since the 1950’s, the US government
has been aware of the information leakage via electromagnetic emanations, which leads
to the standard called TEMPEST [125].

According to Agrawal et al. [126], electromagnetic emanations can be direct or
unintentional. Direct emanations are caused by intentional current flows, which often
consist of short bursts of current due to sharp rising edges and can be observed in a wide

21

frequency band. Unintentional emanations are normally due to couplings. Harmonic-rich
signals such as “square-wave” clocks and communication related signals contribute most
to emanation via coupling and generate carrier signals for modulations. Data signals can
be modulated over the carrier signal via Amplitude Modulation (AM) or Angle
Modulation (FM or phase modulation). Observing direct emanation usually involves
measurements of near-field signals, which may require chip depackaging. Carrier signals
of unintentional emanation can have much better propagation and can be exploited more
easily and effectively. Due to the close correlation between the currents flowing through
the target device and the associated EM field, the measured EM traces often carry similar
information as power traces. The power analysis techniques therefore are often also
applicable to electromagnetic analysis. Electromagnetic emanations however contain
even more information than power variations and therefore may enable more powerful
attacks. Unlike in power analysis where the measured current is the overall current of all
components in the device, the electromagnetic field of the device indeed contains
multiple channels, which may enable the isolation of effects from different components.

The first published attack based on electromagnetic analysis (EMA) was introduced
by Quisquater et al. in [127] and further improved in [128-129]. Quisquater et al. showed
that with a simple flat coil, an attacker is able to measure the electromagnetic emanations
produced by a smart card. Similar techniques as in power analysis were used in their
attacks, referred to as Simple EMA (SEMA) and Differential EMA (DEMA). In [130],
Mangard showed his near-field EM attack with a simple handmade coil and also
demonstrated that far-field EM measurements of the power supply unit enabled the
recovery of the secret key. Carlier et al. presented an EM attack on an FPGA
implementation of AES and described a new way of retrieving some secret information
[131]. In [132], Agrawal et al. proposed multi-channel attacks, which combine multiple
side channels of the same or different kinds, including EM channels, power channels, etc.
In [133], Quisquater et al. combined electromagnetic analysis and power analysis and
were able to identify instructions executed by a processor based on a dictionary of
instructions and their power/electromagnetic traces. Electromagnetic emanations were
also exploited in retrieving information from computer displays including CRT as well as
flat-panel displays [134-135]. It is worth noting that although most existing work on
EMA employed similar techniques as power analysis, in the future the rich information
contained in electromagnetic field can be further explored and enable new attacks.

2.2.3.4 Other attacks
Other side channel information can also facilitate side channel cryptanalysis. In 2004,
Agrawal et al. demonstrated attacks based on acoustic emanations of computer keyboards,
telephone and ATM keypads [136]. The key being pressed can be recognized by
differentiating the sound produced by different keys. Acoustic emanations were also
employed in analyzing noise generated by computers and allowed attackers to learn CPU
behavior [137]. In [134], Kuhn presented techniques that retrieve information from
diffuse visible light of CRT displays.

Fault analysis attacks sometimes are also discussed in the context of side channel
attacks although they do not rely on the leakage due to physical side channel information.
The basic idea of fault attacks is to induce faults into the target device during its
operation and observe the erroneous output. Depending on the implementation, faults can
be introduced transiently or permanently by manipulating power supply voltage, clock

22

and device temperature, applying radiation or light to the device, or exploiting eddy
current [5, 138-144]. Fault attacks have been successfully applied to DES [145-147],
AES [148-152], stream ciphers [153-154], RSA-CRT [155-157], ECC [158-159], and
modular exponentiation-based cryptosystems [160-161].

Information leakage via address bus sometimes is also regarded as a form of side
channel. Knowing the address trace of a program, e.g., the one exposed on a computer’s
address bus, allows an attacker to learn the internal state of the program, enabling attacks
on copyright-protected software and ciphers [162-166].

2.2.4 Countermeasures

2.2.4.1 Countermeasures of power analysis and electromagnetic analysis
We review countermeasures of power analysis and EM analysis together since
electromagnetic emanation is essentially a product of current flows. The countermeasures
of power analysis thus are usually also effective on EM analysis.

In the literature, most of the countermeasures are based on the following ideas:
removing variations, hiding dependence, randomization, and blinding or masking.

Software countermeasures: As suggested in [167], making the execution flow of a crypto
implementation as constant as possible can help mitigate SPA – it reduces the major
portion of the power variation [155, 168]. In the case of RSA, inserting dummy multiply
operations in the square-and-multiply implementation and the balanced Montgomery
powering ladder [169] are examples of such. Block cipher implementations tend to have
fewer or no branches and their execution path can be made constant more easily. SPA can
also be mitigated by hiding dependency, which makes it harder for the attacker to
reconstruct the secret even when knowing the operations performed. The use of sliding
window techniques [170] and m-ary RSA [171-172] were suggested for this purpose.
Other exponent recoding schemes were suggested by Walter [173-174]. Randomization
can help mitigate both SPA and DPA. The randomized algorithms can make it harder to
identify target patterns in a single trace – mitigating SPA, or make the target power
characteristics random among different traces – mitigating DPA. Randomized
implementations of RSA as well as ECC can be found in [174-184]. Techniques that
randomize variations among traces however do not stop attacks that can recover secrets
in a single trace [77, 185]. Masking the internal states of the computation, i.e., preventing
the attacker from predicting such states, which is the basis of DPA, can solve this
problem. In [186] and [76], techniques that divide each bit of the original computation
into two statistically independent shares were proposed. DPA relying on the prediction of
the original internal bit therefore will not succeed. These methods however were proven
vulnerable to high-order DPA [73-75]. An alternative approach is blinding or masking by
combining input with random numbers. The techniques [187-188] for blinding signatures
are good examples of this [103]. Other masking techniques can be found in [189-194].

Hardware countermeasures: The idea of randomization can be easily applied at the
processor architectural or micro-architectural level. Random register renaming [195] and
random code injection [196] was proposed to randomize the power variations. Masking is
often adopted in logic or cell level circuit design. A theoretical work on gate level
masking was presented in [197]. Various implementation work such as multiplexor-based

23

circuit, correction-term-based circuit as well as other circuit styles can be found in [198-
202]. Removing power variations was mostly done at cell level by making the power
consumption of the cell data-independent. The major logic styles proposed include
asynchronous circuit [203-204], Dual-Rail Precharge (DRP) circuits [205-208], and
Current Mode Logic (CML) circuits [209-211]. There are also other hardware
countermeasures in addition to the above methods. Power measurement noise can be
increased by using a random number generator [212]. Signal suppressing techniques were
proposed in [213]. The detachable power supply technique was presented in [214]. To
defend against EM analysis, the use of metal shield layer and random number generator
was suggested to reduce the EM field and make it noisy [128].

2.2.4.2 Countermeasures of timing analysis
The concepts of removing variations, randomization, and blinding/masking are also
applicable in defending against timing analysis. To remove timing variations, in addition
to the work on the defense of power analysis that make the execution path constant [169],
the timing variations due to the reduction operations in Montgomery algorithm [104] was
also considered. Dhem [215] proposed improved multiplication schemes that allow
chaining of several modular multiplications with only one extra reduction, thus removing
most timing variation. Similar work were also presented by Walter [216-217] and Hachez
et al. [218]. The issues of implementing constant time block ciphers were discussed in
[106]. Randomization techniques for power analysis protection [174-184] are also helpful
in preventing timing attacks. Randomized algorithms randomized power variations as
well as timing variations. Blinding techniques are particularly effective in defending
against timing attacks. Kocher in his first paper on timing attacks [103] had suggested the
use of blind signatures [189-194] as an effective countermeasure. The countermeasures of
cache-based attacks are reviewed separately in the next section due to the uniqueness of
cache attacks.

2.2.4.3 Countermeasures of cache-based attacks
The area of cache-based attacks is young and still rapidly evolving. Although various
intuitive ideas have been suggested, the application of them is not trivial, and many of
them are still not carefully investigated.

Software countermeasures: Page [110], Bernstein [114] and Osvik et al. [118-119]
suggested several conceptual countermeasures to mitigate cache attacks. The first
approach is to avoid memory accesses so that the security of the cipher is irrelevant to
caches. Specific techniques include replacing table lookups with logical and arithmetic
operations, putting tables in registers (if the architecture has a sufficient amount registers),
or using implementations such as the bitslice scheme [219]. Making the memory accesses
data-oblivious [162-163] can also mitigate the attacks. Observing a statically or
statistically fixed memory access pattern would reveal no useful information to the
attacker. Software masking may also be helpful since it would prevent the attacker from
knowing the internal states of the cipher. Pre-loading tables, dynamically moving tables
around, and hiding timing were also suggested, but with comments on their obvious
limitations and nontrivial applications. Brickell et al. [220-221] proposed several
implementations of AES based on three mitigation strategies: (1) compact S-box tables;
(2) table randomization; and (3) pre-loading of relevant cache lines. These strategies

24

together with selective round protection can enable various combinations for different
security-performance trade-offs. Software mitigations for RSA implementations were
proposed in [221]. Two methods for the binary implementations were presented,
including conditional branches elimination and the replacement of all squares with
multiplies. The attacks against the fixed window and sliding window implementation
were mitigated by storing the pre-computed multiplier table in an interleaved manner.
The bytes of each table entry are distributed to all cache lines in the table. The access to
any multiplier therefore leads to accesses to all cache lines, resulting in fixed access
pattern.

Hardware countermeasures: Conceptual countermeasures were suggested by Page [110],
Bernstein [114] and Osvik et al. [118-119], including: (1) disabling cache sharing; (2)
static or disabled cache; (3) larger cache lines; (4) non-deterministic cache placement;
and (5) hardware masking. Percival [121] suggested not allowing one process to evict
cache lines of another. These ideas however were not investigated in detail. As the first
dedicated work, the Partitioned cache [222] was proposed by Page to mitigate cache
based attacks. With instruction set architecture (ISA) extensions, private cache partitions
can be formed for the protected processes or software modules, with the ability of
reconfiguring cache line sizes as well as address masks. The author however admitted
that the overhead of the architecture – in terms of both performance and hardware cost –
could be high, and it might not be suitable for high clock rate processor design. Trade-
offs have to be made among performance, cost and security.

2.3 Information Hiding

In the most general sense, covert channels, steganography, anonymity, and watermarking
are all forms of information hiding [223-225]. This section reviews steganography and
watermarking techniques, which hide information in ordinary messages such as media
files or network packets. In the context of information leakage, information hiding allows
undetectable information transfer covered by legitimate communications.

2.3.1 Steganography and Watermarking Basics

2.3.1.1 Steganography
Steganography in Greek means “cover writing”. It is the art and science of hiding
information by embedding messages in other seemingly harmless messages [226]. Unlike
cryptography which aims to hide the content of a message, the goal of steganography is
to hide the presence of the message. In other words, steganography allows secret transfer
of information while no one else can detect the very existence of the communication.

According to the terminology used in [223], the original object in which the message
is embedded is referred to as the cover-object, e.g., cover-text, cover-image, cover-music,
etc. The message to be embedded is referred to as the stego-message. The object with
embedded message is called the stego-object. In some cases, the sender/receiver needs a
secret to embed/retrieve the message. The secret is referred to as the stego-key. Figure 2-1
illustrates the generic embedding/retrieving process. Note that stego-keys k1 and k2 may
or may not be the same key, depending on whether a symmetric-key or public-key system

25

is used. Also note that the cover-object c at the decoding end is optional, indicated by a
dashed line. Some applications do not require the original object to recover the message.

Three properties are usually discussed in steganographic systems: transparency,
capacity and robustness. Transparency describes the similarity between the cover-object
and the stego-object, or the imperceptibility of the embedded information. Capacity
measures the amount of the information that can be embedded in the cover-object without
compromising transparency. The robustness of the embedding scheme in the context of
steganography is often related to the security of the steganographic system. Depending on
the application, it is relevant to the detectability of the presence of the stego-message, the
retrievability of the stego-message, and the resistance of overwriting, removing or
disabling the stego-message in the stego-object.

Figure 2-1. A generic process of message embedding and retrieving

2.3.1.2 Watermarking
Watermarking is closely related to steganography but has slightly different goals. Unlike
steganography, the embedded message is usually related to the cover object [227], e.g.,
the mark indicating the creator of an art work. In practice, watermarking is more relevant
to the protection of mark tampering or removal rather than the protection of message
detection.

Watermarks can be perceptible or imperceptible, public or private, and robust or
fragile, as explained in the following applications [228-229]:

 Copyright watermarks: By embedding information about the creator or owner of
the object, watermarking provides a way for securing the ownership rights or
proving the ownership. Copyright watermarks should be robust, meaning that they
are hard to remove, and should be still detectable even when the stego-object has
been modified considerably. Copyright watermarks can be either perceptible or
imperceptible.

 Fingerprint watermarks: Fingerprint watermarks can be used to track and trace
copies of an original work, such as copyright protected images and movies. For

26

example, unique fingerprints such as serial numbers can be embedded into each
copy when distributing it to the customer. The fingerprint has to be imperceptible,
robust and private. Private means that only a select group – the distributor in the
above example – can detect or extract the watermark.

 Broadcast watermarks: Broadcast watermarks can be used as a copy control
mechanism and allow copyright protection to be built into software and hardware
devices. For example, copy control can be achieved by detecting a watermark and
invoking proper software or hardware operations such as enabling or disabling the
record module. Broadcast watermarks should be imperceptible, public and robust.

 Annotation watermarks: Metadata can be embedded into the object itself using
watermarking techniques. For example, date, location, author’s information, and
search keywords etc. can be embedded into the image itself. Such watermarks
should be imperceptible, public and robust.

 Integrity watermarks: Watermarks can also be used to ensure integrity of the
cover-object. Such watermarks should be fragile, i.e., tiny modification of the
original object would lead to damage of the embedded watermark. Integrity
watermarks can be either perceptible or imperceptible, public or private.

2.3.2 Data Hiding Techniques

Despite the fundamental philosophical differences between steganography and
watermarking, these two fields share many of their underlying technical approaches,
which are briefly reviewed below.

Substitution techniques: Many cover-objects, e.g., images and audio files, contain
considerable redundancy. Substitution techniques usually involve replacing some of the
redundant parts, e.g., the least significant bit (LSB) of the original object [230], with the
secret message. Substitution techniques can produce imperceptible watermarks and have
high capacity. The embedded watermarks however are not robust.

Transform domain techniques: The transform domain techniques embed information in a
transform space, such as DCT [231-233], Wavelet [234-236], and DFT [237-239], and
can be naturally integrated with popular compression techniques such as JPEG and JPEG
2000. These techniques overcome the robustness problem of substitution techniques
while still produce imperceptible watermarks.

Spread spectrum techniques: Spread spectrum techniques used in communication
systems can also be applied to embedding schemes [240-241]. By distributing the
information in a much wider spectrum, the resulting watermark is much more resistant to
attacking techniques such as filtering and lossy compression, leading to better robustness.

Statistical methods: Statistical methods embed information by changing the statistical
properties of the cover-object and use hypothesis testing to retrieve the embedded
information [242-244]. In the binary case, a single bit of information can be embedded
into the cover-image by changing statistical distribution of luminance values in the set of
pseudo-randomly selected pairs of image pixels.

Distortion techniques: Information can be also embedded by distorting the cover-object
and measuring the deviation from the original object for secret extraction. Distortion

27

techniques are commonly used in hiding information in text files. For example, the line-
shift coding displaces a whole line of text by a small amount, e.g., 1/300 inch, to indicate
a ‘1’ bit. Similarly, word-shift coding and character coding can also be used to encode
information [245].

Cover generation methods: Cover generation methods generate an object based on the
secret only for the purpose of being a cover-object. Techniques such as the Mimic
functions [246] can be used to hide the presence of the message by making the statistical
characteristics of the generated cover-object match those of an innocent looking text.

2.4 Miscellaneous Unintended Data Exposure

Unintended data exposure in this dissertation refers to the accidental exposure of
information, which allows unauthorized users to gain direct access to the protected data.
It is often due to various implementation bugs and design flaws and is one of the most
common types of information leakage problems in computer systems. Due to the huge
number of vulnerabilities, this review illustrates the problem with only representative
examples. More complete lists of known vulnerabilities can be found in the US-CERT
data base [247] as well as various security online bulletins [248-249].

At the application level, implementation bugs, bad architecture design and default
program settings and behaviors can all lead to information leakage. An example of the
implementation bugs is the JavaScript bug in Mozilla and Firefox web browsers. It allows
an arbitrary amount of heap data to be leaked out to a malicious website [250]. Another
example is a bug in Microsoft Word that can cause a document to contain hidden data
that are from another completely unrelated document [251]. If two documents were open
using the buggy version of Word, saving one of the documents would lead to the
inclusion of text from the other. In addition to implementation bugs, programmers’ lack
of understanding of security requirements lead to bad design and introduce inadvertent
information leakage as well. For example, crypto building blocks such as AES and RSA
are often misused [252], leading to leakage of critical information even though the
ciphers themselves are strong. Applications’ default settings and behaviors may also lead
to information leakage. For example, Word documents usually contain hidden data that
most ordinary users are unaware of, including names and usernames of the documents’
creators, pathnames of the documents, text that were already deleted, etc. Such hidden
data have enabled an attacker to obtain a significant amount of sensitive information by
simply examining published documents [251].

Unintended data exposure at the system level is usually due to bugs in system
software, and can appear in various forms. For example, information can be leaked out
through memory: bugs in kernel software [253] can expose content of kernel memory to
user space applications. Error reporting and logging systems can also be exploited. Core
dump files may contain sensitive data (e.g., user’s password), and can be accessed by
unprivileged users or even remote users [254-257]. Logs and session files have similar
problems [258]. File systems can also be problematic. A few versions of the ext2 file
system leak kernel memory data to disk when creating new directories [259]. Paging
mechanisms may swap out memory pages containing critical data to disks (though not
due to bugs) [260], which can be examined by an attacker at a later time.

28

At the hardware level, information can be leaked out through storage devices such as
hard drives and memories. An attacker can collect surplus hard drives which still contain
a large amount of information and recover sensitive data from them. Even if the storage
devices have been cleared before they are released to untrusted parties, e.g., by filling the
disk with zeros, information can still be recovered [5]. In addition to non-volatile storage
devices, volatile memory can also cause information leakage. Contrary to most people’s
belief, solid-state Random-Accessed Memory (RAM) can retain its data even after being
powered off. Peter Gutmann [5, 141] examined the “burn-in” effects that occur in both
static RAM (SRAM) and dynamic RAM (DRAM). When a memory cell stores the same
value for a relative long time, the physical attributes of the semiconductor devices may
change and leave trace of the stored value. Information may remain in memory even if
the data are only momentarily stored. Recent work on Cold Boot Attacks [261] showed
that data can remain in memory for seconds to minutes after being powered off, and this
time can be extended to hours by cooling the memory modules.

The mitigation of unintended data exposure due to software bugs is mostly ad hoc:
for each particular bug, a patch is issued and the information leakage channel is blocked.
Chow et al. studied the data leakage problem in a more general manner, by examining the
data lifetime in a system [258]. They also proposed secure deallocation mechanisms to
reduce data lifetime and thus the risk of unintended data exposure. To avoid information
leakage through paging system, Provos [260] proposed to encrypt virtual memory such
that all pages swapped out to disk are encrypted, thus meaningless to unauthorized users.
Secure processor architectures [262-267] that support encrypted memory also help
mitigate various attacks that rely on information leakage via memory.

2.5 Scope of this Dissertation

The information leakage problem can be discussed in a space spanned over the three
aforementioned dimensions: whether the leakage is via direct information exposure or
indirect interference, whether the leakage is intentional or unintentional, and at which
level the leakage occurs. Covert channels are intentional information leakage and mostly
due to indirect interference rather than direct exposure. Side channels are similar to
covert channels except that they are unintentional leakage and mostly due to physical
leakage at the hardware level. Information hiding techniques such as steganography can
also be exploited for intentional information leakage. These techniques however hide
information in legitimate messages rather than exploit indirect interference as in covert
channels. Unintended data exposure due to system or software vulnerabilities belongs to
unintentional leakage, and the data leaked out are directly exposed to the attacker.

The focus of this work is on the mechanisms that allow information-leaking
interference in microprocessors. It is therefore more relevant to covert channels and side
channels. Unlike past work in these two areas, we particularly focus on architectural or
micro-architectural level information leakage rather than information leakage at the
software level or physical circuit level. Such mechanisms allow covert channels that are
much faster than traditional ones, and enable side channel attacks on embedded devices
as well as general purpose systems. We consider countermeasures to the architectural-
level attacks. We also propose a new model for covert channels, and new results on
covert channel capacity estimation.

29

Chapter 3

Cache-based Side Channel Attacks:
Analysis and Countermeasures

3.1 Introduction

Protecting sensitive information within computers and over networks is a major concern
of users of computer systems. To achieve this goal, cryptographic methods are widely
deployed in platforms ranging from simple embedded devices to complex server systems.
The cryptographic primitives are designed to be mathematically strong such that even if
the adversary gets hold of the encrypted data, it is computationally infeasible to infer the
original data or the secret crypto key by brute-force trials, or even by differential
cryptanalysis [145] and linear cryptanalysis [268]. However, side-channel attacks make
use of auxiliary side channel information rather than mathematical analysis to deduce key
bits, and can easily break even mathematically strong ciphers.

In the past, side channel attacks were mostly used in attacking simple devices such as
smart cards rather than more complicated general purpose systems, due to the noisy
nature of the side channel information, the difficulty in collecting such information and
the need for physical access or proximity. The recent cache-based attacks however can
impact a much wider spectrum of systems and users. This is because caches exist in
almost all modern processors, and the attacks are effective on various platforms [114, 118,
121] and can be pure software attacks which are very easy to perform. This makes cache-
based side channel attacks extremely attractive as a new weapon in the attacker’s arsenal.

Existing mitigations of cache attacks are mostly software approaches, which typically
involve rewriting the software implementations such that they are not vulnerable to
known attacks. These software countermeasures however are cipher-specific and only
effective for known attacks. Due to more restrictive designs, significant performance
degradations are commonly observed in such “secured” software implementations.
Moreover, some software mitigations are based on empirical ideas and do not provide
sufficient security. Hardware countermeasures are also discussed in the past. Despite
various conceptual ideas, applying them in practice is not trivial and few of these ideas
were fully investigated.

30

In this chapter, we first identify the root causes of cache attacks and clarify the
following questions that have not been answered in the past: can the problem of cache-
based attacks be solved by software or hardware alone, or what is the proper partition of
work for software and hardware in mitigating cache based attacks? Based on these
results, we then propose effective solutions by attacking the root causes of cache-based
side-channel attacks. We also strive to achieve security without compromising
performance, power efficiency or other cache design goals.

3.2 Attack Analysis

3.2.1 Information Leakage in Caches and Cache-based Attacks

Cache hits and misses leak information. For example, a program’s memory reference
traces may exhibit different cache hit and miss behavior, causing variations in the
program’s execution time or power dissipation. Such variations allow an attacker to infer
information about the program’s internal states. In addition to the interference in a single
program, cache accesses from different processes using a shared cache may interfere with
each other and allow one process to infer information about another. Such cache
interference leaks information and makes caches susceptible to side channel attacks.

Traditionally, cache-based side channel attacks were categorized into trace-driven
attacks, time-driven attacks [110] and recently access-driven attacks [111]. The
difference between these types of attacks is the attacker’s ability in observing the victim’s
memory references. In trace-driven attacks, the attacker is able to detect the outcome of
each memory reference of the victim in terms of hit or miss. In time-driven attacks, the
attacker can only see an aggregated profile, e.g., the total number of hits or misses. In
access driven attacks, the attacker is able to know which cache sets have been touched,
individually or in an aggregated manner.

Although in past work the difference in timing between cache hits and misses has
been recognized as the source of information leakage [114, 118, 121], in this work we
further distinguish the type of information leakage achieved via cache hits versus that
achieved via cache misses, since they have different impact on cache design. The
difference between these two information leakage mechanisms is that cache misses
involve interference between references to two different memory blocks – one replacing
the other in the cache, whereas cache hits only involve the same block – a former access
to a block can interfere with subsequent accesses to the same block, by causing them to
hit in the cache. Below we categorize existing attacks in terms of how interference due to
cache misses and cache hits is exploited and analyze a representative attack in each
category. We discuss in turn:

 Internal interference due to cache misses
 External interference due to cache misses
 Internal interference due to cache hits
 External interference due to cache hits.

The implications on cache designs and possible countermeasures are then discussed.

31

3.2.1.1 Internal interference due to cache misses: Bernstein’s Attack
The first class of attacks we discuss is due to cache interference that comes from the
victim’s code itself. Furthermore, the interference is caused by cache misses rather than
cache hits. Hence, we call this internal interference due to cache misses. Bernstein’s
attack is representative of this class of attacks.

Attack description: Bernstein’s attack is a time-based attack. The victim of the attack
is a software module that can perform AES encryption. The module is a “black box” to
the attacker. The attacker is able to choose the input to the victim and measure how long
it takes to complete the encryption. The attacker may be a process in the same machine
with the victim, or a remote user requesting encryption service. Empirical studies show
that for most software AES implementations running on modern microprocessors, the
execution time of an encryption is input-dependent and can be exploited to recover the
secret encryption key. The attack consists of three steps:

1. Learning phase: Let the victim use a known key K. The attacker generates a large
number, N, of random plaintexts P. He sends the plaintexts to the cipher program
and records the encryption time for each plaintext. He uses the algorithm shown
in Figure 3-1 to obtain the timing characteristics for K, shown in Figure 3-2(a).

2. Attacking phase: Repeat step 1 except that an unknown key K’ is used. The timing
characteristics for K’ is shown in Figure 3-2(b). Note that the input set is
randomly generated and not necessarily the same as that used in step1.

3. Key recovery: Given the two sets of timing characteristics, use the correlation
algorithm shown in Figure 3-1(b) to recover the unknown key K’. As explained
below, the timing characteristic charts for different keys, e.g., Figure 3-2(a) and
Figure 3-2(b), should be the same except that the locations of the bars in the
charts are permuted. The correlation algorithm simply tries all 256 possible
permutations (each of which corresponds to a value of j) and finds the one that
would permute Figure 3-2(b) into Figure 3-2(a).

In Figure 3-2, the height of the bar at position j is tavg
i(j,K), which is the average of the

execution time of the AES encryptions when the value of the i-th byte of plaintext P is j,

For key K:
For s = 1 to N do begin

Generate a random 128-bit Plaintext block, Ps;
Ts = time taken for AES encryption of Ps using K;

end;
For i = 0 to 15 do begin

For j = 0 to 255 do begin
count = 0;
For s = 1 to N do begin

If pi = j then
TSUMi(j) = TSUMi(j) + Ts;
count = count+1;

 end;
 tavg

i(j,K) = TSUMi(j)/count;
 end;
end;

For i = 0 to 15 do begin
 For j = 0 to 255 do begin

 



255

0

)',(),(][
m

i
avg

i
avg KjmtKmtjCorr

 end;
 ki’= findMax(Corr);
end;

Note: Function findMax() searches for the
maximum value in the input array and returns its
index.

Figure 3-1. (a) Timing characteristic generation (b) Key-byte searching algorithm

32

using key K (for visual clarity, a constant, denoted as Tmean which is the mean value of
tavg

i(j,K) for all j, is subtracted from tavg
i(j,K) when plotting the figure). In the AES

algorithm, each plaintext P is an M-byte block, e.g., M=16, therefore M pairs of such
timing characteristic charts are generated. Figure 3-2 only shows one such pair,
corresponding to byte 0 in P. Experiments show that tavg

i(j,K) is pretty much fixed for a
given system configuration. Furthermore, it is found that when a different key K’ is used,
the timing charts roughly remain the same except that the locations of the bars in the
charts are permuted, as shown in Figure 3-2. More specifically, equation (3.1) holds:

tavg
i(pi , K) = tavg

i(p’i , K’) if p’i  k’i = pi  ki (3.1)

where  is the bit-wise XOR operation, and ki and k’i are the i-th byte of K and K’
respectively.

Attack analysis: Bernstein’s attack itself does not show what actually causes the
information leaking timing characteristics. This is actually due to the cache miss behavior
of the memory references corresponding to the table lookups that are used in various
software AES implementations. The following analysis assumes the OpenSSL v0.9.7a
implementation and can be applied to other implementations as well. The software AES
cipher in OpenSSL v0.9.7a uses five tables, four for the first 9 rounds of operations and
one for the last round, which is irrelevant to the attack. During the encryption, for each

Byte 0 - Known Key K

-0.5

0

0.5

1

1.5

2

2.5

3

Plaintext byte value (0-255)

T
a
v
g
 -
 T

m
e
a
n
 (
c
y
c
le

s
)

Byte 0 - Unknown Key K'

-0.5

0

0.5

1

1.5

2

2.5

3

Plaintext byte value (0-255)

T
a
v
g
 -
 T

m
e
a
n
 (
c
y
c
le

s
)

 (a) Average encryption time for byte 0 with known key K

 (b) Average encryption time for byte 0 with unknown key K’

Figure 3-2. Timing characteristic charts for byte 0 (obtained on a Pentium-M machine)

33

byte pi of the plaintext, one of the four tables is accessed using the index (piki) where ki
is the i-th byte of the encryption key. Ideally, these table lookups will hit in the cache
since normally the cache is large enough to accommodate all these tables. However, in
reality it is found that there are always other memory accesses that regularly contend for
cache lines at some fixed locations and cause evictions of corresponding table entries.
Therefore, given an index (piki), if the corresponding table entry is mapped into one of
these “hot” cache locations, the table lookup will have a higher probability to experience
a cache miss due to the evictions caused by the contending memory accesses. This will
lead to larger tavg

i(pi , K), i.e., a high bar in Figure 3-2(a). When a different encryption key
K’ is used, the same analysis applies and the resulting timing characteristics charts should
be the same except that the locations of the bars are permuted. This is because given an
arbitrary value pi for the key-byte ki, there is always such a value p’i for key-byte k’i that
generates the same index, i.e., p’i  k’i = pi  ki. The table lookup with the same index
would share the same timing characteristics. Therefore, a bar at location pi in Figure3-2(a)
will also appear in Figure 3-2(b), but at location p’i = pi  ki  k’i.

The evictions of AES table entries can be the result of memory references of other
processes as well as the victim AES process itself. To be useful, such evictions have to be
regular and also consistent during the learning phase and the attacking phase of the attack.
Since in many cases other processes are unrelated to the victim process, they do not
generate regular evictions at fixed locations (relative to the location of the AES tables) or
do not produce consistent cache eviction characteristics during the learning phase and the
attacking phase. In such cases, cache interference from other processes contributes little
to Bernstein’s attack. In contrast, memory references from the same process – possibly
from code segments other than the AES cipher code – can cause more robust cache
interference during both learning and attacking phases. In our experiments, the observed
common sources of interfering memory references include the wrapper code of the core
AES encryption engine and the stack adjustment instructions of the user function that
contains the AES cipher. Such internal interference allows the attack to succeed even if
the cipher runs alone without being interfered by any other process. For this reason, we
consider Bernstein’s attack as a representative attack that is based on internal
interference due to cache misses.

3.2.1.2 External interference due to cache misses: Percival’s Attack
Another class of information-leakage attacks is due to cache interference from other
processes. For example, processors supporting Simultaneous Multi-Threading (SMT)
allow multiple processes to run simultaneously on the same chip, sharing the cache
system. A process (e.g., the victim process) therefore can evict cache lines holding data
of another (e.g., the attacker process), causing it to miss on these cache lines. This gives
the attacker the ability to observe the victim’s cache access behavior (i.e., which cache
lines/sets are touched) and obtain a relatively accurate access trace. Percival’s attack is a
representative attack for this class of attacks.

Attack description: Percival’s attack was demonstrated on an Intel processor with
HyperThreading (HT) technology. In Percival’s attack, the attacker manages to launch a
process running simultaneously with the victim process, i.e., the process that performs
RSA encryption. His goal is to discover the private encryption key used by the victim.
The attacker sequentially and repeatedly accesses an array, thus loading in his own data

34

to occupy all cache lines. During accessing the array, he also measures the delay for each
access to detect cache misses, e.g., using the rdtsc instructions to read a timer in Intel
x86 processors. The victim’s memory accesses will cause evictions of the attacker’s data,
and when the attacker accesses the evicted data in his next round of array access, he will
miss on these cache lines and observe longer delays. In this way, the attacker is able to
obtain a figure that accurately shows the evolution of the victim’s footprint in the cache,
which allows him to extract information about the internal states of the RSA encryption.

Attack analysis: The core operation used in RSA is modulo exponentiation. It is often
implemented with a series of squarings and multiplications. The secret encryption key is
divided into segments of multiple bits, each of which is associated with a number of
squarings followed by a multiplication. For each multiplication, a multiplier is selected
from a set of pre-computed constants – stored in a table, and the key segment is used as
the index of the corresponding table lookup. With the ability to observe the victim’s
footprint in the cache, the attacker can obtain the following information: (1) the attacker
is able to identify every squaring and multiplication due to the different footprints of
these two sub-operations; (2) for each identified multiplication, the associated table
lookup can be identified, i.e., the attacker is able to know which cache line is accessed,
thus knowing which table entry is accessed. Obtaining the squaring and multiplication
chain of an RSA encryption in some implementations (e.g., the sliding window
implementation used in OpenSSL) allows the attacker to know some information (e.g.,
the Hamming weight) about the secret key segments. Even if safer RSA ciphers such as
the fixed window implementation are used such that no information can be extracted
from the squaring and multiplication chain, knowing which table entry is accessed during
a multiplication directly allows the attacker to learn the index used in the table lookup –
the index being the secret key segment.

Clearly, Percival’s attack is based on the cache misses caused by other processes: the
victim’s memory accesses cause the attacker process to miss in the corresponding cache
lines, thus allowing the attacker to observe the victim’s footprint in cache. Hence, it is a
case of external interference due to cache misses.

3.2.1.3 Internal interference due to cache hits: the cache-collision timing attacks
Unlike in Bernstein’s attack and Percival’s attack where a cache miss indicates the
occurrence of cache interference, in the cache-collision attacks, cache interference leads
to cache hits instead. The cache collision attacks are similar to Bernstein’s attack in the
way that the attacks are launched. During the attack, the victim cipher (AES in this case)
is also considered a black box and the measurements of the encryption times of a large
number of random messages are the only thing that the attacker is able to do. With the
knowledge of the time of each encryption and either the plaintext or the ciphertext
involved in the encryption, the attacker is able to recover the secret encryption key. Note
that the collision attacks do not require a learning phase, i.e., the attacker does not need to
possess a system identical to the target system.

Attack analysis: Unlike Bernstein’s attack which is based on the empirical
observation of timing variations without exploiting any information about how such
timing variations are caused, the cache collision attacks make full use of the cipher
structure to design the attack. In particular, the cache collision attacks exploit the cache
interference caused by the AES encryption code itself. To illustrate the attack, we use the
OpenSSL v0.9.7a as an example. The cache interference exploited in the attacks is due to

35

table lookups in the first round or the last round of the AES encryption. Assuming a 128-
bit (16-byte) wide cipher, each round operation requires 16 table lookups, as shown in
equation (3.2) except for the last round.

 (3.2)

where  )(
34

)(
24

)(
14

)(
4

)(,,, r
i

r
i

r
i

r
i

r
i xxxx x , i = 0, 1, 2, 3, is the i-th state word of round r (a word

contains 4 bytes). T0 through T3 are four AES lookup tables with 1 byte input and 1 word
output.  )(

34
)(
24

)(
14

)(
4

)(,,, r
i

r
i

r
i

r
i

r
i KKKK K is the i-th word of the r-th round key. In the first

round, the state byte)0(
ix is indeed ii kp  , where ip is the plaintext byte and ik the

original key byte, i = 0, … , 15. As shown in (3.2), each table is shared by four state bytes
for their table lookups. The cache collision attacks are based on the interference between
table lookups accessing the same table. To clarify, a collision occurs if two table lookups
access the same table entry. If the AES table initially is not present in cache, the first
table lookup would make the second table lookup hit in cache. Colliding table lookups
therefore should have shorter execution time than non-colliding table lookups. Since the
index used to access a table is the state byte, a collision occurs if

jijijjii kkpporkpkp  (3.3)

for all i and j values where table lookups for the i-th and j-th bytes of the state look up the
same AES table. To exploit such equations, the average execution times t(i,j,) are
computed for all qualifying i and j over all plaintexts that satisfy  ji pp ,  = 0, …,

255. According to (3.3), the  value that leads to the minimum average execution time is
the difference between the key bytes k i and k j. Since each AES table is shared by four
state bytes, the difference between each pair of the four key bytes can be recovered. This
essentially means the discovery of 3 bytes of the key. For example, bytes 0, 4, 8 and 12
share table T0, and the attack can discover 8040 , kkkk  and 120 kk  . The attacker can

then do brute-force search to find k 0 and then obtain the absolute values of the other three
key bytes. In the end, the attacker is able to discover twelve key differences and needs to
do brute-force search to find the remaining 4x8=32 bits of the key. This attack can be
further improved by exploiting the final round operation instead of the first round. Table
lookups in the final round share one single table, allowing the recovery of the full key
(with some more optimization techniques).

In summary, the cache collision attacks are based on internal cache interference – the
interference caused solely by the AES encryption code itself. Furthermore, the cache
interference is among memory references accessing the shared objects, one reference
causing others to hit in the cache.

3.2.1.4 External interference due to cache hits
Although in theory, side channel attacks based on external interference due to cache hits
are possible, to the best knowledge of the author, none of the existing attacks fall into this

36

category. This is mainly due to the fact that the attacker and the victim rarely share
objects. For security reasons, the victim is normally isolated from other processes, e.g.,
via address space isolation, sandboxing or virtual machines. Therefore, the situation
where both the attacker and the victim access the same cache line, one access causing the
other to hit in cache, would not occur.

Despite the low possibility of attacks based on external interference due to cache hits,
caution is still necessary in practice. For example, due to the popularity of shared
dynamic-linked libraries, an attacker process may share some library code with the victim.
If the shared code operates on sensitive information (for example the two processes share
the crypto library), an attack is still possible. The victim’s instruction fetch can cause the
attacker to hit in the I-cache, enabling the attacker to learn the victim’s execution paths.
In such situations, a simple yet effective solution is to disallow sharing of library code. In
this dissertation, we assume the attacker and the victim are fully isolated unless otherwise
specified.

3.2.1.5 Remarks
Although both miss-based interference and hit-based interference can be exploited in
cache attacks, existing attacks all exploit either one of them, not both. To our
understanding, this is because opposite assumptions are required for attacks that exploit
these two different types of interference. Miss-based attacks (e.g., Bernstein’s attack and
Percival’s attack) assume the data are initially in cache and expect hits when accessing
them. Interference is expressed with “abnormal” evictions that cause cache misses. In
contrast, hit-based attacks (e.g., the cache-collision attacks) assume that the data initially
is not present in the cache, and the “abnormal” hits carry the information of interest.
However, it is still worthy of further research to see whether smarter techniques exist that
can combine both miss-based and hit-based interference.

3.2.2 Countermeasures and Implications on Cache Designs

From the perspective of a cache designer, miss-based information leakage is easier to
mitigate than hit-based leakage. In miss-based interference, references to two memory
blocks interfere with each other if they contend for the same cache line and evict each
other. Since the mapping between memory blocks and the cache lines is determined by
the cache indexing scheme, miss-based interference may be mitigated by manipulating
the memory-to-cache mapping to reduce cache miss contentions. Indeed, many cache
indexing schemes have been proposed to reduce conflict misses – though the purpose was
for performance rather than for security. In contrast, the interference due to cache hits,
i.e., where a former access to a block interferes with subsequent accesses to the same
block – making them hit in the cache – is hard to mitigate, because this is the desired
behavior and the basis of the performance benefit brought by caches. Removing such
interference is equivalent to no caching, which makes the use of caching meaningless. This
dilemma makes the mitigation of hit-based information leaks inherently hard.

Fortunately, even though hit-based interference is hard to remove without losing
performance, there are still ways to circumvent the problem, particularly through
software techniques. The most straightforward software countermeasure to eliminate
information leakage in caches is to simply avoid using memory accessing operations (e.g.,
table lookups). However, the performance overhead is very high and the method is not

37

generally applicable. When memory accesses cannot be avoided, some software
countermeasures help mitigate hit-based information leakage by preloading objects into
the cache before any use of them so that all subsequent accesses hit in cache, thus leaking
no information. This approach however is not really secure since the preloaded objects
could be evicted by other memory references at a later time, which indeed often occurs.
Other software techniques try to avoid interference due to hits by not sharing objects. For
example, if in the AES cipher, table lookups for different bytes do not share tables,
accesses to these tables will not interfere with each other, and the attacks that rely on this
interference, e.g., the cache-collision attacks [116] described in section 3.2.1.3, would not
succeed. However, this does not stop attacks based on miss-based information leakage,
e.g., Bernstein’s attack. In general, we observe that just as it is difficult for hardware to
mitigate hit-based interference, it is difficult for software to mitigate miss-based
interference. The developer of one program cannot control undesirable evictions of his
program’s cache lines by another program, since he has little control on how other
programs are designed and behave.

Fortunately, hardware mechanisms can help prevent the above problems that software
can not handle. For example, cache partitioning [222] can help to prevent undesirable
cache evictions if the objects are put into a private partition. This essentially prevents
interference due to misses. The problem of such hardware solutions is that they degrade
cache utilization and hence, cache performance. Another issue is that from an architecture
point of view, cache partitioning is non-trivial in design and often has strict restrictions
on certain aspects such as the size of a partition [269]. In addition to cache partitioning,
randomization can also help mitigate miss-based information leakage, e.g., by
manipulating cache addressing schemes such that interference is randomized rather than
eliminated. This may incur fewer restrictions in cache design and have lower
performance impact – and is the approach we propose.

The above discussion indeed reveals an important new insight. While software can
easily handle hit-based information leak but has little control on miss-based information
leak, hardware can easily mitigate miss-based information leak. Therefore a natural
choice to build a secure system is that, the hardware provides the mechanisms that
prevent interfering misses while software developers focus only on avoiding interfering
hits of their own code without worrying about how other programs are designed and
behave. This simplifies the jobs at both sides.

In this dissertation, we focus on the hardware side, showing novel cache architectures
that provide security without compromising performance as well as other design goals.
The proposed architectures attack the root cause of cache attacks and follow the two
general approaches mentioned above: eliminating interference or randomizing
interference. The resulting design therefore is generally effective.

3.3 New Cache Designs for Mitigating Software Cache Attacks

This section presents two novel cache designs, the Partition-Locked cache (PLcache) and
the Random Permutation cache (RPcache), that realize cache interference elimination and
randomization with little hardware cost and performance impact.

38

3.3.1 Partition-Locked Cache (PLcache)

The concept of cache partitioning is not new, as described in section 3.2. However, in
previous designs, the partitions are mostly static. We refer to such a cache as a statically
partitioned cache, or a partitioned cache in short. Static partitioning prevents sharing,
often leading to large performance degradation. A process may use very few cache lines
in its partition, but unused lines are not available to other processes which may need more
cache lines than they have in their partitions. Simple static partitioning does not provide
sufficient security. For example, even if an AES cipher is running in a private cache
partition, attacks based on internal cache interference, e.g., Bernstein’s attack, can still
succeed. This is because simple partitioning does not eliminate all cache interference.

Instead, we propose the Partition-Locked cache (PLcache) that essentially achieves
the effect of cache partitioning, but much more flexibly with less performance
degradation and better security. In PLcache, the cache lines of interest are locked in cache,
creating a flexible “private partition”. These cache lines can not be evicted by other cache
accesses not belonging to this private partition. When properly employed, all critical
cache accesses will always hit in cache, meaning that the timing variations due to hits or
misses are completed eliminated, thus preventing both internal and external interference.

3.3.1.1 Architecture description
The PLcache consists of two parts: the hardware addition to the cache and the system
interface for controlling which cache lines should be locked.

A. Hardware addition:
Figure 3-3 shows the hardware addition to the cache, consisting of two new tags, L and
ID, per cache line. The 1-bit L flag indicates whether this cache line is locked or not. The
ID field indicates the owner of the cache line. Not shown in Figure 3-3, is an optional LL
bit per TLB entry, page-table entry or segment descriptor (if the architecture supports
segmentation) which indicates if an access to a page or a segment should cause the
corresponding cache line to be locked in cache.

B. Control interface:
There are two mechanisms that allow the programmer, compiler and OS to control what
to lock in the cache. Either mechanism can be implemented:

ISA extension: a new set of load/store instructions with a lock/unlock sub-op can be
added to the base ISA (Instruction Set Architecture). This provides the fine-grain control
on what data to lock. Table 3-1 describes the new load/store instructions.
Segment/Page-based protection: Regions of memory, e.g., those containing AES and
RSA tables, can be marked as LOCKED. Accesses to such regions of memory should
cause the corresponding cache line to be locked. This uses the LL bit described above,
added to the segment descriptor and the TLB entry. This interface gives the operating
system an opportunity to control what data should be locked in the cache. Table 3-2

Original cache lineL ID

Figure 3-3. A cache line of the PLcache

39

shows API calls that can be exposed to programmers to make use of this mechanism. To
lock a memory region, the function lock_mem_region() can be called which returns a
region id. The LL bit of the corresponding segment is set. To unlock a region, the
function unlock_mem_region() can be called with the id of the region to be unlocked as
the input argument. The LL bit of the corresponding segment is cleared, and the locked
cache lines invalidated.

C. Cache access handling:
Figure 3-4 shows the flow chart of an access to a PLcache. Note that the sequential steps
shown in the flow chart do not necessarily execute sequentially in the hardware. The
cache hit handling procedure is the same as in traditional caches except that the L bit of

Table 3-1: Optional ISA extension for PLcache

Name Description

ld.lock/
ld.unlock

Identical to a normal load instruction with the additional action: If the memory
access hits in the cache or causes a cache line to be fetched into the cache,
the L bit of the cache line is set/cleared.

st.lock/
st.unlock

Identical to a normal store instruction with the additional action: If the memory
access hits in the cache or causes a cache line to be fetched into the cache,
the L bit of the cache line is set/cleared.

Table 3-2: Potential API calls for PLcache

Declaration

int lock_mem_region(unsigned long start_addr, unsigned long length);

int unlock_mem_region(int region_id);

Figure 3-4. Cache access handling procedure for PLcache

40

the cache line accessed needs to be updated if necessary. If the access is a load/store
instruction with lock/unlock sub-op, the instruction itself determines if the L bit should be
set or cleared. This information is available early in the pipeline (after the instruction
decoding stage) and hence does not impact cache access time. If the LL bit in segment
descriptors is implemented, its checking can be done together with the checking of
existing protection bits, and no extra delay is added. Similarly, if the LL bit in the TLB
entry is implemented, the check can be done together with that for existing protection bits
during the TLB access.

During a cache miss, the replacement algorithm differs from a traditional cache
because of the Locked cache lines. Let R denote the line chosen to be evicted by the
normal cache replacement algorithm (e.g., LRU) and D denote the new data block that is
being fetched into the cache. The following cases need to be considered:

Case Description

1 If D does not need to be locked and R is also not locked, D replaces R like in a normal cache
miss.

2 If D does not need to be locked but R is a locked line, D can not replace R. In this case, for a load
instruction, one can simply return D to the processor execution core. For a store instruction, the
data is written back to the next level of memory, without replacing R. The LRU list should be
updated so that R becomes the most recently used line and will not be chosen for eviction next
time. This can avoid repeatedly missing on this cache set due to the locked line.

3 If D needs to be locked in the cache, it is allowed to replace any line that is not locked or any
locked line that belongs to the same process. We do not allow the new line to evict a locked line of
another process. Such a miss can be handled as described in case 2.

D. Updating the L bit of a cache line:
If the ISA extension is implemented, the instructions with locking/unlocking capability
can set or clear the bits whereas normal load and store instructions can not. If the
segment/page based protection is implemented, in each memory access the address is
checked and the L bit is set or cleared accordingly. If both mechanisms are implemented,
locking/unlocking instructions always set/clear the L bit, and a normal load/store
instruction can also set the L bit if the address is in a locked memory region.

3.3.1.2 Discussion

A. ISA extension vs. segment/page-based protection:
The ISA extension gives the software developer the flexibility to prevent cache
interference for any portion of its memory. Legacy code however can not benefit without
modification. The segment/page based protection provides a rather coarse-grain control
mechanism – but both future code and legacy code can benefit from it. For example, the
programmer can exploit the API calls to specify a memory region to be protected, and the
OS can mark memory regions such as AES or RSA tables used by crypto libraries during
load time.

B. Controlling the use of locking mechanisms:
The proper use of PLcache will not allow any program to lock cache lines without OS
oversight. Otherwise, a process may, maliciously or naively, lock excessive amounts of
data in the cache, causing a security or fairness problem, respectively. An adversary can

41

also selectively lock certain lines to interfere with other processes. In PLcache, the
hardware only provides the locking mechanisms, and the software should ensure their
proper use.

In one usage model, the programmer and compiler can specify and optimize what to
lock, and request the lock through the API or system call interface. The OS then
determines if the lock is allowed based on the resource usage as well as security policy
etc. This might impose an upper bound on the number of cache lines that a process can
lock and might allow only trusted processes to lock cache lines. For our segment/page-
based PLcache mechanism, the OS can make this decision during the API call for locking
a memory region, denying this service when necessary. If the call is successful, the OS
sets the LL bit of the page/segment, and may optionally access the corresponding lines on
behalf of the caller such that the data are locked in the cache when the call completes.

For our ISA-based PLcache mechanism, one simple usage model is to allow only
trusted programs to issue the lock and unlock instructions. Another usage model is to
have the application first request a memory region of proper size via API or system calls
that is “lockable” by the caller. The user-level application then uses lock and unlock
instructions to access that region to lock/unlock lines in cache without making further
system calls. Note that the user-level lock/unlock instructions will be treated as normal
memory instructions if the accesses are outside the “lockable” region. To implement such
a system, in addition to the ISA extension, a page/segment level mechanism similar to the
LL bit should also be implemented, which would allow the OS to mark a region of
memory as “lockable”.

In summary, the two basic locking mechanisms can be implemented in various ways
to meet different needs. The system designer and the software developer should
understand the security implications of the design and make sure the locking mechanisms
in PLcache are properly employed.

C. Cache line ID management:
Any hardware implemented field has a limit on the number of items that it can represent.
Hence, an n-bit ID field of a cache line limits the maximum number of processes that can
own lines in the cache at any one time to 2n. This does not limit the total number of
concurrent software processes that the OS can support. For example, processes that do
not need to be isolated for side channel attack protection can share the same ID value. In
most systems, the majority of the processes are normal processes that do not possess
critical information. They do not need to be protected against each other and can share
the same ID value, e.g., ‘0’. Other OS concepts and techniques that manage limited
system resources may also be applicable here. For example, processes that will be
blocked for a long time, e.g., waiting for disk services, can be temporarily swapped out
and the cache line ID freed and allocated to other processes.

3.3.2 Random Permutation Cache (RPcache)

We propose a Random Permutation Cache (RPcache) for the randomization-based
approach. In contrast to the PLcache, this approach allows cache sharing, but randomizes
the resulting interference, so that no useful information about which cache line was
evicted can be inferred.

42

An attacker can observe another process’s cache access only if that process changes
the attacker’s cache usage, i.e., evicts the attacker’s cache lines. If the process evicts its
own cache lines, the attacker has no way to know that. By knowing which cache lines
have been accessed by the victim process, the attacker can infer critical information about
the victim process. In RPcache, each time such cache interference occurs, we randomize
it such that the interference carries no useful information.

3.3.2.1 Architecture description
We assume a generic set-associative cache where M bits of the effective address, the set
bits, are used to index the cache set array. The number of cache sets in the array is 2M and
each cache set contains N cache lines for an N-way set-associative cache, including
direct-mapped caches where N=1.

A. Permutation of memory-to-cache mapping
A key operation the RPcache performs is the permutation of the memory-to-cache
mapping. Conceptually, this is done by using a level of indirection in indexing the cache.
In RPcache, the memory-to-cache mapping for a process is stored in a permutation table
(PT), as shown in Figure 3-5. The table has the same number of entries as the number of
cache sets, and each entry contains a different M-bit number which indicates the new set.
For each cache access, the PT is indexed with the M set bits of the effective address to
obtain the new set bits, which are then used to index the cache set array. A complete
randomization of the memory-to-cache mapping can be achieved by a random
permutation of the contents of the table entries. This can be decomposed into a series of
swap operations, each of which exchanges the contents of two entries. Swapping the k-th
and the i-th table entries means changing the memory-to-cache mapping, k  S and i 
S’, to the new mapping k  S’ and i  S. This indirect indexing scheme is the logical
explanation and is not necessary in real hardware, as we will show later.

In the RPcache, a number of permutation tables are added and each table can be used
by one or more processes to access the cache. For example, an encrypting process can use
one table and all other non-critical processes use another. The number of such tables
implemented depends on needs and cost. In PC systems where only occasionally a
process needs to be protected, one table should be enough. All other processes can use
the original mapping that does not need a remapping table. The memory-to-cache

Set bits

A
dd

re
ss

 d
ec

od
er

P

Permutation
Table M

U
X

Effective address

new set bits

ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

P ID

Cache set array

Figure 3-5. A logical view of the RPcache

43

mapping needs to be updated from time to time, during the execution of the process, as
described later. Similar to PLcache, a P bit and ID field are also added to each cache line.

B. Randomization of cache interference
We first define terms we will use in our discussion.

Name Description

R , S R is the cache line being replaced in cache set S.

R’ , S’
R’ is the cache line being replaced in another cache set S’ which is
randomly selected.

D The memory block being fetched into the cache.

PX The P-bit of cache line X, e.g., of R, R’ or D.

In the case of cache interference between the victim and attacker processes (external
interference), the interference occurs only when the victim evicts a line of the attacker. In
RPcache, rather then replacing line R, another cache set S’ is randomly selected with
equal probability. The new line D that is to be put into the cache then replaces a line R’ in
S’ instead of R in S. The memory-to-cache mappings of S and S’ are swapped such that
next time when the victim process wishes to access D, he will access the correct cache
line. From the attacker’s point of view, when he detects a cache miss, the cache miss can
be caused by the victim’s access to any cache set, with equal probability. Hence he can
learn nothing about the address that the victim accessed. Note that after swapping the
memory-to-cache mapping of S and S’, if the process wishes to access another cache line
originally in set S, it will now access set S’. It will miss and bring another copy of the
line into set S’ although set S still has it. To avoid this undesirable aliasing, the cache
lines in S and S’ that belong to the current process should also be swapped. However, for
efficiency we invalidate all such lines in S and S’ and write them back if they are dirty.
Future accesses to them will get them correctly from the next level of the memory
hierarchy. Since the selection of S’ is independent of S, R and D, it can be pre-computed
and the write-backs can be performed in the background to hide the associated overhead.

In the case of cache interference from other code in the victim’s own process (internal
interference), a similar idea can be applied. To distinguish the memory region to be
protected from such internal interference, two fields, a P bit and ID field are added to
each cache line (shown in Figure 3-5), similar to the L bit and ID field in the PLcache.
An internal cache interference occurs if the new line D is not-protected while the old line
R is protected, or if D is protected and R is not-protected. As the attacker can not directly
observe internal cache interference (since the evicted lines belong to the victim himself),
the attacker can only observe the overall effect like the encryption time in Bernstein’s
attack. If such internal interference is rather fixed, or repeatable, like the eviction of AES
table entries at fixed locations, the attacker can learn the fixed interference by performing
a large number of trials, observing the cipher’s execution time for each trial, and using
statistical analysis of these times. Therefore by randomizing every internal cache
interference there will not be any repeatable interference (which carries information) that
can be observed by the attacker. To randomize internal cache interference, each time
when the new line D and the old line R have different P-bit values, R is not replaced. D is

44

returned to the execution core if it is a load, or written to the next level of the memory
hierarchy if it is a store, without replacing any line in the cache. At the same time, a
cache set S’ is randomly selected, and a line R’ in S’ is evicted. Then the original cache
interference on R is now on R’ which is purely random.

The mechanisms for controlling which cache lines should be protected are similar to
those used in the PLcache except that no new instructions are needed. In addition to the P
bit and ID field in each cache line, a PP bit is also added to segment descriptors or the
TLB entries. By using the segment/page based protection mechanism described for the
PLcache, the OS and programmer can specify the memory region to be protected. In
addition, if a section of code is marked as protected, i.e., the code segment descriptor or
the ITLB entry has its PP bit set, any cache accesses issued by the protected code will set
the P bit of the touched cache lines. This gives a convenient way for the OS to protect
critical modules, e.g., the crypto libraries. The OS only needs to set the PP bit of the code
pages of such modules.

C. Cache access handling
Figure 3-6 shows the flow chart of the cache access handling procedure. A cache hit in
the RPcache is the same as a normal cache hit except that the P-bit of the cache line needs
to be updated, based on the value of the PP-bit. During a cache miss, a line R in set S is
chosen using the normal cache replacement policy. If R belongs to another process, a
random set S’ is selected. The new line D then replaces R’ in S’ and the memory-to-
cache mapping for S’ and S is swapped. Note that in the last column of Figure 3-6, “Fix
mappings for lines already in S and S’ ” means invalidating (and flushing if dirty) all
lines in S and S’ that belong to the current process, except for the new line D, to avoid
accessing those lines with old mapping after the mapping of S and S’ is swapped. This is
also explained in section 3.3.2.1 (B).

If R belongs to the same process, two cases need to be considered, as shown below.

Figure 3-6. Cache access handling procedure for RPcache

45

Case Description

1 If PD == PR, R is replaced by the new line like in a normal cache miss.

2 If PD != PR, R can not be replaced and the access is performed without replacing R. R’s
replacement information is updated so that it will not be selected for eviction next time.
This avoids repeated misses in set S. At the same time S’ is randomly selected with
equal probability among all cache sets, and R’ in S’ is evicted, based on the normal
cache replacement policy for blocks in a set.

3.3.2.2 Low-overhead RPcache implementation
Using an extra level of indirection in cache indexing can introduce extra delay into the
cache access time. For an L2 or L3 cache, a straightforward table lookup implementation
may be good enough since one extra cycle in L2 or L3 cache loads will not cause much
performance loss. However, for an L1 cache, which is often the most delay-sensitive
module in a processor, an extra cycle on a cache hit may be unacceptable. We now show
that indirect indexing for our RPcache can be implemented, without requiring an extra
cycle, nor extending the cycle time latency.

Figure 3-7 shows the modified decoder circuitry for the RPcache based on the
common implementation with the 3-to-8 NAND pre-decoder and the second stage NOR
gates. Rather than having a fixed connection for each input of the NOR gate with one
output of a 3-to-8 NAND pre-decoder, each input line of the NOR gate is connected via
switches to all of the 8 output lines of the pre-decoder. The switches are controlled by a
register called the permutation register(PR), and at any time only one switch is on. Each
permutation register is one entry of the permutation table in Figure 3-5. Note that we omit
the MUX in Figure 3-5 for clarity. Compared with the original decoder, the only extra
delay in the critical path is caused by the switch transistor. The path from the PR to the
output of the NOR gate is not the critical path since the PR can be read out early in the
pipeline instead of at the beginning of the cache access cycle: once the instruction is
known as a memory-accessing instruction and to which process it belongs, the PRs can
be read out and properly selected by the MUX. The delay caused by the switches is
mainly due to the drain capacitance of the switch transistors which increase the load

Figure 3-7. Address decoder circuitry of the RPcache

46

capacitance of the 3-to-8 NAND pre-decoders. To overcome this, we implement multiple
copies of the pre-decoders, and let each of them drive a portion of the vertical lines such
that the load of each NAND gate does not increase much. We also manually adjust the
transistor sizes along the critical path, including the address bit drivers, the NAND gates,
and the switches. We also insert a buffer between the address bit driver and the pre-
decoders. We model this using cacti-3.2 tool [270], assuming a 0.18um technology. Table
3-3 shows the simulated results, where we first optimized the access time to less than 5%
increase, then optimized the power to less than 10% increase. The increase in percent is
relative to the unmodified cache modeled in cacti-3.2. Our results show that we can
achieve approximately the same cache access time (within 3%) with less than 10%
increase in power consumption. This is a straight forward implementation and further
circuit optimization can certainly lead to even better designs.

Table 3-3. Timing and Power Estimation of RPcache

RPcache 16K 2way 32K 2way 16K 4way 32K 4way

Access
time(ns)

1.225
(+2.1%)

1.331
(+1.7%)

1.293
(+1.1%)

1.344
(+3.3%)

Power (nj)
1.205

(+8.6%)
1.282

(+1.3%)
1.792

(+6.1%)
1.906

(+2.1%)

3.3.3 Evaluation

3.3.3.1 Security analysis

A. Security analysis of the PLcache
In a PL cache, the critical cache lines of the victim are locked in the cache. This leads to
two consequences: 1) the victim’s accesses to these lines will always hit in the cache
without causing any evictions of the attacker’s cache lines; 2) accesses to non-critical
lines will not evict locked lines. Consequence 1 eliminates external cache interference
due to cache misses, thus defeats the Percival-type attacks. Consequence 2 stops internal
cache interference due to cache misses and defeats Bernstein-type attacks. Furthermore,
if the software preloads critical lines before any use, all accesses to them will hit in cache,
thus avoiding hit-based cache interference. This defeats attacks based on cache hits such
as the cache collision attacks.

B. Security analysis of the RPcache
To analyze the security of RPcache’s randomization technique, we model the information
leak channel via cache misses as a communication channel and use information theory to
prove that the channel capacity is zero. As the information leak can be exploited in
various ways, e.g., time-driven, trace-driven or access driven attacks, our analysis has to
be valid in general. Our approach is to prove that in the best case – when the attacker has
the greatest power to observe the information leak, the channel capacity is zero. When the
attacker has less power, he cannot do better – thus still getting zero information. Note that
the power of the attacker indeed determines the type of the attack. For example, if the
attacker is able to observe the outcome of each memory reference instead of just the total

47

number of cache misses, choosing to launch a time-driven attack rather than a trace-
driven attack would waste his observation power without bringing him any extra
advantages. Therefore our analysis is valid for different types of attacks. Also note that
this analysis is independent of the techniques used to recover the information, e.g., the
statistical methods used in time-driven attacks. Such techniques only affect how much
information can be recovered from the information that has been leaked. If the
information leak itself is zero, then statistical techniques cannot recover any information.

In cache-based side channel attacks, in the best case for the attacker, the attacker is
able to observe every eviction caused by the victim without error and know exactly which
cache line is evicted. This can be modeled as a classic discrete time synchronous channel,
as shown in Figure 3-8. The input symbol of the channel is the line number of the cache
line accessed by the victim that would cause an eviction and the output symbol is the line
number of cache line for which the attacker observes an eviction. Note that the same
physical cache line may have different line numbers from the victim and attacker’s points
of view (due to different permutation tables they use). In traditional caches, an eviction at
a given line number caused by the victim is normally observed at the same line number
by the attacker, due to the common memory-to-cache mapping. This leads to the channel
model shown in Figure 3-8(a). In contrast, due to random permutations in RPcache, an
eviction caused by the victim can be observed at any line number by the attacker with
equal probability, as shown in section 3.3.2.1 and in Figure 3-8(b) —which is the channel
model for the RPcache. In other words, given an input symbol i, the probability that it is
observed as an output symbol j is equal for any j. We then have the following theorem.

Theorem 1: In an RPcache, the capacity of the side channel based on cache line
addresses is zero.

Proof:
Let Pr(j|i) denote the conditional probability that given the input symbol i, the output
symbol j is observed:

Figure 3-8. A channel model of the cache-address-based side channel

(a) In traditional cache (b) In RPcache

48

Pr(j|i) = Prob(output = j | input = i)

The set of such conditional probabilities is called the channel matrix, which
determines the channel capacity. For RPcache the following relation holds:

 Pr(j|i) = Pr(j’|i) for any i,j and j’

In information theory, it is straightforward to prove that a channel with such a
channel matrix has a zero capacity [271]. □

In the above proof we do not consider the real timing of the input symbol arrival rate,
i.e., the physical time between successive evictions. Indeed, in communication systems,
information can be modulated over the time interval between two successive symbol
transmissions. However, in cache-based side channel attacks, little useful information is
leaked out in this way and none of the current software cache-based side channel attacks
rely on this type of leakage.

C. Remarks
PLcache is a design in favor of minimal hardware complexity, and software has the full
control on how the provided basic hardware mechanisms are used. Like any other
security mechanisms, a naïve use of PLcache may still be insecure [272]. PLcache relies
on software making proper use of the hardware mechanisms to achieve security. For
example, to prevent information leakage on the first accesses to an AES table, the whole
table should first be loaded (and locked) by the AES program. Secure design with an
unmodified PLcache as well as PLcache-based variants have been presented [273].

In contrast to PLcache, RPcache is more complex in hardware but needs less software
involvement. However, RPcache may not be able to defeat hit-based attacks (also called
cache collision attacks) [272], if used without any help from software. As we have
pointed out in section 3.2.2, while information leakage due to cache misses can easily be
mitigated by hardware, information leakage due to hits is more suitable to be mitigated
by software. Therefore, RPcache is designed to be efficient and effective in mitigating
miss-based attacks such as Percival’s attack [121], Bernstein’s attack [114] and Osivk’s
attack [118] against AES. Software-based mitigation methods that were previously
vulnerable due to miss-based interference, object preloading and no object sharing, can
then become more secure when running on RPcache and thus can mitigate a wider range
of attacks.

3.3.3.2 Performance evaluation
We implemented the PLcache and the RPcache on M-Sim v2.0 [274] which is a multi-
threaded microarchitectural simulation environment based on simplescalar3.0d. AES is
used to evaluate the performance impact of the new cache architectures on code being
protected. The SPEC2000 benchmark suite is used for evaluating the performance impact
on general purpose workloads. In SPEC2000 benchmark simulation, the appropriate
number of instructions are fast forwarded, ranging from 100 million to 2.1 billion
instructions. Cycle-accurate simulations are then performed for 100 million instructions.
Table 3-4 shows the simulation parameters used.

49

Table 3-4. Simulation parameters

Simulation Parameters Value

Decode/Issue width 4/4

Integer ALUs 4+1 multi/div unit

Floating-point ALUs 4+1 multi/div unit

ROB size 96

Physical RF size 96 each for Int/FP

Fetch Policy for SMT Icount

L1 instruction cache 64KB,2-way, 32B lines

L2 unified cache 512KB, 8-way, 64B lines

Cache access time 2 cycles L1, 12 cycles L2

Memory access latency 200 first chunk, 4 inter

L1 data cache ports 2

LSQ entries 48

A. Performance impact on the protected code
Figure 3-9 shows the performance of the OpenSSL 0.9.7a implementation of AES on a
processor with a traditional cache with no protection for side-channel attacks (Baseline),
an L1 PLcache and an L1 RPcache. A total of 5 Kbytes of data need to be protected in
this AES implementation. The simulated program performs the generation of 1 KByte
packets and the encryption of the packets, and runs alone on the processor. To examine
the effects of the cache capacity and the configuration on performance, we vary the cache
size from 4K to 32K and simulated the direct-mapped, 2-way and 4-way set-associative
configurations for each size.

Our results show that PLcache is sensitive to the cache size and configuration. When
the size of the protected memory (5KB) is larger than the cache capacity (4KB cache),
the performance is always bad because all cache lines are locked. Implementing the
PLcache as a direct-mapped cache is also not a good idea since once a line is locked, it
generates a lot of conflict misses. For cache sizes larger than the protected data, with set-
associativity at least 2, the PLcache can achieve comparable performance to the
traditional cache.

In contrast, the RPcache consistently achieves almost the same performance as the
traditional cache, regardless of the cache capacity and configuration. The performance
impact caused by the random cache evictions in RPcache is negligible: worst case 1.7%
(on 4K directed-mapped cache) and 0.3% on average.

We also simulate the L2 PLcache and L2 RPcache. As the L2 cache is large enough
to hold the working set, no performance degradation is observed.

B. Performance impact on the whole system due to the protected code
The PLcache and RPcache may impact the performance of the system during the
execution of the protected code, e.g., the performance of other general purpose workloads
running concurrently while encryption is being done for a file. In the simulation, we
assume that the protected code (AES) is running concurrently with another thread. We
use an 8Kbyte direct-mapped L1 D-cache and a 32Kbyte 4-way L1 D-cache to bound the
cache impact. The 6 bars per SPEC2000fp or SPEC2000int benchmark in Figure 3-10

50

show the simulations of the baseline, PLcache and RPcache for 8K 1-way L1 D-cache,
then for 32K 4-way D-cache.

For an 8Kbyte direct-mapped cache, PLcache causes an average performance
degradation of 12% and 14% on floating point benchmarks and integer benchmarks,
respectively. The RPcache causes 0.3% degradation on floating point benchmarks and
0.07% improvement on integer benchmarks. The improvement is a result of the swap
operations of the RPcache which avoid many conflict misses. On a 32Kbyte 4-way cache,

AES Encryption Performance

0

0.5

1

1.5

2

2.5

3

3.5

4K 1way 4K 2way 4K 4way 8K 1way 8K 2way 8K 4way 16K 1way 16K 2way 16K 4way 32K 1way 32K 2way 32K 4way

IP
C Baseline

PLcache

RPcache

Figure 3-9. Performance comparison of AES code

AES running with SPEC2000fp

0

0.5

1

1.5

2

2.5

3

3.5

applu apsi art equake facerec fma3d galgel lucas mesa mgrid sixtrack swim wupwise avg

T
h

ro
u

g
h

p
u

t
IP

C

baseline 8K DM

PLcache 8K DM

RPcache 8K DM

baseline 32K 4way

PLcache 32K 4way

RPcache 32K 4way

(a) Overall throughput with SPEC2000fp benchmarks

AES running with SPEC2000int

0

0.5

1

1.5

2

2.5

3

3.5

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr avg

T
h

o
u

g
h

tp
u

t
IP

C

Baseline 8K DM

PLcache 8K DM

RPcache 8K DM

Baseline 32K 4way

PLcache 32K 4way

RPcache 32K 4way

(b) Overall throughput with SPEC2000int benchmarks

Figure 3-10. Performance impact on overall throughput

51

the PLcache achieves a 0.2% performance improvement on both integer and floating-
point benchmark sets. This is because the 32Kbyte cache is large enough to hold the
working sets for both threads and the protected code benefits from the locked cache lines
that avoid misses on these lines. The performance degradation for the RPcache is 0.3%
on FP suite and 1.2% on INT suite, respectively. The increase in performance
degradation is due to the higher overhead associated with the swap operations for a set-
associative cache. However, the absolute degradation is still very small. We also
examined the effect of implementing the L2 cache as a PLcache or RPcache. The effect is
again insignificant.

Although we only use AES as the protected code in our simulations, our conclusions
are not specific to AES. The sensitivity of PLcache’s performance to the cache
configuration and capacity (relative to the size of the protected memory region) is due to
the locking behavior and is not a result of any AES-specific factor. The robustness of the
RPcache’s performance is due to the fact that we allow sharing – and our design
intentionally minimizes the restrictions on sharing.

3.3.3.3 Comparison with prior-art
Table 3-5 summarizes the advantages of our PLcache and RPcache solutions compared
with the prior-art partitioned cache solution, in terms of both security and performance.

Table 3-5. Comparing with prior-art Partitioned Cache

Security &
Performance

Partitioned
Cache

Our
PLcache

Our
RPcache

Prevents external
Interference?

Yes Yes Yes

Prevents Internal
Interference?

No Yes Yes

Relative
Performance

Low Medium High

Security: All three approaches can prevent information leakage via external cache
interference. Partitioned cache and PLcache provide private partitions to a process which
are not accessible by other processes. RPcache randomizes the interference so that it
carries no useful information. The partitioned cache can not, however, defend against
attacks based on internal interference; a private partition still allows code within a
process to contend for cache lines and cause interference, as in Bernstein’s statistical
attack. PLcache does not have this problem, because it explicitly locks the desired lines in
cache, and other parts of the same process cannot interfere with these cache lines.
RPcache randomizes the interference – hence it carries no useful information.

Performance: A partitioned cache does not allow a process which uses very few cache
lines to make its unused cache lines available to other processes which may need more
cache lines than they have in their partitions. Hence, it has the lowest performance among
the three approaches. PLcache can achieve better performance because it has a locking
mechanism that allows it to minimize the size of flexible private partitions, leading to
better cache utilization. RPcache allows different processes to share cache slots and

52

therefore has the smallest performance degradation. In addition, the performance of the
partitioned cache and PLcache depend on software to specify proper partitioning of the
cache, while the performance of the RPcache is very robust, with little dependence on the
software and the underlying hardware cache architecture.

3.4 Summary

The PLcache and RPcache are the realizations of two leakage-blocking approaches. The
PLcache achieves flexible cache partitioning through cache line locking mechanism and
mitigates cache based attacks via interference elimination. The RPcache allows cache
interference but randomizes it such that it carries no useful information. The PLcache
requires minimal hardware cost, but more software interventions. Its performance as well
as security relies on the software to make proper use of it. In contrast, the RPcache needs
a little more hardware but provides much more robust security as well as performance,
without needing inputs from the programmer. As shown in our evaluation, both cache
architectures can provide desired security from information leakage, with little impact on
performance.

53

Chapter 4

Improving Cache Performance while
Improving Cache Security

4.1 Overview

Due to the restrictions imposed by security requirements, design for security and design
for performance are usually at odds. In chapter 3 we have shown that security can be
achieved with little impact on performance with the proposed PLcache and RPcache. In
this chapter, we show that designing for security, using the randomizing approach of
RPcache, can even improve performance and bring more benefits. We present a novel
cache architecture, Newcache, that randomized dynamic memory-to-cache mapping with
three other architectural features that enhance performance and power-efficiency. The
proposed architecture can achieve the same level of security as RPcache, facilitate
efficient implementation of cache partitioning/locking, and at the same time achieve even
higher performance than traditional caches. The proposed cache architecture is also
power efficient -- it consumes as little power as a traditional direct mapped cache.
Furthermore, the proposed architecture can bring additional benefits including fault
tolerance, hot-spot mitigation and further optimization for low power.

4.2 The Proposed Cache Architecture

The proposed cache architecture, Newcache, features four architectural characteristics to
achieve performance, power efficiency as well as security. To enable fast cache access
time and high power efficiency, Newcache adopts the direct-mapped architecture.
Dynamic memory-to-cache mapping and a longer cache index are introduced to achieve
low miss rates. To improve security, our cache enhances the randomization approach,
which is achieved by dynamic memory-to-cache mapping and a new security-aware
cache replacement algorithm (SecRAND). The performance-enabling features also allow
the cache partitioning/locking mechanisms to be implemented efficiently without
incurring the performance problems as in traditional caches.

54

4.2.1 Dynamic-Remapping and Logical Direct Mapping

The proposed cache implements dynamic memory-to-cache remapping, meaning that a
memory block can be mapped to any desired cache line at run time. Logically, this can be
achieved by using a level of indirection. The index bits of the address are first used to
lookup a ReMapping Table (RMT), which returns the index of the real cache set that the
address is mapped to. By changing the contents of a RMT entry, an address can be
mapped to an arbitrary cache line. The RMTs are updated seamlessly by the cache
replacement algorithm – whenever a cache line replacement occurs, the corresponding
RMT entry is updated. The indirection overhead to realize dynamic re-mapping can be
avoided by clever circuit implementation (as we will show in section 4.2.4).

The proposed cache also adopts the direct-mapped architecture to inherit its fast
access time and power efficiency. To avoid excessive conflict misses, a longer cache
index is introduced. Unlike in traditional direct-mapped caches where using more index
bits exponentially increases the cache size, the proposed cache exploits the dynamic
memory-to-cache mapping to achieve low conflict misses without increasing its physical
size. This is illustrated in Figure 4-1. Assuming that the cache contains 2n physical cache
lines, it uses n+k index bits rather than n as in a traditional direct-mapped cache. This is
conceptually equivalent to mapping the memory space to a large logical direct-mapped
cache with 2n+k lines, referred to as the LDM cache in the rest of the paper. Note that the
LDM cache does not physically exist and is introduced only to facilitate the analysis and
discussion of the proposed cache architecture. The dynamic mapping mechanism enables
the proposed cache to adapt to store the most useful 2n lines at run time, rather than

Memory

0

2n+k-1

Logical
DM Cache

i

j

0

0

j
i

LNregs
Physical
cache

2n+k-1

2n-1

Figure 4-1. Mapping memory space to the physical cache

55

holding a fixed set of cache lines and missing on others. To remember which lines in the
LDM cache are stored in the real cache, each physical cache line is associated with a Line
Number register (LNreg), which stores the (n+k)-bit line number of the corresponding
logical cache line in the LDM cache. An LNreg physically implements an entry of the
RMT (ReMapping Table), and changing the line numbers stored in an LNreg maps
another logical cache line to the physical cache line. Although we assume 2n cache lines
in the above discussion, the number of cache lines s in the proposed cache can be any
number – not necessarily a power of two – as long as s < 2n+k.

A RMT stores a memory-to-cache mapping. For security as well as performance
reasons, it is desirable to have multiple mappings, each of which may be used by one or
more processes. Note that although logically multiple RMTs are required, they are
physically implemented with one set of LNregs. This is because at any time, for each
physical cache line storing a logical cache line, only the entry of the RMT associated to
the logical cache line needs to be stored in the LNreg. The corresponding entries in all
other RMTs are invalid since no logical cache lines of these RMTs are mapped to the
physical cache line. Figure 4-2 shows how a single set of LNregs implement multiple
logical RMTs. To distinguish which RMT the entry in an LNreg belongs to, an RMT_ID
field is included in each LNreg in addition to the line_num field.

4.2.2 A Summary of the Proposed Cache Architecture

The proposed cache architecture (Figure 4-3) is very similar to the traditional direct-
mapped cache architecture, with some significant differences summarized below:

Figure 4-2. Supporting multiple logical RMTs

56

 The address decoder of the proposed cache is modified to implement dynamic
memory-to-cache mapping. The LNregs are integrated into the address decoder.

 More address bits, n+k, are used as index to access a cache of size s <2n+k. A
memory address is mapped into a Logical Direct Mapped (LDM) cache of size
2n+k, then dynamically re-mapped into the real cache of size s.

 The number of cache lines is not necessarily a power of two; it can be any s <
2n+k.

 Each process is attached to a context RMT ID which specifies the Re-Mapping
Tables (RMT) it will use. Different processes therefore can have different
memory-to-cache mappings if they are attached to different context RMT IDs.

 Each LNreg contains a RMT_ID field of d bits and a line_num field of n+k bits.
 Each cache line also has a P flag bit, indicating protected cache lines. Each Page

Table Entry (and/or segment descriptor, if implemented) also has a PP flag bit,
indicating a Protected Page. This memory marking mechanism is similar to the
RPcache.

 A replacement algorithm is needed on cache misses.

Context RMT_ID: This identifies a hardware context, specifying which RMT is used by a
process. A process that needs to be protected against information leak from other
processes should use a different RMT. The OS is in charge of associating a process with
a RMT_ID when the process is assigned a hardware context for execution.

Figure 4-3. The proposed cache architecture

57

Address decoder and LNregs: In a traditional cache, the address decoder in essence tests
a set of conditions (index == 0?), (index == 1?), … (index == 2n-1?) that compare the
index with a series of constants (0 through 2n-1) and selects one cache line based on the
outcome of these comparisons. In the proposed cache, the address decoder tests a similar
set of conditions, except that the condition is a variable, viz., the contents of the ith LNreg,
[LNregi], for i = 0, 1, …, s-1. The address decoder activates a cache line if the RMT_ID
field in LNregi matches the d-bit Context RMT_ID and if the line_num field in LNregi
matches the n+k index bits. The LNregs are updated when cache line replacements occur.
The new line’s context RMT_ID and index bits are written to the RMT_ID field and
line_num field respectively.

4.2.3 SecRAND: the Security-Aware Random Replacement Algorithm

Unlike in traditional direct mapped caches, a cache replacement algorithm is necessary in
the proposed cache due to the dynamic remapping. During a cache miss, the replacement
algorithm determines which physical cache line should be selected for holding the new
logical cache line. Since replacing the logical cache line that the physical cache line holds
normally means mapping a new memory address to the physical cache line, the LNreg
(i.e., the physical realization of the logical RMT entry, which stores the corresponding
memory-to-cache mapping) of the selected physical cache line needs to be updated
accordingly. There are two types of misses, index misses and tag misses, in the proposed
cache. An index miss occurs if none of the LNregs matches the given RMT_ID and index.
None of the cache lines is selected in an index miss. A tag miss occurs if the index hits in
one LNreg, but the tag of the selected cache line does not match the address tag. A tag
miss essentially is the same as an ordinary miss in a traditional direct-mapped cache,
whereas the index miss is a unique type of miss in our proposed cache. Since an index hit

Figure 4-4. New security-aware random cache replacement algorithm

58

means the match of the RMT ID, tag misses only occur within the same process or
among processes using the same RMT. Index misses occur early in the hardware pipeline
during address decoding, before the tag is read out and compared, and this early miss
signal could be used by the pipeline control logic to improve performance.

The replacement policies for the two types of misses are different as we show in
Figure 4-4. The tag misses are conflict misses in the LDM cache since the addresses of
the incoming line and the line in cache have the same index (as well as the same RMT ID)
but different tags. Because in a direct-mapped cache at most one cache line can be
selected at any time, no two LNregs can contain the same index (and the same RMT_ID).
Therefore either the original line in the cache is replaced with the incoming line or the
incoming line is not cached. For index misses, the new memory block can replace any
cache line. While various replacement policies can be used to choose the desired victim
line to be replaced, we propose a new modified random replacement policy, which we
call SecRAND, for the proposed cache, which provides improved security as well as
excellent performance. Figure 4-4 shows the SecRAND replacement algorithm. The
cache lines involved and the procedures used in the replacement algorithm are described
in Table 4-1.

Table 4-1. Definitions and Notations

Notation Description

C
The cache line selected by the address decoder (during a cache hit or
a tag miss).

D The memory block that is being accessed.

R The cache line that is selected for replacement (victim).

Px
The protection bit of X. If X is in a cache line, it is the P bit of the cache
line. Otherwise it is determined by the PP bit of the page/segment that
X belongs to.

cache_access(C) Access line C as in a traditional Direct Mapped cache.

Victim(C) Select C as the victim line to be replaced.

victim(rand)
Randomly select any one out of all possible cache lines with equal
probability.

replace(R,D) Replace line R with line D, update LNreg.

evict(R) Write back R if it is dirty. Invalidate R.

mem_access(D) Access to line D without caching it in the current level of cache.

Cache hits (1st column in the flow chart) are handled as in a traditional cache. When a

cache miss occurs, if the LNreg of a cache line C matches the Context RMT_ID and
index of the memory block D, then this is a tag miss. As a tag miss always indicates a
matching RMT_ID, lines C and D must use the same RMT, which usually means that
they belong to the same process. We call this interference internal to a process or
processes in the same security group. If neither the incoming line (D) nor the selected line
(C) is protected (2nd column), meaning that the interference is harmless, the miss is
handled normally like in a traditional cache. If either C or D are protected (3rd column),

59

meaning that the interference may leak out critical information, the replacement
algorithm randomizes the cache interference due to the conflict between C and D. To
avoid information-leaking interference, D does not replace C, and since in a tag miss D
can not replace cache lines other than C, D is sent directly to the CPU core without being
put in the cache. On the other hand, since a miss should normally cause an eviction, a
random line is evicted which “substitutes” for the eviction of C as well as randomizes the
interference. Otherwise the old cache lines tend to stay in cache and new cache lines will
not get cached. If the miss is not a tag miss, it is an index miss (4th column) – none of the
LNregs match the RMT_ID and index of D. In this case, C and D may or may not belong
to the same process. Since for an index miss the new memory block D can replace any
cache line, a cache line is randomly selected (with equal probability as in the normal
RAND) and evicted. The interference caused by an index miss therefore is always
randomized. Detailed security analysis of the SecRAND algorithm will be given in
section 4.3.4.

4.2.4 Hardware Implementations

Because of the similarity between the proposed cache and a traditional direct-mapped
cache, they share most logic and organization in common, which can be implemented in
the same way as in the traditional caches. The distinct part in the new architecture
includes the new address decoder and the new SecRAND replacement algorithm. Below
we focus on these two aspects.

Figure 4-5. A generic cache organization

Cache Memory Cell Array

Subarrays

Address/Data I/O
Channel

60

A. The new address decoder design
In modern cache implementations, instead of using a single huge array, memory cells are
typically partitioned into sub-arrays to achieve fast timing and low power dissipation.
Figure 4-5 shows a generic example of such a cache organization. Clocks, address lines,
and data I/O lines are often routed through an H-tree network to the sub-arrays. The
address decoder lies in the center of each sub-array, decoding the address into word line
selection signals, each of which selects a row of memory cells (e.g., a cache line) to
access. Figure 4-6 illustrates more details of the sub-array structure, including the pre-
decoder logic, row decoder, word line and bit line structures.

As shown in Figure 4-3, the main difference between a traditional DM cache and the
Newcache lies in the logic that determines which cache line to select given the input
address. In a traditional DM cache, the mapping between an input address to a cache line
is fixed, whereas in the Newcache, the mapping is controlled by the contents in the RMT
table entries (i.e., the LNregs as shown in Figure 4-3) – given an input address along with
its RMT id, a cache line will be selected only if the address and RMT id pair match the
content in the LNreg associated to the cache line. In the physical implementation, this
logic exists between the pre-decode logic and the row decoder gate in Figure 4-6, where
the input address is decoded and the cache line select signal is generated. The rest of the
design is essentially the same, i.e., both caches should have similar sub-array
organization and routing, and therefore similar wire delay, gate delay, and eventually the
total access time. Below we describe the physical implementations of the address
decoders in detail.

Logically, as depicted in Figure 4-7(a), the traditional address decoder in essence tests
a set of conditions (index == 0?), (index == 1?), … (index == 2n-1?) that compare the
index with a series of constants (0 through 2n-1) and selects one cache line based on the
outcome of these comparisons. In physical implementations, as shown in Figure 4-7(b)

Figure 4-6. Address decoder and subarray structures

Predec
Logic

Subarray

Subarray Subarray

Subarray

Vertical channel:
Predecoded lines

Horizontal channel:
Address & data lines

2D array
of memory cells

Precharge and equalization

Bitline mux

Sense amplifiers

Sense amplifiers mux

Subarray output drivers

Write mux and drivers

Mem
cell

Word line

bit line

Predecoded
lines

Data output
channel

61

which is the most commonly used design, this is reflected in how the 3-to-8 predecoded
address lines (the long vertical lines in the figure) are connected to each word line driver
(the horizontal NOR gate in the figure). In other words, each NOR gate is connected to a
different combination of the predecoded address lines as its inputs, testing one of the
conditions (index == k?). In the traditional address decoder, the address-to-cacheline
mapping is fixed, and therefore the physical connections between the predecoded address
lines and the NOR gate inputs are fixed. In RPcache, the address-to-cacheline mapping is
dynamic, meaning in the condition (index == k?) k is a variable instead of a constant.
Physically, this is achieved by using a switch array to control which predecoded address
line is connected to the input of the NOR gate, as shown in Figure 4-8 (the circuitry in the
middle). The Newcache address decoder is similar to the RPcache address decoder in the
sense that the address-to-cacheline mapping is dynamic. Below we discuss three
implementation alternatives: the Content-Addressable-Memory (CAM) based design
[275-276] (since the Newcache address decoder logically performs a search in the
LNregs, looking for a match of the index bits of the address and the RMT_ID), the
switched-based design in the RPcache which can be directly applied to the Newcache
address decoder design, and a new improved design.

A traditional way to implement associative search is through Content-Addressable
Memory (CAM), i.e., the LNregs are implemented as a CAM array. CAM search
however is slow and/or power consuming. As shown in [276], the word length of each
CAM entry is limited to 6 bits to achieve a delay comparable to that of a traditional
decoder. Furthermore, if implemented as a separate array, the CAM approach would
require routing the output of the CAM array to the main cache array, which could impact
cache access time even more since routing delay has become a dominant factor of the
overall access latency.

The switch-based design in the RPcache and the proposed new design both integrate
the comparison logic into the address decoder. By making use of the existing decoding
logic distributed along with the cache memory cell array, slow CAM search and
unnecessary routing are avoided. Figure 4-8 shows a comparison of the traditional
address decoder, the RPcache decoder and the new improved decoder based on the

Figure 4-7. (a) logical view of the address decoder (b) physical implementation

62

commonly used NAND-NOR topology. Note that in real design the exact circuitry may
vary, but the same principle still applies.

As we mentioned earlier, the RPcache decoder design is indeed identical to a
traditional address decoder with one exception. In both decoders, address lines are first
pre-decoded with 3-8 decoders, i.e., for each 3 address bits, a group of 8 pre-decoded
lines are generated and sent along the edge of the memory cell array. The row decoder of
each row then takes one of the 8 lines from each group as its input and generates the word
line select signal. The connections between the pre-decoded lines and the inputs of the
row decoders determine on which address value a row is “selected”, i.e., the connections
determine the memory-to-cache mapping. In traditional caches, the memory-to-cache
mapping is fixed, and therefore the connections between the pre-decoded lines and the
row decoder inputs are fixed. In the RPcache, the memory-to-cache is dynamic, and as a
result the static connections between the outputs of the 3-to-8 pre-decoders and the inputs
of the final NOR gates in the row decoder are replaced with dynamic connections via
switches controlled by the permutation registers. The extra hardware cost associated with

Figure 4-8. Overall structures of the address decoders

63

the dynamic connections is very low: for each switch, a NAND3 is used to generate the
control signal, and for every 3 address bits, 8 switches and 8 NAND3 gates are needed.
Note that due to the drain capacitance of the switches the pre-decoded lines may be more
heavily loaded and may lead to longer delay. This can be resolved by inserting repeaters
in the wires or having duplicated wires each driving a smaller number of rows.

In the proposed new design, rather than controlling the connections between the
predecoded lines and the inputs of the final NOR gates, we control the connections
between the address lines and the inputs of the decoder. The 3-8 predecoders are removed
and their logic corresponding to each row – a NAND3 gate, is moved to sit beside the
word line driver. The switches control how address bits are connected to the NAND3
gate, and thus control which cache line is activated given an index. This implements the
dynamic memory-to-cache mapping. The hardware required is less in the new design
than in the RPcache, i.e., (6 switches, 3 inverters, 1 NAND3 gate) vs. (8 switches, 8
NAND3 gates) for every 3 address bits. Note that the switches and related circuitry of the
new address decoder (shown in the upper right corner of Figure 4-8) is only one example
design and can be further optimized in terms of hardware cost and load on the long wires.
Since our cache has longer index bits, the output of the NAND3 gate corresponding to the
extra address bits needs to be ANDed with the output of the NOR gate. This is done by
replacing the first inverter in the word line buffer string with a NAND2 gate. By properly
adjusting the transistor sizes of the NAND2 gate, no extra delay is introduced. Compared
with the RPcache address decoder design, the new design requires less hardware for
implementing switches, has lower loads of the long wire and routes address lines instead
of predecoded lines along the edge of the memory cell array, reducing the number of long
wires and improving power efficiency.

Since the new decoder design is largely based on the traditional decoder design, the
extra implementation overhead is minimized. The extra overhead for combinational logic
is very low. In the example shown in Figure 4-8, for each cache line that probably
contains several hundreds of memory cells and port switches, the extra circuits required
only include 3 NAND3 gates, 10 inverters and 18 switches, and all these devices are
about the minimal size since they are all minimally loaded. The overhead for storage, i.e.,
the LNregs, is also low. We assume that the LNregs are laid out aside the memory cell
array and implemented with the same memory cells. Since each cache line is associated
with one LNreg, the overhead of LNregs relative to the overall cache storage is
(n+k+d)/M, where n,k,d are defined as in Figure 4-3, M is the total number of memory
cells in each cache line including data, tag and flags. In a 64KB cache with 64-bit address
and 64-byte cache line size, n=10 and M  64x8+42+6=560, where 42 is an
approximation of the tag size and 6 is a rough estimation of the number of flags and ECC
bits. If we allow 4 RMTs and wish to achieve good performance, we can choose d=2 and
k=4. The relative overhead of memory storage will be 16/560  2.9%. In some cache
implementations the tag array and the data array may be separated, requiring two sets of
address decoders. The overhead will be 5.8% in this case.

B. Implementation issues of SecRAND
Compared with other commonly used replacement algorithms such as LRU, pseudo LRU
and FIFO, the random replacement algorithm requires the least hardware cost to
implement, due to its stateless nature [277]. Similarly, our SecRAND is stateless and

64

enjoys the same advantage. Although SecRAND requires condition checks, these checks
are simple and stateless, thus can be trivially implemented with simple combination logic.
The security of SecRAND relies on the quality of the random source. This requires a true
or pseudo random number generator (RNG or PRNG) on chip. The design of these is out-
of-scope for this dissertation. We assume that for any system interested in security, a
good RNG or a PRNG [278] is already implemented.

4.3 Analyses and Evaluations

4.3.1 Performance: cache access time

The performance of a cache architecture depends on short access times and low miss
rates. We use CACTI 5.0 [279] to explore the design space and find the optimal access

Figure 4-9. Cache access time comparison

0

0.2

0.4

0.6

0.8

1

1.2

8K 16K 32K 64K

Cache Capacity (Byte)

A
c
c
e
s
s
 T

im
e
 (
n
s
)

DM Newcache
SA-2w fast SA-4w fast
SA-8w fast SA-2w normal
SA-4w normal SA-8w normal

Figure 4-10. Dynamic read energy

0

0.02

0.04

0.06

0.08

0.1

0.12

8K 16K 32K 64K

Cache Capacity (Byte)

D
y
n
a
m

ic
 E

n
e
rg

y
 (
n
J
)

DM Newcache

SA-2w fast SA-4w fast

SA-8w fast SA-2w normal

SA-4w normal SA-8w normal

65

times and power consumption. The code corresponding to the address decoder is
modified to model the logic shown in Figure 4-8. More accurate transistor level
simulation is also performed using HSPICE. The transistor netlists corresponding to the
circuit used in CACTI are constructed with the 65nm Predictive Technology Model
(PTM) [280].

To accurately model the long wires in the decoder circuitry, we manually extract the
parameters of long wires based on the geometrical information generated by CACTI. We
focus on fast L1 caches since these are more impacted than L2 and L3 caches. Figure 4-9
shows the results on overall cache access time generated by CACTI.

The extra delay introduced by our proposed cache, referred to as “Newcache” in the
discussion below, is always within 1% range of the access time of a traditional direct-
mapped (DM) cache. We also compared the access times of commonly used set-
associative (SA) caches that are 2-way, 4-way or 8-way set-associative. The “fast” caches
are optimized for speed whereas the “normal” caches are optimized for both speed and
power efficiency. The data are generated by configuring CACTI with fast mode and
normal mode, respectively. Although a fast SA cache could have an access time close to
that of our cache, the power consumption is significantly higher – up to 4 times higher
than our Newcache, as shown in Figure 4-10. Table 4-2 shows the HSPICE results for a
traditional direct-mapped cache versus our proposed Newcache. In all cases, the extra
delays are no greater than 5ps, which is less than 1% of the overall access times.

Table 4-2. HSPICE Results on Address Decoder Delay (normalized results in parenthesis)

 8KB 16KB 32KB 64KB

Traditional 0.149ns (1) 0.149ns (1) 0.226ns (1) 0.192ns (1)

Proposed cache 0.151ns (1.013) 0.151ns(1.013) 0.230ns(1.018) 0.197ns(1.026)

4.3.2 Performance: miss rate analysis

4.3.2.1 Theoretical analysis
Cache misses have been classified as compulsory misses, capacity misses or conflict
misses [281]. Compulsory misses (e.g., on a cold start) are common to all caches.
Capacity misses (e.g., when the program’s working size exceeds the size of the cache)
only depend on cache size. Conflict misses depend on both the cache organization (e.g.,
set-associativity) and capacity. To reduce conflict miss rate, a traditional way is to
increase associativity, which however impacts cache access time and power efficiency.
Increasing capacity can reduce capacity misses as well as conflict misses. However, this
is often not feasible in practice due to the limited silicon real estate budget.

In contrast, we show, for the first time, that conflict misses can be largely
independent of cache capacity. Our analysis shows that, regardless of its real capacity,
our proposed Newcache with an (n+k)-bit index has less conflict misses than a traditional
direct-mapped cache with 2n+k cache lines. The total number of misses in our Newcache
has the following bounds:

|Miss(Newcache,2n)||CompulsoryMiss|+|CapactiyMiss(2n)|+|ConflictMiss(DM,2n+k)| (4.1)
 |Miss(Newcache,2n)|  max{|Miss(DM,2n+k)|,|Miss(FA,2n)|} (4.2)

66

where Miss(Arch, Size) denotes the set of misses in a cache of type “Arch” with a
capacity of “Size” and |A| is the number of elements in set A. Detailed analysis can be
found in Appendix 4. In (4.1), the left side of the equation can be decomposed to the
same first 2 terms as the right side plus a third term: ConflictMiss(Newcache,2n). Hence,
(4.1) shows that the conflict misses of our new cache is less than or equal to that of a
direct-mapped cache with 2n+k cache lines. Indeed, as verified in the next section, this
bound is asymptotically tight and is a good approximation of the true miss rate in real
configurations. This means that the conflict misses of our proposed Newcache are largely
independent of its actual cache capacity. The conflict misses are indeed dependent on the
size of the larger LDM cache, 2n+k, rather than on the actual cache size, 2n. This property
of our proposed cache gives cache designers the ability to control the conflict miss rate at
the desirable level by choosing the proper number of index bits, while choosing the
capacity independently based on cost or other needs. This avoids the speed and power
penalty due to higher associativity and allows finer-grained control on allocating capacity
to the cache and making the best use of the resource. This property also enables other
benefits that traditional caches can not provide, as we will show in section 4.4.

4.3.2.2 Simulation results
For experimental confirmation of miss rates, we simulated our proposed Newcache and
traditional direct mapped (DM), set-associative (SA) and fully-associative (FA) caches
on a cache simulator derived from sim-cache and sim-cheetah of the simplescalar toolset
[282]. We run all 26 SPEC2000 benchmarks for 1 billion instructions with appropriate
fast forward counts ranging from 2 million instructions to 3 billion instructions. Figure 4-
11 illustrates the accuracy of the bounds we derived in equations (4.1) and (4.2). The
bounds are normalized to the real miss rate to show the relative accuracy. The simulation
is done for our proposed caches with 64-byte lines for n = 6 to 10 (i.e., 4K bytes to 64K
bytes capacity), with cache indices that are k=3 to 4 bits longer. Except for one point, the
bounds are always within the 10% range of the real miss rate, and when n+k or k gets
larger, the accuracy increases. Indeed, the derived bounds are asymptotically tight,
meaning that the equality in (4.1) holds when k and n+k are large.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

n=
6,
k=

3

n=
7,
k=

3

n=
8,
k=

3

n=
9,
k=

3

n=
10

,k=
3

n=
6,
k=

4

n=
7,
k=

4

n=
8,
k=

4

n=
9,
k=

4

n=
10

,k=
4

M
is

sr
at

e
B

o
u
n
d
s

Upper Bound

real Newcache

Lower Bound

Figure 4-11. Accuracy of the miss rate bounds

67

Table 4-3 compares the miss rates of our Newcache with the DM cache and the 2-
way and 4-way SA caches with LRU replacement. FA caches and 8-way SA caches with
RAND replacement are also included to show the effectiveness of our SecRAND
replacement algorithm. The lowest miss rate in each column is highlighted in bold (and
normalized to 1 in parenthesis). The miss rates of our new caches are in the last 2 rows –
our Newcache almost always achieves the lowest miss rates achieved in each column by
traditional caches.

Table 4-3. Miss Rate Comparison (relative to best miss rate, in parenthesis)

 4KB 8KB 16KB 32KB 64KB

DM 0.133 0.093 0.068 0.055 0.048

SA-2way, LRU 0.101 0.075 0.057 0.045 0.041

SA-4way, LRU 0.096 0.068 0.053 (1) 0.042 (1) 0.040 (1)

SA-8way, RAND 0.095 0.071 0.054 0.044 0.041

FA, RAND 0.090 (1) 0.067 (1) 0.053 (1) 0.044 0.040 (1)

Newcache k=4, SecRAND 0.093 (1.033) 0.068 (1.015) 0.054 (1.019) 0.044 (1.048) 0.041 (1.024)

Newcache k=6, SecRAND 0.090 (1) 0.067 (1) 0.053 (1) 0.044 (1.048) 0.040 (1)

4.3.3 Power Efficiency Analysis

We analyze the power efficiency of the proposed cache with regard to two aspects: the
per access energy of the cache and the overall power consumption. The cache miss rates
are obtained from simulation of all SPEC2000 benchmarks. The power penalty of misses,
i.e., the per access energy of L2 cache is obtained using CACTI 5.0.

Modern caches are usually organized as a set of subarrays to achieve fast timing and
low power dissipation, as shown in Figure 4-5. The main sources of dynamic power
include the power for routing address bits in and data bits out via H-trees, and the power
on word lines and bit lines since they are heavily loaded. As our Newcache is direct-
mapped, only a minimum number of subarrays need to be activated in each access, which
minimizes the power consumed on word lines and bit lines, giving the low per access
energy.

Figure 4-10 shows the dynamic read energy data generated by CACTI. The impact of
the changes on the overall power consumption compared to DM caches is very low – less
than 2%. This is because the percent of energy consumed by the modified structures in
our proposed Newcache architecture is low. The new address decoder (excluding word
lines since they are not changed) consumes just a few percent more than a traditional DM
cache, and the whole decoder power consumption is normally less than 5% of the overall
dynamic power. The LNregs consume little power because they are a small amount of
memory compared with the size of the cache and have low switching activities – the
contents of LNregs need to be changed only during an index miss. Furthermore, unlike
accesses to other memory cells, most accesses to LNregs do not involve power-
consuming bit-line charging and discharging. Only writes to LNregs require bit-line
operations, which occur only when index misses happen. The increase in leakage power
in our Newcache is mainly due to the memory cells in LNregs, which is small relative to
the overall cache. Hence, the leakage power increase is also low.

68

0

0.5

1

1.5

2

2.5

ammp
app

lu
aps

i art

equ
ake

face
rec

fm
a3d

galg
el

luc
as

mesa
mgrid

six
tra

ck
sw

im

wup
wise bzip

2
cra

fty eon gap gcc gzip mcf

pars
er

perl
bmk

tw
olf

vo
rte

x
vp

r
avg

SPEC2000 Benchmarks

N
o

rm
a

liz
e

d
 O

v
e

ra
ll

P
o

w
e

r

DM SA-2w LRU
SA-4w LRU SA-4w LRU wp0.7
SA-4w LRU wp0.85 Newcache k=4

Figure 4-12. Comparison of the overall power consumption

Figure 4-12 shows the results comparing the overall power consumption normalized
to our Newcache. We compare traditional SA caches as well as advanced low power SA
caches – the way-predicting (wp) SA cache. For example, “SA 4w LRU wp0.7” means a
4-way set-associative way-predicting cache with prediction accuracy of 0.7, and LRU
replacement algorithm. All caches are 32KB with 64Byte cache lines. The miss rates of
the cache impact the overall system power consumption. A higher miss rate means more
accesses to the larger caches or the main memory which consume more power. Our
Newcache is more power efficient than the others due to its low miss rate and low per
access energy. On average, the 4-way SA cache consumes 61% more power than our
Newcache, the 2-way SA cache 20% more, the DM cache 8% more, the 4-way way-
predicting cache 16% and 6% more with 0.7 [283] and 0.85 accuracy [284], respectively.

4.3.4 Security Analysis

The proposed cache adopts the randomization approach on cache misses to mitigate
information leakage, which is achieved by the SecRAND replacement algorithm. Similar
to the analysis of RPcache, we model the information leakage channel as a classic
discrete time synchronous channel. The input symbol of the channel is the line number of
the cache line accessed by the victim that would cause an eviction and the output symbol
is the line number of cache line for which the attacker observes an eviction. Note that the
same physical cache line may have different line numbers from the victim and attacker’s
points of view (e.g., in the proposed cache, they may use different RMTs). To make the
capacity of this channel zero, the randomization should meet the following requirement
for all protected cache lines:

jjiijPijP  ,,)|()|((4.3)

where)|Pr()|(iinputjoutputijP  . In other words, given an access at line i by
the victim that would cause an eviction, the attacker can observe an eviction at any line
number with equal probability. From the attacker’s point of view, although the attacker
can observe a cache eviction, he has no idea which cache line was accessed by the victim.

69

Below we show that the proposed cache meets this condition. Given a cache miss that
causes an eviction that leaks information, the following cases need to be considered.

1) The miss is an index miss. According to Figure 4-4 (4th column), a random cache
line R is selected for eviction with equal probability. In other words, for any
victim’s access that would cause an eviction, all cache lines have the same
probability to be evicted, i.e., jjiijPijP  ,,)|()|(.

2) The miss is a tag miss that involves protected cache lines. As shown in Figure 4-4
(3rd column), the line to be evicted is also randomly selected with equal
probability, i.e., jjiijPijP  ,,)|()|(.

Clearly, the proposed randomization mechanism satisfies equation (4.3), and thus
achieves zero channel capacity.

4.4 Additional Benefits

Fault tolerance: Memory-to-cache remapping is a common technique used in fault-
tolerant cache design. In traditional caches, a memory block mapped to a faulty line/set is
statically remapped to another good line/set [285-287]. Such schemes increase the
number of conflict misses since the remapped cache line/set is now shared by more
memory addresses. They also increase the number of capacity misses since the faulty
lines reduce cache capacity. The proposed cache architecture can provide fault tolerance
in a similar manner using remapping, but with better performance. As shown in section
4.3.2, due to the dynamic memory-to-cache mapping of our Newcache architecture, a
cache of size s with p faulty cache lines is equivalent to a cache of size s-p, which has the
same conflict miss rate as shown by (4.1). In other words, faulty cache lines in our
proposed cache only increase capacity misses, but not conflict misses.

Hot-spot mitigation: Due to spatial and temporal locality, the references to a small
number of cache lines account for a majority of the total cache references. The more
frequently accessed cache lines generate more heat, causing hot spots. Such unevenly
distributed cache line accesses however are mostly avoided in our proposed Newcache.
The SecRAND replacement algorithm maps memory blocks to randomly selected
physical cache lines, which avoids clustering of frequently accessed cache lines.

Optimization for power efficiency: With the ability of mapping memory blocks to
arbitrary physical cache lines, our Newcache architecture can also facilitate low power
design. For example, by adaptively turning off cache lines based on a program’s working
set, the power efficiency of the cache can be further improved with minimal impact on
performance. An analysis similar to that in the discussion of fault tolerance can show that
turning off cache lines in the proposed cache will cause fewer additional cache misses
than in traditional caches.

Benefits for cache partitioning and locking: In traditional caches such as set-associative
caches, cache partitioning is not trivial and has many restrictions [269]. A set-associative
cache can be partitioned in two ways: horizontal partitioning and vertical partitioning.

70

Horizontal partitioning divides cache sets into subgroups, each of which forms a partition.
One issue with this scheme is that the number of cache sets in each partition has to be a
power of 2. This severely limits the flexibility of choosing a partition size. In addition,
the address decoder has to be redesigned so that it can be reconfigured to index different
numbers of cache sets. Vertical partitioning partitions cache “ways” (degrees of
associativity) into subgroups. As most caches have limited associativity, the number of
partitions can be very limited. In addition, the partitions have lower associativity than the
original cache, thus incurring higher conflict miss rates. Cache line locking is a more
flexible way to “partition” a cache, as in PLcache [10]. It however also suffers from
higher conflict miss rates. In a set-associative cache, the locked line(s) in a cache set
reduce the effective associativity of the set, thus incurring more conflict misses. In
contrast, as shown in section 4.2, our Newcache does not have restrictions on the number
of physical cache lines in a cache. Therefore cache partitioning and locking mechanisms
built upon our proposed cache has the highest flexibility in allocating cache lines to a
partition. Moreover, as shown in the discussion of fault tolerance, partitioning a cache
incurs fewer additional cache misses in our Newcache than in traditional caches, thus
providing better performance.

4.5 Summary

The presence of caches alleviates the increasingly severe memory wall problem, enabling
high performance. It however introduces security problems, causing information leakage
and leading to cache-based side channel attacks. As the information leakage is due to the
inherent cache behavior – cache hits and misses, it is hard to eliminate without
compromising performance.

Chapters 3 and 4 aim to identify the root causes of cache attacks and their impact on
cache designs, understand the proper roles that software and hardware can play in solving
the problem, and propose effective solutions that can achieve security without
compromising other design goals such as performance and power efficiency. Our analysis
shows that each of cache hits and cache misses can cause information-leaking
interference and have different implications on cache design. We also found that the
strengths of software countermeasures and hardware countermeasures are complementary:
Software can be designed to avoid hit-based interference, but has no control over cache
evictions which cause miss-based interference. Hardware can be designed to avoid miss-
based interference, but cannot prevent hit-based interference without losing the
performance provided by caching.

We then described three cache architectures that can mitigate cache side channel
attacks: the PLcache, the RPcache and the Newcache. They are based on two general
approaches for hardware mechanisms that mitigate information leakage in caches. The
first approach aims to eliminate cache interference whereas the second approach allows
interference but removes information leakage through randomization. The PLcache is a
realization of the first approach. It provides cache line locking mechanisms which
prevent undesirable cache line evictions, thus achieving security. Compared to simple
static cache partitioning, the PLcache achieves partitioning via locking, which is more
flexible and reduces cache underutilization. The RPcache is based on randomization. It

71

imposes minimal restrictions on normal cache behavior and introduces little performance
impact. The randomization technique used by RPcache can achieve provable security,
based on information theoretic arguments. The experimental evaluations show that the
proposed cache designs can achieve security with low hardware cost, causing little
performance impact.

Finally, we described our Newcache solution, which is a novel cache architecture that
can achieve security while providing even higher performance and power efficiency than
traditional caches. It uses the randomization approach like RPcache with a novel dynamic
memory-to-cache remapping, longer index bits than required by the physical cache size,
and a random replacement algorithm. Newcache achieves the low access time and low
power advantages of Direct-mapped caches and the low miss-rates of set-associative
caches. In addition, Newcache achieves the security of leak-free operation against
software cache-based side-channel attacks. Furthermore, our Newcache architecture can
improve the performance when providing fault tolerance, hot-spot avoidance and cache
partitioning or cache locking.

Appendix 4

In this analysis, we consider three cache types, our proposed Newcache, DM and FA, as
explained in Table 4-4. We assume LRU replacement policy for FA caches and
Newcache for the ease of analytical analysis. RAND and SecRAND algorithm should
lead to similar properties in a statisitcal sense since they statisically approximate LRU:
even though each cache line can be evicted with equal probability in each individual
cache miss, statistically the more frequently accessed lines have higher probability of
residing in the cache, and a cache line residing in the cache without being accessed for a
long time has a higher probability of being evicted.

Table 4-4: Caches considered

Caches
Considered:

Description

Newcache of
size s

our Newcache, with more index bits referring to a larger Logical Direct
Mapped cache than the size of the physical cache (for simplicity we assume
s=2n)

DM cache of
size 2n+k

Direct Mapped cache (which is the LDM cache in Fig. 4-1).
The physical cache of the proposed architecture holds a subset of the lines
in the LDM cache.

FA caches of
sizes 2n

Fully Associative cache (for calculation of capacity misses)

72

Proof of the upper bound (4.1):
The proof of the upper bound is based on three facts. We first define the terms that will
be used. The reuse distance d is the number of distinct block addresses between two
consecutive appearances of the same block address. Compulsory misses are those due to
the first access of the data and have a resue distance d = . Capacity misses are those due
to insufficient cache capacity. In a cache with m blocks, a miss is a capacity miss if the
block address has a reuse distance d > m. Conflict misses are those that are neither
compulsory misses nor capacity misses, i.e., d  m.

Fact 1: An index miss in the proposed Newcache is either a compulsory miss or a
capacity miss but the opposite is not necessarily true.

Proof: In an index miss, the index of the address is not found in the LNregs, which
means that this index either never appeared before, or there were more than 2n distinct
indices since the last appearance of the current index. In other words, the reuse distance
of the address is greater than 2n, and hence an index miss is always a capacity miss or a
compulsory miss. On the other hand, a capacity miss or a compulsory miss is not
necessarily an index miss. For example, at the first time an address is accessed, the same
index may already exist in one LNreg due to a previous access to another address with
the same index, and hence leads to a tag miss. This proves Fact 1.

Fact 2: A conflict miss is always a tag miss in Newcache but a tag miss is not necessarily
a conflict miss.This is indeed the contraposition of Fact 1.

Fact 3: Considering the misses that occur in the cache architectures we examined, the
following relationship holds:

 Miss(Newcache,2n)  Miss(DM,2n+k) U Miss(FA,2n) (i)
CompulsoryMiss U CapacityMiss(2n+k)  Miss(DM,2n+k) ∩ Miss(FA,2n) (ii)

where Miss(Arch, Size) denotes the set of misses in a cache of type “Arch” with a
capacity of “Size”.

Proof: In the proposed cache, the index misses are always misses in the FA cache, by
Fact 1. The tag misses are always misses in the LDM cache since whenever an index
conflict occurs in the physical cache it must occur in the LDM cache. This proves (i). To
prove (ii), consider the compulsory misses and capacity misses in the LDM cache. They
are first a subset of Miss(DM,2n+k) that includes all misses of the LDM cache. Also, since
they have reuse distances d > 2n+k, they must also be misses in a FA cache of size 2n. In
other words, they belong to Miss(DM,2n+k) ∩ Miss(FA,2n).
With (i) and (ii), we have

|Miss(Newcache,2n)|
  |Miss(DM,2n+k)| + |Miss(FA,2n)| - |Miss(DM,2n+k) ∩ Miss(FA,2n)|
  |Miss(FA,2n)|+|Miss(DM,2n+k)| - |CompulsoryMissUCapacityMiss(2n+k)|
 = |Miss(FA,2n)| + |ConflictMiss(DM,2n+k)|
 = |CompulsoryMiss| + |CapacityMiss(2n)| + |ConflictMiss(DM,2n+k)| □

73

Proof of the lower bound (4.2)

As mentioned earlier in section 4.x, at any time the real physical cache stores a subset of
the cache lines in the conceptual LDM cache. Therefore, given an arbitrary memory
address, if it hits in the physical cache, it must also hit in the LDM cache. On the other
hand, if it hits in the LDM cache, it may not necessarily hit in the physical cache – it will
miss if the line being accessed in the LDM cache is not yet mapped into the physical
cache. We therefore have |Miss(Newcache,2n)|  |Miss(DM,2n+k)|. On the other hand, The
proposed cache should have higher miss rate than the fully associative cache of the same
size since it has conflict misses that the fully associative cache does not have, i.e.,
|Miss(Newcache,2n)|  |Miss(FA,2n)|. □

74

Chapter 5

Fast Covert Channels in Microprocessors

5.1 Introduction

Over the last few decades, modern processor architectures have evolved dramatically and
become very complicated. Numerous new features were introduced, which can lead to
various forms of information leakage. Theoretically, all these information mechanisms –
including leakage by resource use and leakage by event reporting – can be exploited to
construct covert channels. In practice, due to high noise level and/or weak control of the
sender and receiver over the channel media, many of these channels are not very practical.
This chapter focuses on some very dangerous channels. In our study, we have identified
extremely fast covert channels in processors – orders of magnitude faster than traditional
covert channels. These channels are analyzed and potential countermeasures are
discussed.

In particular, this chapter discusses Simultaneous Multi-Threading (SMT) based and
control speculation based covert channels. SMT allows multiple threads to
simultaneously execute on the same processor and closely interact with each other,
leading to efficient symbol transmission and channel synchronization. SMT can facilitate
covert channels exploiting various on-chip resources in general. Control speculation in
IA-64 processors is a reporting mechanism that allows the direct observation of a variety
of architectural and micro-architectural events. It provides a convenient and noiseless
observation mechanism and therefore improves the communication quality.

5.2 SMT-based Covert Channels

Simultaneous Multi-Threading (SMT) is a processor architecture approach that allows
multiple threads to simultaneously execute on the same hardware chip, sharing and
competing for processor resources [288-290]. The main purpose of SMT is to maximize
the use of on-chip resources and therefore to boost CPU performance with low hardware
cost. In a SMT processor, almost all on-chip resources are shared, including the function
units, physical register files, the whole cache system, the execution pipeline as well as

75

various buffers and queues. Some commercial processors have implemented SMT, e.g.,
Intel’s processors with HyperThreading technology [289].

SMT provides an ideal environment for the sender and the receiver to interact with
each other. In most traditional covert channels, the operations of the sender and the
receiver are serialized. The sender and receiver take turns to execute, which normally
involves expensive context switches (since the sender and the receiver belong to different
security domains, context switches between domains usually take a much longer time
than normal context switches do). In other words, the transmission of each symbol would
incur two context switches and therefore the highest possible information rate of such
channels would not exceed half of the frequency that the system can perform context
switches even if the symbol transmission itself takes zero time. In contrast, SMT allows
parallel execution of the sender and the receiver and completely avoids the need for
context switches. Furthermore, compared with other covert channels where the sender
and receiver can run in parallel (e.g., in multi-processor systems), the resources being
exploited in SMT processors are manipulated in a much finer-grained and more tightly
coupled manner. For example, embedding information into and extracting information
from shared on-chip resources such as caches takes much less time than exploiting high-
level system resources such as file systems or even hardware resources that are off-chip,
e.g., the main memory. Covert channels in SMT therefore can achieve significantly
higher information rates than traditional covert channels do.

Among the on-chip resources that are exploitable, some are extremely easy to use and
enable very high information rates. For example, due to the large amount of information
that can be embedded into caches [121], the cache-based channel in SMT is reported to
be extremely fast – orders of magnitude faster than traditional cache channels. In our
study, we identified another very fast channel – the functional unit based covert channel
(the SMT/FU channel). Below we describe the exploit scenario of the SMT/FU channel
and discuss possible countermeasures for the SMT/FU channel as well as other SMT-
based channels.

5.2.1 Exploiting Scenario of SMT/FU Channels

In SMT processors, in each cycle, the function units are dynamically allocated to threads
currently running on the chip. This allows one thread to affect another thread’s execution
in a very fine-grained manner. For example, if one thread tries to use all the ALUs
available on the chip for a few cycles, other threads may be slowed down. Such a tightly
coupled execution environment for multitasking systems is ideal for covert channels,
especially the covert timing channels.

Assume that the sender S and receiver R are two processes that belong to different
security domains, e.g., S is a HIGH security process and R is a LOW security process in a
MLS system. Figure 5.1 shows the pseudo code of S and R. For descriptive clarity, we
assume that the system only contains these two threads (some processors indeed support
only two simultaneous threads, e.g., a class of Intel Pentium 4 HyperThreading
processors). The effects of other threads on this channel will be discussed in the next
section. We assume that S utilizes the integer multiplier as the shared resource to
modulate R’s behavior. R senses the modulated signal by comparing its progression with
a timer T. To send a bit ‘1’, S calls MULTIPLY() to execute a fixed number of multiply
instructions, e.g., 100 to 1000 instructions, which tries to use up all the multipliers. It

76

calls NULL() which executes several hundreds or thousands of nop instructions to send a
bit ‘0’. To sense S’s behavior, R executes multiply instructions at a constant rate by
calling RUN(). Therefore when S sends ‘1’s, R will be slowed down. Information can be
recovered by measuring the time it will take for R to execute a fixed number of multiply
instructions. To sense the slowdown more accurately, R can utilize an over-sampling
technique. In other words, R performs multiple measurements for each symbol that S
sends, i.e., R checks timer T more frequently than necessary, e.g., once per 10-100
instructions.

As a demonstration, a SMT/FU channel was implemented on a Pentium 4 HT
processor, which supports two simultaneous threads. Figure 5.2 shows an example of the
observed waveform, which plots the variation of time in CPU cycles that are needed by
the receiver to execute a certain amount of operations, e.g., the RUN() function in Figure
5-1. For illustration purpose, the bit rate is slowed down (~100Kbits per second) during
the generation of the figure to achieve clearer waveforms. In practice, the transmission
rate can be much higher.

1000

1500

2000

2500

3000

1 101 201 301

Receiver Time

S
ig

n
a

l A
m

p
lit

u
d

e
 (

c
y

c
le

)

Figure 5.2. SMT/FU channel: observed signal waveform

int bit;
…
…
do {
 bit = get_bit();
 if (bit == 1)
 MULTIPLY();
 else
 NULL();
} while (!TX_end());
…

int time, dt;
…
…
time = 0;
do {
 dt = time;
 RUN();
 time = get_time();
 STORE(time-dt);
} while (!RX_end());
…

Sender S Receiver R

Figure 5.1. Pseudo code for SMT/FU channel

77

The SMT/FU channel is a very fast covert channel. The competition for resources is
performed in each cycle, unlike most known covert channels which rely on system level
operations for resource management. The system level operations are at a much coarser
time granularity than a processor cycle. Also, the SMT based channel is inherently easy
to synchronize. This is because the processor clock is the global clock for both the sender
and the receiver. In practice, the SMT/FU channel can easily achieve an information rate
on the order of megabits per second.

In SMT processors that support more than two threads, the threads other than the
sender and the receiver also compete for the shared functional units, thus introducing
noise into the channel. However, the SMT/FU channel can still be effective in that:

 Coding techniques such as the error-correcting code which are commonly used
in communications channels can also be applied here to overcome errors due to
noise and ensure reliable communication.

 The sender and the receiver can minimize the “noise” from other threads. They
can choose to utilize the functional units that are usually unused by other
threads. For example, in a database system, most services are integer
applications. The floating point units therefore are the ideal resources that can
be exploited for covert communication.

 The load of a system is often not uniform. When the system load is light, it is
very likely that only the sender and the receiver are ready threads in the system.
The security of the system can be compromised as long as the receiver gets
chances to receive information from the sender, especially when the covert
channel is fast.

5.2.2 A Practical Implementation

This section presents a practical implementation of the SMT/FU channel on a 2.8GHz
Pentium 4 HT processor. Two implementation issues need to be considered for achieving
high information rate: the implementation of MULTIPLY(), NULL() and RUN() as
shown in Figure 5.1, and a synchronization scheme.

The design goal of MULTIPLY(), NULL() and RUN() is to make the interference
between MULTIPLY() and RUN() as strong as possible and the interference between
NULL() and RUN() as light as possible, and at the same time the interference has small
variations – less noise in timing measurements. There are two ways for MULTIPLY()
and RUN() to make use of imul instructions to contend for the integer multipliers: 1)
using independent imul instructions; or 2) using a chain of dependent imul instructions.
We tested all four possible combinations and found that a MULTIPLY() implemented
with dependent imul chain and a RUN() implemented with independent imul
instructions give the best result. The implementation of NULL() has even more options.
In addition to nop instructions, any instruction that has little impact on RUN()’s
execution can be used to implement NULL(). We tested “nop”, “xchg %ebx, %ebx”,
“pause”, and “mov (%ebp), %eax” instructions which are known as equivalent to
nop instructions. Our experiments show that the implementation with mov instructions
gives the best result. Figure 5.3 shows the implementation code of the three functions.

78

The bit synchronization can be achieved with the common time stamp counter
available in most Intel x86 processors. Both S and R can read the time stamp counter
using rdtsc instructions and learn the current time in processor cycles. In our
implementation, S and R agree in advance that each bit is transmitted over a time interval
of 1024 cycles, starting from time “xxx…xx0000000000” to “xxx…xx1111111111”. To
send a bit, S reads the timer and starts to run a loop of MULTIPLY() or NULL(),
depending on the new bit that should be sent, when he sees the start of a new
transmission interval. S stops the current transmission until he observes the start of the
next transmission interval and starts the transmission of the next bit. To receive the
transmitted bits, R runs a loop of RUN() and keeps observing the timer. Whenever he
sees that the boundary of a transmission interval is passed, he records the current received
bit and starts to receive the next bit. If for some reason S observes a skip of one or more
transmission intervals, S skips the corresponding number of bits so that the number of
bits sent is always correct. Similarly, R skips a proper number of bits if he observes a
skip of some transmission intervals. In this way, S and R are always synchronized. Such a
channel is a binary erasure channel [271] since the locations of the corrupted symbols
(the skipped transmission intervals) are known. The channel capacity of this channel is
(1-Pe) where Pe is the probability of symbol corruption. In our experiments, we did not
see any skip of transmission intervals before a context switch occurs. Also, the noise in
the received signal is very low.

In this implementation, since it takes 1024 cycles to transmit a bit and processor clock
rate is 2.8GHz, the information rate is 2.8x109/10242.7Mbps. The code can be further
optimized and achieve a higher information rate.

5.2.3 Countermeasures of SMT-based Channels

SMT-based channels utilize the parallel execution of the sender and the receiver threads
and the tightly shared on-chip resources. One can attack either one of these two points to
mitigate the problem.

Software/system level approaches: As the OS scheduler controls when a thread is able to
run on which processor, it is natural to mitigate the SMT-based channels at the system
level by disallowing parallel execution of the sender and the receiver threads. The
following approaches can be applied depending on needs:

MULTIPLY()

…
asm volatile (“ \
 imul $1,%ecx; \
 imul $1,%ecx; \
 …
 …
 imul $1,%ecx; \
“);
…

Figure 5.3. Implementation code of MULTIPLY(), NULL() and RUN()

NULL()

…
asm volatile (“ \
 mov (%ebp),%eax; \
 mov (%ebp),%eax; \
 …
 …
 mov (%ebp),%eax; \
 “);
…

RUN()

…
asm volatile (“ \

imul $1, %eax, %ecx; \
 imul $1, %eax, %ecx; \
 …

…
 imul $1, %eax, %ecx; \
“);
…

79

 Disabling SMT: The simplest and most straight forward mitigation technique is
to disable the SMT feature of a processor. This can be done either at the
hardware level by choosing non-SMT mode (e.g., in Intel’s HT processors), or
at the software level by the scheduler which at any time only schedules one
threads on the processor. The advantage of this approach is its simplicity and
low cost in implementation. For example, the HT feature of Intel processors can
be disabled in BIOS, i.e., neither the operating system software nor application
software need to be modified to support this mitigation method. It however may
cause performance degradation due to the underutilization of processor
resources. The degree of performance degradation depends highly on the type of
the workloads of the system. According to previous work on the evaluation of
SMT implementation of IBM Power5 [290], disabling SMT may lead to a
performance loss of up to ~40% in some cases while achieving a performance
gain of up to ~10% in some other cases. Similar observations were also found in
Intel’s HT implementation. Disabling SMT therefore may be an acceptable
solution in some systems while in other systems a better solution is needed.

 Advanced scheduling schemes: In the literature, Lattice scheduling [68] was
proposed to reduce the capacity of traditional covert channels in a system. With
lattice scheduling, the processes of the same security class tend to be scheduled
together and the transitions between different classes are minimized. This slows
down the transmission procedure of the covert channel. A similar idea can also
be applied here to mitigate SMT-based covert channels. The scheduler always
schedule processes of the same security class to run simultaneously on the
processor chip. When there is no other process of the same class ready to run,
only the current process is scheduled to execute. Such an advanced scheduling
scheme would minimize the waste of resource utilization and lead to better
performance.

Processor level approaches: In addition to disallowing parallel execution of the sender
and receiver threads, SMT-based covert channels can be mitigated by eliminating
information leakage due to resource sharing. A few alternatives of this approach are listed
below:

 Resource partitioning: The interference between simultaneous threads can be
eliminated by partitioning the originally shared resources and allocating
different partitions to different threads. In processors, resources can be designed
to have a “partitioned mode”, and when two threads of different security classes
are executing in parallel, the resources are partitioned rather than shared. This
may require new architecture design, e.g., the partitioned cache or PLcache
(described in Chapter 3), or modifications of existing features, e.g., the fairness
control logic available in the processor.

 Non-interference sharing policy: If the receiver thread always has higher
priority in contending resources, i.e., he always wins in competing for resources,
he will not be able to sense the existence of the sender thread. We refer to such
a resource sharing policy as the non-interference policy. Such a policy however

80

contradicts the concept of fairness, and may not be a practical solution in many
systems.

 Randomization: Information leakage due to resource sharing can also be
mitigated via randomization. Unlike resource partitioning, resource sharing is
still allowed but the interference that causes information leakage is randomized
such that it carries no useful information. A randomization based approach
therefore can avoid resource underutilization due to partitioning, and can
achieve good performance. Examples of this are the cache interference
randomization in the RPcache and the Newcache (described in Chapters 3 and
4). Randomization techniques, however, are not generally applicable. For
example, randomly allocating function units to different threads will not get
better performance and security when compared to static partitioning of
function unit resources.

In addition to the above mitigation techniques that avoid or reduce resource sharing,
the channels can also be mitigated by making the signal observations noisy. Since most
covert channels in processors take advantage of the high resolution on-chip time stamp
counter, making the timer unavailable to threads when necessary or reducing the
resolution of the timer can be a generally effective way to reduce the information rate of
covert channels. Most modern processors provide a way to control how the on-chip timer
is accessed. For example, in Intel x86 processors, the operating system can disallow a
user-level program to access the on-chip time stamp counter by setting the time stamp
disable (TSD) bit in register CR4. Providing a low resolution timer can be achieved with
a software method for an existing processor, or with a hardware method that requires
modification of current processor design. In the first case, the operating system can set
the TSD bit and force a user-level program to learn time through an API call which
provides the low resolution time. In the second case, a simple implementation of a low
resolution timer is to return the value of the on-chip time stamp counter with a proper
number of LSB bits cleared.

5.3 Covert Channels due to Control Speculation in IA-64

To hide the long latency that load instructions may introduce, control speculation in IA-
64 allows a load instruction (ld.s) to execute speculatively [291] – this means that the
compiler can hoist a load instruction before its controlling conditional branch instruction.
Since the load is executed without knowing if it should actually be executed (depending
on the result of a conditional branch instruction that precedes it), it may cause an
exception that should not occur. This exception thus is deferred and not triggered during
the execution of the load instruction, and will be handled at a later time when it is known
whether the exception should occur or not. In IA-64, the following mechanism is
implemented to allow deferral of exceptions. As shown in Figure 5.4, each general
purpose register is extended with a one-bit flag called the NaT (Not a Thing) bit. If the
speculative load instruction would cause an exception, the NaT bit of the target register
will be set. At a later time, this bit is checked, e.g., by using the chk.s instruction, and
the recovery code will be executed if necessary.

81

Figure 5.5 shows a segment of sample code that utilizes control speculation. In a
non-speculative ISA, the load instruction can only be scheduled after the conditional
branch instruction, while in IA-64 with control speculation, it can be moved far ahead of
the branch. The ld.s is a speculative load with deferred exceptions. The chk.s is a
check speculation instruction, which checks the NaT bit of register R1, and triggers any
exceptions at that point if they should occur.

5.3.1 Exploiting Scenario

The key idea of control speculation is to defer the exception and allow the program itself
to handle the exception. In other words, it makes the exception visible to the program. In
IA-64, this is visible through the NaT bit. In practice, TLB misses or TLB access bit
violations are typical examples of ld.s exceptions which can be deferred [292]. In
addition to the deferral of exceptional conditions, some other events, e.g., long latency
cache misses, may be deferred automatically by hardware based on implementation-
dependent criteria. Such deferral is referred to as spontaneous deferral ([291] vol.2
pp.2:88).

The above mechanism inadvertently opens a covert channel in the system. A sender
can encode information by making a change in the system’s status, e.g., evicting a page
translation of the receiver from the TLB. The receiver can then observe the change by
using ld.s instructions which will detect the change and set the value of the NaT
registers accordingly. Below we assume an IA-64 processor that supports spontaneous
deferral of L3 cache misses to illustrate the exploiting scenario. Note that although the
current generation of IA-64 processors does not support spontaneous deferral of long
latency cache misses, future generations may implement this as indicated in [291] vol.2
pp.2:88, particularly due to the increasingly larger speed gap between the fast processor
and slow memory. We wish to emphasize the severity of this channel before real damage
is done.

NaT General-purpose register

0 63 64

Figure 5.4. 65-bit general-purpose register in IA-64

Non-speculative ISA

…
…
conditional branch
ld R1 <- [x]

IA-64 with control speculation

ld.s R1 <- [x]
…
…
conditional branch
chk.s R1

Figure 5.5. Sample code for IA-64 control speculation

82

Assume that the processor has an N-way set-associative L3 cache with M cache sets
in each way. Without loss of generality, Figure 5-6 shows a simplified example where
N=2 and M=4. Assume that the receiver R accesses a large continuous region of memory
before it relinquishes the CPU such that the whole cache is filled with R’s memory. We
also assume that only the receiver R and the sender S exist in the system and S will then
gain the CPU. S can then selectively replace the cache lines with its own memory by
accessing its memory at certain addresses. For example, S can access 0x………0 and
0x………1 to replace both cache lines in the first cache set with its own data. Assume that
S relinquishes the CPU after it does this and R runs again. R then tries to load 0x………0,
0x………2, 0x………4 and 0x………6 to R1, R2, R3 and R4 respectively, using ld.s
instruction. Because the first cache set now only contains S’s data, a miss will occur
when R accesses 0x………0. Therefore the NaT bit of R1 will be set. Since all other cache
sets still keep R’s memory, the other 3 loads of R will hit on the cache and the NaT bits
of R2, R3 and R4 will remain 0. Using the tnat (Test NaT) instruction, the NaT bits can
be moved to predicate registers and can then be moved to general purpose registers using
mov instructions. In this way R receives a string of “1000” from S.

In summary, the following operations are required to set up the covert channel.
Assume that initially the cache is filled with R’s memory blocks.

S’s operations: To encode a bit ‘1’ at a cache set i, S manages to access memory at
proper addresses such that all cache lines in cache set i are replaced by S’s memory
blocks. To encode a bit ‘0’ at a cache set i, S leaves the cache set unchanged. After all
cache sets have been encoded, S relinquishes the CPU.
R’s operations: R first decodes the bits that S encoded at each cache set by using ld.s
instructions to access a continuous region of memory. If a bit ‘1’ is encoded at a cache set,
the corresponding ld.s instructions will set the NaT bits of the target registers. R then
uses tnat and mov instructions to move the decoded bits to general purpose registers.
After all bits have been decoded, R manages to fill the whole cache with its memory
again using non-speculative memory access instructions. R then relinquishes the CPU.

R

Set# 0 1 2 3

Way0

Way1

L3 Cache

R R R

R R R R

S

Set#

Way0

Way1

L3 Cache

R R R

S R R R

Encode

Figure 5.6. Encoding in L3 cache (N=2-way associativity, M=4 sets)

Received bits: 1 0 0 0

R fills the cache
with its own
memory blocks

S encodes a bit ‘1’ at set
0 by replacing all cache
lines in set 0

0 1 2 3

83

In this way each time S can send a “packet” of M bits of information to R. In the
above discussion, we assumed that S and R are the only threads in the system. When
other threads exist, including the OS itself, they may also “pollute” the cache by
replacing cache lines with their own memory contents. Furthermore, we ignored the
cache line replacements caused by S and R’s own codes. All these issues will introduce
“noise” to the channel. However, as the L3 cache usually has high associativity, it is
inherently resistant to such noise. For example, the memory accesses of other threads
may cause some cache lines of a cache set to be replaced. However, at a cache set, unless
all cache lines are replaced in the cache set, at least one of R’s ld.s instructions
accessing that cache set will still hit in the cache. If during the decoding of the bit
encoded in a cache set, a 1 is decoded only if all R’s accesses to the cache set miss, the
effect of evictions causing noise is minimized. In a cache with high associativity, the
probability that a bit is flipped, i.e., all cache lines in a cache set are replaced, is low.
Furthermore, error-correcting code can also be applied here, which can provide further
protection against noise.

Another assumption we made in the discussion is that S and R are scheduled on the
CPU one after the other. In other words, each “packet” sent by S will be received by R.
However, in a real system, R may be scheduled on the CPU twice without S being
scheduled in between. Then R will receive one extra “packet”. It is also possible that S is
scheduled on the CPU twice without R being scheduled in between. In this case a
“packet” is dropped. Fortunately since usually the M parameter of an L3 cache is
relatively large, a few bits in the packet can be encoded as a sequence number. Using this
method, both the “inserted” packets and the packets that are dropped out can be detected
and therefore the synchronization is not a problem. Such a channel is indeed an erasure
channel [271] which is well known in communication theory. A formal discussion on the
impact of the asynchronism of S and R will be presented in chapter 6.

5.3.2 Information Rate Estimation

In this section we estimate the peak information rate of the speculation-based covert
channel, i.e., we assume that S and R are scheduled one after the other and they are the
only two threads ready to run, e.g., when the load of the system is light. The effect of the
scheduling algorithm can be estimated separately, as shown in chapter 6.

In a highly associative cache, using all cache lines in a cache set to encode a bit may
be overkill since the probability of the “noise” causing all cache lines in a set to be
evicted is very low. To avoid unnecessarily high overhead for bit encoding, we assume
that L out of N cache lines in a cache set are exploited by S. The value of L can be
determined by examining the average conflict miss rate of programs. For example, it has
been observed in the past that given a fixed cache capacity, increasing the cache
associativity to above a certain number (e.g., 4-8) does not help much to reduce conflict
misses, i.e., the probability that a program occupies more than that number of cache lines
in a cache set is low. We therefore assume that L is no greater than 8. We also ignore the
bits that are encoded as the sequence number. Let D denote the number of cycles needed
to replace a cache line. Then to send a packet, the number of cycles that S needs can be
calculated as:

DLbST )((5.1)

84

where b is the number of ‘1’s in the packet. To calculate the number of cycles needed by
R to receive a packet, three time components need to be considered: the time for
decoding a 1 bit, the time for decoding a 0 bit, and the time for refilling cache lines that
have been evicted. We assume that R performs cache miss detections and cache line
refilling in a single scan to save time. Since in modern high performance processors, the
time for accessing slow memory (to refill evicted cache lines) is usually overlapped with
the time for cache hits and cache probing, the time corresponding to cache accesses that
hit in the cache and the speculative loads that probe the cache for miss detection can
largely be hidden in the time that is spent in accessing main memory. We therefore make
an approximate estimation:

 DLbSTRT )()((5.2)

The peak information rate can then be calculated as [17]:

cTRTST

Mf
R

2)()(max 
 (5.3)

where Tc represents the cycles needed for process context switch and f is the operating
frequency of the processor.

To have a sense of the information rate in real systems, we consider the following
system: the L3 cache is 16-way associative and 2MB in size with 128-byte cache lines.
Therefore N=16 and M = 1024. Assume that L = 4 and on average half of the bits in a
packet is ‘1’s, i.e., b = M/2 = 512. D is estimated as 200 cycles which is a normal
memory access delay. We assume that on average context switch time Tc is around 10000
cycles and the processor operates at 2GHz. With these parameters we can calculate Rmax
as:

bpsR 6
9

max 104.2
10000220045122004512

1021024







5.3.3 Countermeasures

A straight forward method to block the speculation based channels is to disallow a
process to handle exceptions by itself. This requires that the processor provide
mechanisms that allow the OS to control the ability of processes on exception handling.
Fortunately, the existing IA-64 processors (i.e., Intel’s Itanium processors) allow the OS
to switch the processor mode which deals with exceptions in different ways. For example,
the Itanium processor can be configured in a no-recovery mode which only defers fatal
exception conditions. In other words, the application code will not be able to handle most
exceptions, including the TLB/cache misses. A drawback of this countermeasure is that it
may introduce considerable performance degradation. Compilers that make heavy use of
speculations to expose more parallelism [293-294] may need to handle exceptions
frequently and therefore rely on light-weight exception handling mechanisms to avoid
high performance penalty. Having the OS handle exceptions would significantly increase
the exception handling overhead. A possible way to circumvent this problem is to
augment the processor with the finer-grained control of the exception handling mode.
Instead of having a single switch that controls the entire chip, if each hardware context,

85

representing a process or a thread, is tagged with its capability in handling exceptions and
the hardware reports exceptions differently based on the tag, the OS can avoid the low
performance no-recovery mode whenever possible. For example, in a Multi-Level
Security (MLS) system where each process has a security level, e.g., a High security level
or a Low security level, to prevent information from being exposed to the Low security
processes which are untrusted, the OS may assign no-recovery mode only to the Low
security processes. The OS can optimize performance even further, by tracking the
system resource usage. For example, if at a moment all processes that are actively sharing
the system resources belong to the same security level or security domain, there is no
need to worry about information leakage between these processes, and the OS can allow
all processes to enjoy the light-weight exception handling mechanism. The OS needs to
selectively assign no-recovery mode to processes when processes from different security
levels or domains are active at the same time.

Note that as mentioned in chapter 1, control speculation is a mechanism that causes
leakage by event reporting, i.e., it does not produce the events that leak information but
only exposes the events that were originally not visible. For a given channel medium,
information can be extracted using different observation mechanisms. For example,
although the information embedded in the L3 cache can be observed using control
speculation, disabling control speculation does not really close the channel – the
information can also be observed based on cache access timing. Therefore although
closing the observation mechanisms is necessary – it makes it harder for the observer to
extract information from the channel medium, it is only part of the efforts that eventually
close the covert channels.

5.4 Remarks

Compared with traditional covert channels, the new covert channels in processors that we
described are extremely fast. Table 5.1 shows a comparison of the information rates of
new covert channels in processors and traditional OS-level and hardware-level covert
channels. Three traditional covert channels are included for comparison. The bus
contention channel [61] exploits the shared bus in multiprocessor systems. The inode
table channel encodes a bit by making the inode table either full or not full. The upgraded
dir channel uses the existence of a folder to indicate if a 1 or a 0 is sent.

Table 5.1. Information rate1 comparison of covert channels

Architectural level covert channels Traditional covert channels

SMT/Cache SMT/FU
Control
Spec.

Bus-contention
channel

Inode Table
Channel

Upgraded Dir
Channel

~3.2M2 ~2.7M ~2.4M ~1K ~50 ~0.5

 1 in bps (bits per second).
 2 Data obtained from [121] on a 2.8GHz Pentium 4 HT processor.

Note that the information rates of traditional covert channels were obtained in computers
in 1990’s and the same channel in modern computers should be much faster. However,

86

even if we assume a linear increase in such traditional covert channel rates with a 100X
increase in processor clock rate, the processor-based covert channels are still orders of
magnitude faster than the traditional hardware-based (bus contention channel) as well as
OS-based covert channels.

Also note that although this chapter mainly focuses on covert channels, the same
information leakage mechanisms that lead to fast covert channels may be exploited in
side channel attacks as well. For example, in the access-driven cache based side channel
attacks, the attacker currently relies on timing measurement to distinguish cache hits and
cache misses, which is noisy and not 100% accurate. If however in a processor the
control speculation mechanism allows the detection of long latency cache misses (e.g.,
via supporting spontaneous deferrals), the attacker would then be able to distinguish
cache hits and misses without any noise or errors, e.g., by using the same exploiting
method as described in section 5.3.1. This would greatly help improve the cache based
side channel attacks. In general, control speculation provides a reliable way for attackers
to collect information like various hardware level events that were previously invisible to
software, and hence may improve existing side channel attacks or even introduce new
attacks.

We also note that although the SMT/FU based channel is not as helpful as the control
speculation based channel in exposing information that would allow the inference of data
or address information of a program, it may still reveal information about the instruction
mix, e.g., helping the identification of different operations in crypto algorithms like
squaring operations versus table lookups, if these operations are significantly different in
terms of instruction mix.

5.5 Summary

This chapter presents our work on the identification and analysis of new fast covert
channels in processors. Two classes of covert channels are discussed, including the SMT-
based covert channels and the control speculation based covert channels. SMT is a
processor architectural feature that allows multiple threads to execute simultaneously on
the same chip, sharing and competing for most on-chip resources on a per cycle basis,
which maximizes the resource utilization. SMT allows the sender and the receiver of a
covert channel to run in parallel, avoiding bit transmission overhead due to expensive
context switches. At the same time, the tightly-coupled resource sharing in SMT
processors allows faster interaction between the sender and the receiver through resource
contention, i.e., information bits can be transmitted and received more quickly. These two
factors significantly increase the information rate of covert channels in SMT processors.
Another processor architectural feature that enables fast covert channels is control
speculation. Control speculation allows a program to handle various types of exception
events, as well as other events such as long latency cache misses, by itself, i.e., these
originally invisible events are now directly visible to the program. Control speculation
therefore provides a convenient and noiseless observation mechanism for covert channels.
To illustrate the severity of these two types of covert channels, two specific covert
channels are presented: the SMT/FU channel exploits the shared functional units (the
integer multipliers) and the control speculation based channel makes use of the L3 cache

87

as the channel media. The analysis and experiments show that these two channels can
achieve very high information rates – on the order of mega bits per second – which is
orders of magnitude faster than traditional covert channels. This chapter also discusses
possible software and hardware countermeasures for both classes of covert channels.

88

Chapter 6

On Covert Chanel Modeling and Analysis

6.1 Introduction

Despite decades of work in the area of covert channel modeling and analysis, there are
still some fundamental questions that have gone unanswered in the past. One of these is
about the classification of covert channels as storage channels versus timing channels.
While this classification was widely used in practice, there are covert channels that are
hard to classify. Researchers admitted that the difference between storage channels and
timing channels is unclear. In this chapter, we will present an abstract channel model
which helps improve the understanding of the nature of covert channels and clarify some
misconceptions. It can also help identify new channels.

Another question that this chapter will cover is about the capacity estimation of
covert channels. In the literature, covert channels are often modeled as certain forms of
communication channels, to which information theory can then be applied for calculating
channel capacities. There are also experimental methods that directly estimate the
channel bit transmission rate based on measured results as well as some best-case
assumptions. Both types of methods assume that the channels are synchronous or the
synchronization overhead is negligible. This assumption is valid in the sense that the goal
is to estimate the maximum attainable information rate over the channel. However, one
significant difference between covert channels and real communication channels is that
covert channels are not actually “channels” intended for communications. They are
typically not synchronous and the asynchronism is indeed an inherent property of covert
channels. To fully capture the properties of covert channels, the impact of asynchronous
nature on capacities also needs to be characterized. The existing capacity estimation
methods obviously can not capture the asynchronous aspect of covert channels due to
their assumption of synchronous models. In this chapter, we address several fundamental
questions that were not answered in the literature, which however allow us to fully
characterize covert channels in channel capacity estimations.

89

6.2 Storage Channel and Timing Channel Revisited

Intuitively, the key difference between covert storage channels and covert timing
channels is whether the channel exploits timing characteristics. This explanation however
is vague: the exact meaning of “exploiting timing characteristics” can hardly be defined
accurately. Indeed, the definition of “time” itself is vague. When the sender and the
receiver do not have access to time references, which is often the case in covert channels,
they have to derive their own view of time using other methods, e.g., via the observation
of some events. Their view of time may be totally different, and can be uncorrelated to
the real physical time. Such ambiguity has led to questioning of the classification in the
literature [26]. Some researchers even believed that there is indeed no difference between
these two types of covert channels [17]. Without a clear definition of storage channels
and timing channels, it would be impossible to answer questions such as “are all
storage/timing channels identified? Can all storage/timing channels be identified?”

Another reason that makes the classification of some covert channels hard is that such
channels exhibit characteristics of both. For example, in the disk arm channel described
in chapter 2, the information is embedded into the position of the disk arm, which is a
typical characteristic of storage channels, while the extraction of the information is by
comparing the completion timing of a few disk accesses.

In the subsequent sections, we will present an abstract model of covert channels,
which consists of two parts: 1) basic resources and mechanisms that allow information
leakage in processors as the components of a communication channel, and 2) a channel
use model. The channel use model addresses the issue with regard to the definition of
time and models the asynchronous nature of covert channels. We will then illustrate how
existing work can fit into this proposed model, with confusions clarified, and propose a
new categorization of covert channels.

6.2.1 Information Leaking Mechanisms in Processors

Since information leakage is a form of information transfer and distribution, it can be
considered as a communication problem. We model an information leakage channel as a
communication channel, as shown in Figure 6-1. The proposed channel consists of a
sender, a receiver, and the channel medium. The sender modulates information onto the
channel medium through a modulation mechanism, and the receiver extracts the
information from the medium through an observation mechanism.

Despite the similarity between the information leakage channel and a traditional
communication channel, there are several key differences. First, the sender in an
information leakage channel may not always transfer information on purpose. For
example, in side channel attacks, the sender is the victim that by no means wishes to
transmit information and the information is leaked out unintentionally. Second, unlike in
communication systems where the mechanisms for accessing the channel medium are
optimized for the sender and the receiver, in information leakage channels, the sender and
the receiver may not have much control on what mechanisms they can use to access the
channel medium, and the mechanisms (i.e., the modulation and observation mechanisms)
are not designed for communication and often not suitable for communication. The focus
of this work therefore is not how to design an efficient communication system, but what

90

modulation/observation mechanisms are available in a processor and how these
mechanisms can be exploited for information leakage.

Figure 6-1. An abstract channel model for information leakage

6.2.1.1 Types of Channel Mediums
The ways with which the sender encodes information into the channel medium and the
receiver extracts information from it, often depend on the channel medium’s properties.
The channel medium, i.e., the resources in processors, can be categorized as two types:

Stateful resources: A stateful resource is one where its use has effect on later uses of the
resource. For example, whether a memory access will hit or miss in caches is dependent
on previous memory accesses. Examples of stateful resources include all kinds of caches
such as data and instruction caches, TLBs, branch predictors as well as other components
with a memory effect.

Stateless resources: A stateless resource is one where each use is independent of previous
uses. For example, the use of buses and combinatorial functional units with no memory
has no effect on their later use.

6.2.1.2 Modulation Mechanisms and Observation Mechanisms
Modulation mechanisms allow the sender to modulate information on the channel
medium. The information can be modulated through temporal encoding or spatial
encoding. In temporal encoding, the information is encoded into the amount of time a
resource is used. For example, in a uniprocessor system, a process can modulate
information over its CPU time, e.g., by using a longer CPU time to indicate a 1 and a
shorter CPU time to indicate a 0. In spatial encoding, the information is expressed with
the spatial status of the resource. For instance, the sender can encode information into the
cache by selectively evicting cache lines. Figure 6-2 shows an example that encodes four
bits into a direct mapped cache with four cache lines. The receiver first manages to
initialize the cache state by loading his data into the cache to occupy all cache lines. The
sender then selectively evicts the receiver’s cache lines: the eviction of a cache line
means a 1 and no eviction means a 0. In this example, the encoded bits are 1011.

Similarly, the observation mechanisms may extract information by exploiting
temporal characteristics, or spatial characteristics of the resource. Temporal observation
mechanisms always involve timing measurements while spatial observation mechanisms
do not. A good example of the use of temporal observation mechanism is the detection of
cache misses. By using the rdtsc instruction (read timer) in x86 processors, a process

91

can measure the number of cycles it takes for a memory access to complete, which
indicates whether a cache hit or miss has occurred. A good example of spatial
observation mechanisms is the reporting mechanism mentioned in section 1.3.2. For
instance, in IA-64 processors that support control speculation, a process can directly learn
if a page fault has occurred by checking the value of a NaT (Not a Thing) register.

Figure 6-2. Spatially encoding four bits into a four-entry direct mapped cache

 The type of observation mechanism used to extract information can be independent
of the type of the modulation mechanism used to encode the information, i.e., spatially
encoded information may be extracted with both spatial and temporal observation
mechanisms, and temporal encoded information may be extracted with both temporal and
spatial observation mechanisms. For example, to extract a bit expressed by the presence
of a page in memory, a process can detect if an access to the page generates a page fault
by measuring the access delay – a temporal observation mechanism, or by checking the
value of a NaT register in an IA-64 processor – a spatial observation mechanism.

The modulation and observation mechanisms are closely related to the leakage by
resource use and the leakage by event reporting discussed in section 1.3.2. Indeed, the
mechanisms that leak information during resource use can always be used as modulation
mechanisms since they allow information about object values and addresses to be
modulated over the resources being used. The reporting mechanisms on the other hand
provide ideal spatial observation mechanisms as the information embedded in the channel
medium can be directly read out from architecturally-visible registers. Compared with
other observation mechanisms, e.g., those employing timing measurements, the reporting
mechanisms allow convenient and noiseless observation.

The type of channel medium also has an impact on how modulation and observation
mechanisms can be used. Compared with stateful resources, stateless resources usually
have more restrictions. Since stateless resources cannot remember the encoded
information, the receiver normally has to be able to run in parallel with the sender so that
observations can be made in time before the encoded information disappears. For
example, in the bus contention channel, the sender and the receiver have to be running
simultaneously on two processors that share the bus, both contending for the bus to
modulate information over the bus usage as well as observe the information from the bus
usage. The use of a stateful resource does not have such restrictions and therefore can be
used in more situations.

92

6.2.2 A Channel Use Model of Covert Channels

A fundamental difference between a covert channel and a real communication channel is
that the sender and the receiver in covert channels often don’t have the same “view” of
time, e.g., the time elapse rate observed by the sender and the receiver can be totally
different and uncorrelated to physical time. Another significant difference is that the
sender and the receiver in covert channels are typically much more restricted in accessing
the channels, e.g., they often don’t have the control on when they can use the channel and
may not be able to perform an operation when they wish to. The reasons are twofold.
Firstly, as a commonly adopted countermeasure against covert timing channels, good
time sources are typically not allowed to be exposed to the sender and the receiver (e.g.,
user processes in operating systems). Secondly, in computer systems, the resource
management is typically out of the sender and the receiver’s control, i.e., the sender and
the receiver may not use chip resources or make an operation unless the resource
manager allows them to do so. This is particularly true in systems where covert channels
are a concern. For example, in such systems not only the resource manager (e.g., the
process scheduler) is not under the sender and the receiver’s control, very often specific
methods like lattice scheduling [68] and fuzzy time [25] are also adopted to further
mitigate covert channels. As a result, in a covert channel, it may be very hard for the
sender and the receiver to reliably cooperate with each other. Also they often can not rely
on time to gain synchronization, e.g., by agreeing on a fixed operation interval, since
their view of how time elapses may be totally different.

Due to the above reasons, we model the sender and the receiver as entities that
operate independently in transmitting and receiving bits and do not have the ability to
reliably coordinate with each other. The access patterns to the channel that the sender and
the receiver may have are determined by the nature of the system (e.g., the specific
scheduling algorithm that is being used) and therefore are considered as a property of the
channel instead of something under the sender’s or the receiver’s control. Note that the
sender and the receiver may still be able to coordinate if there are mechanisms (e.g., a
feedback path) outside the covert channel being discussed, but with only the forward
channel as depicted in Fig 6.1, they can’t. The effect of mechanisms allowing
coordination will be discussed in section 6.3.

With such a channel model the channel is clearly not synchronized. Bits sent by the
sender may drop out – if the receiver does not make an observation promptly, and extra
bits may be inserted – if the sender does not send a bit between two adjacent channel
observations at the receiver side. Also the sender and the receiver are not aware of bit
insertions and dropouts as they don’t know and cannot predict if the sender has sent a bit
or the receiver has made an observation on the channel. Note that since the error rates of
the channel, e.g., the bit dropout/insertion rate, are determined by the sender and the
receiver’s asynchronous access patterns to the channel, they indeed represent the
asynchronous aspect of the channel.

An implication of not having a common interpretation of time is that the meaning of
“exploiting timing characteristics” is vague and can hardly be defined accurately. For
example, a sequence of events that have temporal effects on the sender may become a
single event that carries no timing information at all in the receiver’s view – if during the
time when the events happen the receiver has a much slower “clock” it may only see the
accumulated results of all the events. The sections below rigorously define time used in

93

our channel model and describe how channel symbols are constructed – which relies on
the definition of time.

In the broadest sense, as suggested in [26], “the passage of time can be characterized
by sequences of events which can be distinguished one from another by the observer.”
For example, the time presented by a time stamp counter in a processor can be viewed as
a sequence of events which increment a value, and each event is distinguishable due to
the corresponding counter value. We adopt this view of time and the definition of a clock
as a time reference.

In a covert channel, the sender and the receiver need to find time references (i.e.,
sequences of events, which may not resemble a real clock at all and may be totally
uncorrelated to real physical time) to construct their own view of “time”. To obtain the
current time, the observer needs to make an observation and compare the observation
event with the time reference event sequence. The order of the events provides the
observer with the current time. In other words, if the observation occurs between events
Ti and Ti+1, the observer knows that the current time Ti < t < Ti+1. The difference between
Ti and Ti+1 is the resolution of the “clock”.

The above discussion shows that, all forms of timing measurements in essence are the
comparison of the order of events. We therefore define:

Definition 6.1: Given an observer and his reference event sequence T = <Ti>, the
observer’s view of the time can be defined as the comparisons of the ordering of the
observation events Oi and the events in T.

Note that the choice of the event sequence is often channel specific and may vary
significantly. Some channels may seek event sources that approximately represent
physical time. For example, the sender or receiver can construct his own timer by
launching a thread that self-increments a counter by executing a loop. Other channels
may choose an event sequence that does not resemble a timer at all. In the disk arm
channel where the order of completion of two disk accesses carries the information, the
completion event of one of the disk accesses itself can be chosen as the reference. Such
an event sequence does not really represent the real time.

With this definition of time, we can clarify the difference between covert storage
channels and covert timing channels. For clarity of the discussion, we model a computer
system as an abstract machine where a process is modeled as an active subject and its
states are modeled as passive objects. A subject consists of sequences of operations that
manipulate the value of objects.

From the observer’s point of view, information can only be delivered to it via the
things that it can “see”. By “see”, we mean any means by which the observer can learn
the value of an object. We then define an observer’s visible space as follows:

Definition 6.2: The visible space V of an observer is the set of all objects that the
observer can see. V(i) is a snapshot of the visible space at the i-th observation, i.e., Oi,
made by the observer.

In a covert channel, to transfer information to the receiver, if the sender is able to
change the value of an object in the receiver’s visible space VR, he can directly encode
information in the value of that object. In this case, VR is the symbol space of the covert

94

channel. For example, if VR contains a single binary object, the symbol space is {0,1}. If,
however, the sender has no way to alter the value of any object in the receiver’s visible
space, he can not directly encode information into VR. As illustrated below, he can still
transfer information by encoding information into the extended symbol space VR

2, VR
3,…,

etc., where VR
2= VR

 VR, VR
3= VR

 VRVR,…, and so on. In the binary case, VR
2= {0,1} 

{0,1} = {00, 01, 10, 11}.
When the sender cannot alter the value of any object in VR, if he can impact the order

of value changing events of some objects in VR, he can encode information into the
extended symbol space. Below is an example. Consider a VR that contains two binary
objects a and b, with initial values of 0 and 1, respectively. a is going to have a 0  1
transition and b is going to have a 1  0 transition. These transitions will occur anyway
and the sender has no way to change the transitions. The sender however is able to
control the order of these transitions. Let VR(i) and VR(j) denote the two snapshots of the
receiver’s visible space when he makes his i-th and j-th observations and the two
transitions are observed in these two snapshots. The sender can encode 1 bit of
information into the extended symbol space VR(i)  VR(j) by controlling which transition
occurs first, e.g., if a’s transition occurs first, a 0 is sent, otherwise a 1 is sent. Let a

symbol in VR(i)  VR(j) be denoted as 







)()(

)()(

jbib

jaia
, where x(t) is the value of object x in the

t-th observation. The symbol 







11

01
 would indicate a 0 and 








10

00
 would indicate a 1.

Indeed, the above two types of information transfer methods reveal the difference
between storage channels and timing channels. In the first method, to receive a bit of
information, the receiver only needs to do a single observation and no comparison of
event order is involved. The second method however encodes information in the order of
events and requires multiple observations to receive a bit. Since timing measurements are
essentially comparisons of event orders, the first type of channels do not involve timing
measurements whereas the second type of channels do. The classification of storage
channels versus timing channels therefore can be based on this distinction.

Definition 6.3: A covert channel is a storage channel if the information to be
transmitted is encoded into the receiver’s visible space VR. A covert channel is a timing
channel if the information can only be encoded into an extended symbol space VR

n, n > 1.

6.2.3 On Covert Channel Classification

Although section 6.2.2 has clarified the issue of the vague definition of time, there are
still covert channels that are hard to classify. These channels, e.g., the disk arm channels,
exhibit characteristics of both storage channels and timing channels. Indeed, the difficulty
in the conventional classification is due to the lack of recognition of the modulation
mechanism and the observation mechanism as we proposed in chapter 3 and shown in
Figure 6.1. In a covert channel, the transmission of information always involves two steps:
1) modulating information over the channel medium via the modulation mechanism at the
sender side, and 2) extracting information from the channel medium via the observation
mechanism at the receiver side. Each step can exploit either spatial or temporal methods.

95

It is therefore natural for covert channels to have mixed characteristics of storage
channels and timing channels.

The above discussion indeed shows that the conventional classification of storage
channels vs. timing channels is incomplete. A clearer classification should take both
modulation mechanism and observation mechanism into account. We first make the
following definitions. Let VS and VR denote the visible spaces of the sender and the
receiver, respectively. VS is the set of all objects that the sender is able to access.

Definition 6.4: A modulation mechanism is spatial if the information is directly
encoded in VS, or temporal if the information can only be encoded in the extended symbol
space VS

n, n > 1.
Definition 6.5: An observation mechanism is spatial if the information can be directly

extracted from VR, or temporal if the information must be extracted from the extended
symbol space VR

n, n > 1.

Indeed, the classification based on Definition 6.3 is a classification from only the
receiver’s perspective. We propose a new classification of covert as follows:

SS channels: covert channels that exploit spatial modulation and spatial observation.
Example: the file lock channel [17].

ST channels: covert channels that exploit spatial modulation and temporal
observation. Example: the disk arm channel [36].

TS channels: covert channels that exploit temporal modulation and spatial
observation. Example: see example 6.1 below.

TT channels: covert channels that exploit temporal modulation and temporal
observation. Example: the CPU time channel (Example 2 in Section 2.2.1).

Example 6.1: the selective observation channel
For clarity, we assume a simple system that contains only the sender, the receiver,

and a random number generator (RNG). The RNG is visible to both the sender and the
receiver, and neither the sender nor the receiver can affect the RNG’s output. The sender
has no way to communicate with the receiver, but can somehow control when the
receiver can make an observation, e.g., by occupying the CPU until he wishes to let the
receiver make an observation. The information transfer can then be achieved as follows.
The sender keeps observing the RNG and checks if its value equals to the current symbol
he wants to send, e.g., if the least significant 3 bits is “000”. He will not let the receiver
make an observation until he sees that the value to be sent appears in the output of the
RNG. In this way, the sender can select the desired values for the receiver to observe. In
this channel, in order to send a symbol, the sender has to check if a desired event occurs
right before his current observation event, which is a temporal modulation method. The
receiver simply reads the output of RNG to receive the symbol, which is clearly a spatial
observation method. Hence, this selective observation channel is a TS channel.

6.2.4 Remarks

The above discussion not only clarifies the problem in covert channel classification, but
also shows how covert channels can be constructed. This can help us understand the

96

capabilities as well as limitations of existing covert channel identification methods and
also identify new covert channels. For example, our definitions and classifications can
help to understand which covert channels can be identified and which can not be
identified by the popular shared resource matrix (SRM) method [15]. The identification
of a covert channel in the SRM method is based on the analysis of subjects’ capabilities,
M (modify) or R (read), in accessing resources. A potential covert channel from A to B is
identified if subject A has M access to a resource and subject B has R access to the
resource. This indeed only captures the information transferred in symbol space VS and
VR. The covert channels in which A does not have M access to the resource but is able to
encode information in the extended symbol space VS

n or B does not have R access to the
resource but is able to extract information from VR

n can not be identified. In other words,
the SRM method can identify SS channels, but may not be able to identify ST, TT, or TS
channels. It is possible that the definition of M and R can be made more general to catch
certain temporal effects and allow the identification of more covert channels. This
however is based more on experience and can not be generally applied. Our new
definitions and classification can also help identify new types of covert channels. For
example, to the best knowledge of the author, the class of TS channels we defined has not
been reported in the literature.

6.3 Capacity Estimation of Asynchronous Covert Channels

6.3.1 Capacity Degradation

As explained in section 6.2, unlike traditional communication channels, covert channels
are often asynchronous, and the sender and the receiver may not be able to reliably
coordinate with each other, causing symbol insertions and dropouts. For example,
consider a uniprocessor system where the communicating subjects are processes. To
transmit a symbol, the sender has to make a change in the system and the receiver
receives it by detecting the change. As there is only one CPU in the system, at any time
only one of the two processes can be active. In other words, the sender has to relinquish
the CPU after it sends a symbol so that the receiver can get the CPU to read the symbol.
In most operating systems, the scheduler determines when and who can gain the CPU.
Depending on the scheduling algorithm, it is very likely that the sender is woken up twice
without the receiver being able to run in between, or the receiver is woken up twice
without the sender being able to run in between. In the former case a symbol is dropped,
while in the later case an extra symbol is inserted.

In addition, unlike in communication channels, coherent time references are often
unavailable in covert channels. Coherent time reference plays an important role in many
communication systems. Even without other synchronization methods, the operations of
sender and the receiver can be synchronized as long as the local timers at the two sides of
the channel are coherent enough. Being aware of this, and because time references are
known as key components in exploiting covert timing channels, high assurance systems
normally disallow processes to access timers and have even made efforts to remove all
event sources that can serve as such time references to user processes [25].

Note that although the operations of sending and receiving symbols are asynchronous
in most covert channels, one may still synchronize the symbol transmission with certain

97

techniques. Figure 6-3 shows an example. The sender makes a change on the S-R
variable once a symbol is sent; the receiver checks the S-R variable and reads the symbol
when ready; the receiver then makes a change on the R-S variable to inform the sender;
the sender checks the R-S variable and sends the next symbol once the last symbol has
been received.

There may be other methods that can maintain the correct order of operations, but in
essence they do the same thing: let the sender know if the receiver has read the previous
symbol and let the receiver know if a symbol has arrived. With such information, each
time when the sender is able to perform an operation it can determine whether a new
symbol can be sent. At the receiver side, each time when the receiver is able to make an
observation, he is able to tell if a new symbol is ready to receive. However, due to the
asynchronous nature of the covert channels, it is very likely that the sender finds that the
previous symbol has not been read by the receiver and it has to give up the CPU and wait
for the next chance, wasting some time. Similarly, some time is also wasted at the
receiver side. The channel capacity is therefore reduced. This observation distinguishes
our work from previous work where the synchronous model excludes this part of the time
in symbol transmission – only the time associated with transmitted symbols was taken
into account.

Intuitively, lack of synchronization should make communication harder. It’s however
unclear how asynchronism would impact channel capacity, how synchronization would
help, and what the cost would be. The sections below address all these questions.

6.3.2 Capacity Estimation

To show the impact of asynchronism on channel capacity, we answer two sets of
questions:

1. Existence and capacity: Without any form of synchronization, is reliable
communication still possible? If the answer is yes, what’s the capacity of such
channels?

2. Construction and capacity: How can reliable synchronization mechanisms be
constructed for asynchronous covert channels? What is the capacity of such a
synchronized channel? Compared with the capacity of an inherently synchronous
channel, what is the degradation of capacity due to the asynchronous effect?

The first question indeed is asking if synchronization is always necessary. Previous
work all assume a synchronized form of communication. But it is not clear if it is the only
way to achieve reliable communication. In fact, another interesting question is: can an
asynchronous form of communication have higher information rate than the synchronous
one as the overhead associated with synchronization is totally avoided?

6.3.2.1 Deletion-insertion channel
As explained above, asynchronous operations at the two sides of the channel may lead to
loss of real symbols and insertion of false symbols. Such a channel can be modeled as a
deletion-insertion channel. We adapt the definition in [295] as follows:

98

Definition 6.6: A binary deletion-insertion channel is a channel with four parameters: Pd,
Pi, Pt and Ps, which denote the rates of deletions, insertions, transmissions and
substitutions, respectively.

The symbols to be transmitted are imagined entering a queue, waiting to be
transmitted by the channel. Each time the channel is used, one of four events occurs: with
probability Pd the next queued bit is deleted; with probability Pi an extra bit is inserted;
with probability Pt the next queued bit is transmitted, i.e., is received by the receiver, and
with probability Ps of suffering a substitution error (see Figure 6-4).

A deletion-insertion channel should not be confused with an erasure channel. In an
erasure channel, channel symbols may be corrupted or lost, which is similar to the
substitution or deletion in a deletion-insertion channel. However, the receiver of an
erasure channel knows exactly which symbols are corrupted or dropped while in a
deletion-insertion channel, the receiver knows nothing about any deletion, insertion or
substitution (corruption) of symbols. This makes the recovery of a message much harder.

6.3.2.2 Capacity of deletion-insertion channels
Intuitively, a channel with symbol insertions and drop-outs is hard to use and not efficient.
However, as maintaining synchronized communication also introduces overhead, we
wish to know how fast the information can be delivered over such channels, compared to
the synchronized channels.

Doburshin [296] first showed that the fundamental theorem of information theory
concerning the existence of an upper bound for the transmission rate, for which the error
probability can be made arbitrarily small, holds. This implies that reliable communication
is possible even if no reliable synchronization mechanisms are available. However,
deriving the capacity of such a channel is very hard, and the exact capacity is still
unknown after decades of research. A variety of approximations of the capacities and
numerical bounds can be found in [297-298].

Despite availability of several capacity bounds, we give an upper bound of the
capacity for the purpose of comparison with synchronized channels. Consider a deletion-
insertion channel and an erasure channel which are identical except that in the erasure
channel the location of symbol drop-outs and insertions are known. Because the two

Figure 6-3. Synchronization mechanism
using two variables

Figure 6-4. Insertion-Deletion channel
with probabilities Pd, Pi, Pt
and Ps, of deletions,
insertions, transmissions
and substitutions

99

channels are identical except that the erasure channel has more knowledge about the
transmission errors, the capacity of the deletion-insertion channel is no greater than the
capacity of the erasure channel.

Theorem 6.1. An upper bound of the capacity of a deletion-insertion channel is the
capacity of the erasure channel:

Cmax = N(1-Pd) (6.1)

where N is the number of bits per symbol and Pd is the deletion probability.

The derivation of the capacity of an erasure channel can be found in many
information theory textbooks such as. Note that here we use the term erasure channel to
refer to the one that is identical to the corresponding deletion-insertion channel except
that the locations of symbol insertions/drop-outs are known. In the rest of the paper, we
will use erasure channel to refer to this specific erasure channel unless otherwise
specified.

The above capacity bounds including (6.1) are very hard, if not impossible, to achieve
in practice. Using existing coding schemes such as convolutional code and watermark
code, some work [295, 299-300] have shown reliable communication over such channels.
However, they all showed that the capacity is quite low and in practice sophisticated
coding techniques are required.

6.3.2.3 Synchronization and capacity estimation
To answer the second set of questions for constructing reliable synchronization for
asynchronous covert channels, we consider fundamental synchronization methods and
investigate how these methods impact channel capacity. Synchronization can be achieved
with or without feedback. Figure 6-5(a) shows the most general form of a feedback based
synchronization mechanism. It consists of only a feedback path without any assumption
on how the feedback path is used, and specific techniques can all be explained with this
general abstraction. For example, in Figure 6-3, two synchronization variables are used,
one serves as the feedback path and the other serves as the feed forward path. The
feedback variable is one form of the feedback path in Figure 6-5(a). The feed forward
variable can be viewed as a special use of the feed forward channel in Figure 6-5(a): part
of the feed forward channel is dedicated for synchronization and the rest of the channel
transmits data. Note that such separation of the feed forward channel is not necessary – it
is indeed not optimal. Given a fixed bandwidth of the feed forward channel, using a
separate feed forward synchronization variable reduces the effective bandwidth for
information transmission. This will be proved in subsequent sections.

Covert channel S R Covert channel S R

E
(a) Feedback

Figure 6-5. Two fundamental synchronization methods.

(b) Common event source

100

Synchronization can also be achieved without feedback. The sender and the receiver
may luckily share a common time reference (or at least have time references that are
coherent at the two sides of the channel) and thus are naturally synchronized.
Alternatively, the sender is able to use some method to let the receiver know of his
operation timing. Indeed, these two methods are essentially the same from the perspective
of synchronization. They both allow the sender and the receiver to have a common view
of time, i.e., they virtually have a common time reference, as shown in Figure 6-5(b).

In the following discussion, we assume that the feedback path and the two paths from
the event source E to the sender S and the receiver R are perfect. This simplifies the
analysis, and is also a requirement for deriving the maximum information rate. To focus
on the synchronization problem, we assume that the channel is noiseless, i.e., Ps = 0 and
Pt = 1 – Pi – Pd where Pd and Pi and Ps are the probabilities of symbol deletion, insertion
and substitution, respectively.

A. Channels with feedback
We now show that the capacity of a channel with deletions can achieve the capacity of an
erasure channel by utilizing feedback. We then extend the result to channels with
insertions.

Lemma 6.1. The upper bound of the capacity of a deletion channel with perfect feedback
is the capacity of the erasure channel.

Proof: Consider a deletion channel with a deletion probability Pd and its corresponding
erasure channel. Add perfect feedback path to both of them. Since the erasure channel
knows where the symbol drop-outs occurs which the deletion channel does not know, the
erasure channel knows more information than the deletion channel. Therefore the erasure
channel with feedback will gain equal or higher capacity than the deletion channel with
feedback. Since an erasure channel is a memoryless channel and it is well known that
adding feedback will not increase the capacity of a memoryless channel [271], the upper
bound of the capacity of a deletion channel with perfect feedback is the capacity of the
erasure channel. □

In Lemma 1 we only show an upper bound of the capacity, we now show that the
bound is tight.

Theorem 6.2. The capacity of a deletion channel with perfect feedback equals the
capacity of the erasure channel.

Proof: Here we construct a protocol by which the capacity of the erasure channel can be
achieved. The protocol is as follows: let the receiver notify the sender via the feedback
path once it receives a symbol. The sender will keep resending the symbol until it knows
that the symbol has been received. Therefore no dropouts will occur. While the
probability of deletion is Pd, a symbol gets through with probability of 1- Pd, therefore
the effective information rate is N(1-Pd), which is the capacity of an erasure channel with
an erasure probability Pd. Since the upper bound of the capacity (Lemma 6.1) can be
achieved, it is the actual capacity. □

101

When symbol insertions are present in the channel, a theorem similar to theorem 6.2
can be proved. We first define an extended erasure channel as follows:

Definition 6.7: An extended erasure channel is a channel where symbols may be inserted
and/or dropped but the locations of all insertions and dropouts are known.

Lemma 6.2. The upper bound of the capacity of a deletion-insertion channel with perfect
feed back is the capacity of the equivalent extended erasure channel, i.e.,

Cupper-bound = N(1-Pd).

The proof is similar to that for Lemma 6.1. Note that the insertion probability Pi does
not affect this upper bound. This can be explained as follows. Under the assumption of
noiseless asynchronous channels, the symbol insertions are due to the receiver’s double
(or multiple) channel observations before the sender sends a new symbol. If the receiver
checks the channel more frequently, Pi will increase. This however should not change the
capacity of the extended erasure channel, given that the symbol transmission rate of the
sender does not change. This is because given a time interval, although the receiver
receives more symbols due to his higher channel observation rate, the inserted symbols
will simply be discarded in the extended erasure channel since the receiver knows exactly
which symbols are inserted, and therefore the number of effective symbols received
remains unchanged, i.e., the capacity is not affected by Pi.

A lower bound of the capacity can also be derived with a constructive protocol, based
on the synchronization variables as shown in Figure 6-3. It can be shown that under
certain conditions, this lower bound and the upper bound shown in Lemma 6.2
asymptotically converge.

Lemma 6.3. A lower bound of the capacity of a deletion-insertion channel with perfect
feed back is:

  dboundlower PNC  11 (6.2)

where N is the number of bits contained in each symbol.

Proof: A simple protocol can be constructed based on the synchronization mechanism
depicted in Figure 6-3. Assume that one of the N bits contained in a channel symbol is
reserved as the S-R variable which serves as the feed-forward synchronization variable
and is initialized to a value that the sender and the receiver have agreed upon a priori, e.g.,
‘0’. The protocol is as follows: let the receiver notify the sender via the feedback path
once it receives a symbol and let the sender notify the receiver via the feed-forward S-R
variable by flipping its current value once it sends a new symbol. The sender will keep
resending the symbol, without changing S-R variable’s value, until he knows that the
symbol has been received. On the other hand, when the receiver gets a chance to access
the channel, he checks the S-R variable. If the value remains unchanged, no new symbol
has been sent from the sender, and the receiver will simply wait for the next chance to
access the channel. If however the value of the S-R variable did change, he reads the
channel and notifies the sender via the feedback path that he received a new symbol.
With such a protocol, no drop outs will happen since the sender will not send a new

102

symbol until the receiver tells him that the current symbol has been received, and no
insertions will happen since the receiver can always tell if he is reading an old symbol
that he has received. Since in each symbol the effective number of bits used for carrying
true data information is (N-1) bit, and the probability of a symbol successfully getting
through the channel is (1-Pd), the information rate of the channel with this protocol is (N-
1)(1-Pd). Note that insertion probability Pi does not matter here because regardless of
how many insertions the receiver has received, the receiver always knows that they are
insertions and can simply discard them. It has no impact on the rate that the sender sends
symbols as we have explained in the proof of Lemma 6.2. □

The above capacity can be achieved using this protocol and therefore is a lower-
bound of the actual capacity. Under certain conditions, e.g., when N  ∞, this lower
bound and the upper bound shown in Lemma 6.2 asymptotically converge. In other
words, with such a simple protocol, the theoretical channel capacity can practically be
achieved if N is sufficiently large. In systems where N is small, more advanced coding
scheme may be used to achieve higher information rate than this lower bound.

Theorem 6.3. A lower capacity bound of Lemma 6.3 and the upper capacity bound of
Lemma 6.2 asymptotically converge when N  ∞.

Proof: the proof is straight forward
   

1
1

lim
)1(

)1(1
limlim 














 N

N

PN

PN

C

C
N

d

d

N
boundupper

boundlower

N
 □

B. Channels with common event source
There may be several ways to exploit a common event source E for synchronization. For
example, E can be a self-incrementing counter which serves as a common clock for the
sender and receiver. However, as we show below, exploiting E will not get higher
capacity than using a feedback path in general.

If one more path from R to E is added, as shown in Figure 6-6(a), E may gain more
information. Therefore an equal or higher information rate may be achieved than without
the added path. In the best case, E and R communicate with each other without any
overhead, i.e., they indeed can be regarded as one single party and such a configuration
actually becomes the synchronization method using feedback, as shown in Figure 6-6(b).
Therefore a similar system using feedback will get equal or better performance for
channel capacity.

Covert channel S R

E

Covert channel S R
E

Figure 6-6. Using common events won’t get better capacity than using feedback

(a) (b)

103

6.3.3 Remarks

We have answered the two sets of questions we posed. For the first question, we show
that reliable communication over non-synchronous channels without synchronization is
possible, but it is not as effective as synchronized communication and requires
complicated coding schemes. For the second question, we show that the capacity of an
asynchronous channel with either feedback or a common event as the synchronization
mechanism has a capacity that is equal or close to N(1-Pd). Comparing to the ideal
synchronous channel which has a capacity of N, that means the capacity degradation due
to asynchronous effects is roughly proportional to Pd, the probability of deletions.

According to the above discussion, with a good feedback path, synchronization is not
a problem for a covert channel in general. Furthermore, with the help of the feedback, the
theoretical capacity of the channel can be practically achieved using a very simple
protocol. This has interesting implications for a multi-level security (MLS) system. Since
the legal information flow (from low to high) can serve as a perfect feedback path, one
may always exploit it to achieve the channel capacity. In other words, covert channels in
MLS systems are relatively easy to exploit in general and tend to be fast.

Note that since we’ve shown that the capacity degradation due to asynchronous
effects is roughly Pd, to estimate the capacity of a given covert channel, one could first
use traditional methods to estimate the physical capacity C. The probability of deletion Pd
should then be estimated. The real capacity can then be estimated as C(1-Pd). Note also
that the capacity degradation modeled in our method is independent of the
synchronization mechanisms used and does not include any specific overhead introduced
by such mechanisms. Such degradation is inherent due to the asynchronous nature of
operations. It is unavoidable even if efficient mechanisms are deployed.

The study of the capacity of asynchronous channels not only provides a more
accurate capacity estimation, but also provides an estimation of the covert channel
reduction effectiveness of different system implementations. Since the asynchronous
effects of the covert channel are often determined by the system implementation, e.g., the
scheduler algorithm, the results can also be used to evaluate the effectiveness of
candidate system implementations, parameterized with Pd , in reducing covert channel
capacities.

Finally, although our results are derived in the context of capacity estimation of
covert channels, it may provide meaningful insights to researchers in other areas.
Recently some ongoing work [301] in the communication community also shows interest
in the capacity bounds of channels with asynchronous behaviors. Although the problems
and models are different, similar insights may apply. It would be interesting to study the
connections in future work.

6.4 Summary

In this chapter, some fundamental questions about covert channels that went unanswered
in the past are discussed and clarified. With respect to the conventional classification of
covert channels as storage channels vs. timing channels, two sources of ambiguity are
discussed. The vague definition of time is first clarified and a new definition is proposed.
Definition 6.1 shows that from an observer’s perspective, the view of time can be

104

accurately modeled as the order of the observer’s observation events and the reference
event sequence. The classification of storage channels and timing channels is then shown
incomplete by introducing the concept of modulation and observation mechanisms.
Based on the channel model proposed in chapter 3, the mixed characteristics of some
covert channels that make the conventional classification difficult are shown as a natural
property of covert channels, since both modulation mechanisms and observation
mechanisms can exploit either spatial or temporal characteristics. We proposed a clearer
classification of covert channels which categorizes them into SS, ST, TS, and TT
channels. This new classification can help show the capabilities and limitations of
existing covert channel identification methods and can help find new types of covert
channels.

With respect to capacity estimation of covert channels, this chapter discussed the
impact of the asynchronism of covert channels on channel capacities. We attempt to
answer two sets of fundamental questions. The first set of questions ask if
synchronization is always necessary and what is the capacity of channels without
synchronization mechanisms. Our answer is that reliable communication over
asynchronous channels without synchronization is possible, but it is not as effective as
synchronized communication and requires complicated coding schemes. The second set
of questions ask how synchronization mechanisms can be constructed and what the
inherent impact of asynchronism is on channel capacity. We show that synchronization
can be achieved by using feedback or a common event source, and regardless of the form
of the synchronization mechanism used in a covert channel, the capacity degradation due
to asynchronous effects is roughly proportional to Pd, the probability of symbol deletions.
Such degradation is inherent due to the asynchronous nature of operations. It is
unavoidable even if efficient mechanisms are deployed. With the recognition of this
inherent impact, covert channel capacity can be estimated more accurately. Furthermore,
as Pd is typically determined by the system implementation, e.g., the scheduler algorithm,
it can also be used to evaluate the effectiveness of candidate system implementations,
parameterized with Pd , in reducing covert channel capacities.

105

Chapter 7

Conclusions

Microprocessors as the central processing units of modern computer systems are highly
shared by different programs, processes or virtual machines. Like in any shared resources,
interference between users often reflect the activities of the users and thus leak out useful
information. Even worse, several unique properties make microprocessors an even better
place for information leakage. First, microprocessors are fast, and channels based on
processor level interferences hence can often be orders of magnitude faster than those at
software level. Second, a microprocessor is the most information-rich point for attackers
to snoop because any information in the system essentially has to be processed in the
central processor, and thus has the possibility to be leaked out. Third, the processor level
sharing often breaks software level isolation mechanisms like virtual machines (VMs).
For example, two logically isolated VMs can still be running on the same physical
microprocessor and share caches. It has been demonstrated in several recent work that
sensitive information like cryptographic keys can be leaked out through shared caches.
Last, the increasing prevalence of mobile computing and cloud computing makes the
information leakage problem even more challenging. User data won’t be constrained in
local systems forever. Instead, they will be travelling through and exposed to a much
wider spectrum of platforms, including public platforms like public clouds. This may
significantly increase the risk of leaking out sensitive user information, and users often
don’t have much control over the problem.

In the past, related research are mostly in the area of side channel attacks and covert
channel analysis, which focused on either specific hardware/software targets such as
cryptographic devices and software ciphers, or system and software level covert channel
issues. Unlike the previous work, this dissertation focuses on architectural and micro-
architectural level information leakage problems, which did not receive much attention in
the past. The results demonstrate that, in modern microprocessors, there are rich
mechanisms that allow covert channels that are much faster than traditional ones, and
enable significant side channel attacks that can impact not only embedded devices but
also general purpose systems.

106

7.1 Contributions

This dissertation focuses on processor architectural and micro-architectural level
information leakage problems and the contributions are of two categories. The work first
investigates real attacks that are of high significance, analyzes concrete problems and
proposes novel and effective solutions. The work then generalized the problem with
abstract modeling and classification, based on which theoretical analyses are performed.
The generalized discussion helps clarify misconceptions that were unanswered in the past
and allows better modeling and clearer classification of information leakage channels.
The better understanding of the nature of the problem also helps identify new information
leakage channels.

More specifically, the main contributions of the dissertation include:

 (in chapter 3): A thorough study of the cache-based side-channel attacks, which
are the most significant processor level attacks. This work addresses the problem
by identifying and attacking the common root cause of all cache-based software
side-channels and thus avoids being attack specific. Solution strategies were
identified based on efficient dynamic partitioning (e.g., the PLcache) and sharing
with interference randomization (e.g., the RPcache). The latter strategy uses an
information-theoretical analysis to show that we can eliminate or mitigate most
cache based attacks without compromising performance and has theoretically
proved the cache leakage security.

 (in chapter 4): A new cache architecture, Newcache, that is not only secure but
also high performance. The proposed new cache architecture inherits the short
access time from the Direct Map cache architecture while still maintains low miss
rates by employing dynamic address remapping. A simple security-aware random
replacement algorithm is also proposed which makes the cache immune to most
cache based attacks. Moreover, the proposed architecture can bring additional
benefits in terms of fault tolerance, thermal and power optimization, and more
performance-friendly cache partitioning and locking mechanisms.

 (in chapter 5): Identification of several new fast covert channels, which are based
on popular features in modern processors such as Simultaneous Multi-Threading
(SMT) and the IA-64 control speculation feature. The new channels are
prototyped and demonstrated to be orders of magnitude faster than traditional
channels. Various countermeasures to these channels are also discussed.

 (in Chapter 6): Development of an abstract framework, which allows the
information leakage problem to be discussed in a generalized form. The
framework is constructed in a way that past work such as the categorization of
timing and storage channel, channel analysis and identification methods like SRM,
can be related and explained within the framework. The framework is more
general and can clarify misconceptions that went unanswered in the past, reveal
the limitation of existing work, and help identify a new type of covert channel. It
allows more rigorous and accurate channel classification and may better facilitate
channel analysis and identification.

 (in Chapter 6): With regard to channel capacity estimation, all past work based the
capacity calculation on synchronized channel models (though sometimes

107

implicitly). This work for the first time pointed out that because covert channels
are typically not intended for communications, they are inherently asynchronous
and hence there is inherent capacity degradation due to the asynchronism, which
was not recognized in the past. To fully understand the effect of the channels’
asynchronous nature, this work answered two sets of fundamental questions: 1) is
reliable communication possible without any form of synchronization, and if the
answer is yes, what’s the capacity of such a channel? 2) How can reliable
synchronization mechanisms be constructed for asynchronous channels? What is
the capacity of such a synchronized channel? What is the degradation of capacity
due to the asynchronous effect? Answering these questions not only allow more
accurate channel capacity estimation but also helps understand how covert
channels can be constructed effectively and how to mitigate them.

7.2 Future work

The first area that future research should continue to pursue is the search for new
vulnerabilities and exploits. While many problems have been identified, e.g., those based
on caches, branch predictors, control speculation and simultaneous multi-threading etc.,
more are yet to be explored. For example, despite the intensive studies on the leakage of
address information (e.g., through external address bus directly or through cache hit/miss
patterns or branch predictors indirectly), the leakage of data flow information was not
receiving much attention in the literature. Indeed, architectural features like value
prediction and data speculation can leak out information in a similar way as caches do.
Similar to the timing effects of cache hits and misses, correct predictions lead to shorter
execution time and wrong predictions cause the program to run longer. The data-
dependent execution time therefore can leak out information about the data values being
processed. Some functional units like the divide units may also exhibit data-dependent
latencies and thus are vulnerable to the information leakage problem. More recently,
researchers have applied the concept of speculation in arithmetic logic design to improve
performance, which essentially optimizes the circuit such that the critical path circuit is
fast but does not guarantee 100% correctness, and in very rare cases the result is incorrect
which requires extra cycles to recalculate the right result. As a result, functional units like
adders that are implemented in this way may also exhibit data-dependent timing and thus
can leak out information. Indeed, as the basis of a large variety of performance
optimizations, the concept of speeding up the common cases while allowing slow speed
in rare cases is fundamentally insecure because the patterns of fast and slow operations
almost always leak out useful information. In the literature, all these issues were not
investigated and their implications in terms of security are not clear.

Another line of research that future work should pursue is software and hardware
defenses that ensure security without compromising performance. The design of
cryptographic algorithms that are immune to side channel attacks, on general purpose
processors in particular, is one such topic. Another interesting direction is compiler
techniques as well as other software approaches that allow not only small kernels like
crypto ciphers but also larger software programs to be resistant to information leakage.
Software/hardware co-design is also an area receiving more attention, as software and

108

hardware often have strengths that are complementary to each other. For example, in the
case of cache based attacks, while hardware design can easily avoid inter-process
interference (e.g., via cache partitioning or randomized line replacement), it is hard for
hardware to eliminate interferences within a process because the interferences are often
due to expected behavior and are unavoidable. For example, if two pieces of code in the
same process try to access the same memory address, the first access will interfere with
the second access, i.e., by making the second access hit in the cache and thus observe a
short access time. This is exactly what a cache is expected to do to improve performance,
and thus hardware has no way to avoid this unless caching is completely turned off.
From the software side, however, while the software programmer can not control how
other processes can interfere with the software she is developing, she has the ability to
design the code to be free of interference from itself. Therefore while software or
hardware alone can not avoid all cache interferences, software/hardware co-design may
together solve the problem.

The third area that future research should explore is the methodologies that allow
more systematic analyses of processors for information leakage problems. Systematically
analyzing a complicated processor is certainly very hard, however it is also very
important as whole system security relies on knowing and defending against attacks in all
aspects instead of defeating just one or a few of them. Most existing work are rather ad-
hoc and attack specific. To the best knowledge of the author, no established work has
been reported in this area.

109

References

[1] M. Steil, "17 Mistakes Microsoft Made in the Xbox Security System," presented

at the 22nd Chaos Communication Congress, Berliner Congress Center, Berlin,
Germany, 2005.

[2] A. One, "Smashing the stack for fun and profit," in Phrack vol. 7, ed, 1996.
[3] C. Cowan, et al., "Buffer Overflows: Attacks and Defenses for the Vulnerability

of the Decade," in DARPA Information Survivability Conference and Exposition,
2000.

[4] "FreeBSD Kernel Arbitrary Memory Disclosure," http://www.osvdb.org/16091.
[5] P. Gutmann, "Secure deletion of data from magnetic and solid-state memory," in

Proceedings of the 6th conference on USENIX Security Symposium, Focusing on
Applications of Cryptography - Volume 6, San Jose, California, 1996.

[6] B. W. Lampson, "A note on the confinement problem," Commun. ACM, vol. 16,
pp. 613-615, 1973.

[7] M. H. Lipasti, et al., "Value locality and load value prediction," in Proceedings of
the seventh international conference on Architectural support for programming
languages and operating systems, Cambridge, Massachusetts, United States, 1996,
pp. 138-147.

[8] Y. Sazeides and J. E. Smith, "The predictability of data values," in Proceedings of
the 30th annual ACM/IEEE international symposium on Microarchitecture,
Research Triangle Park, North Carolina, United States, 1997, pp. 248-258.

[9] P. Raghavan, et al., "Dynamic schemes for speculative execution of code,"
Perform. Eval., vol. 53, pp. 125-142, 2003.

[10] Z. Wang and R. B. Lee, "New cache designs for thwarting software cache-based
side channel attacks," in Proceedings of the 34th annual international symposium
on Computer architecture, San Diego, California, USA, 2007, pp. 494-505.

[11] Z. Wang and R. B. Lee, "A novel cache architecture with enhanced performance
and security," in Proceedings of the 41st annual IEEE/ACM International
Symposium on Microarchitecture, 2008, pp. 83-93.

[12] Z. Wang and R. B. Lee, "Covert and Side Channels Due to Processor
Architecture," in Proceedings of the 22nd Annual Computer Security Applications
Conference, Miami Beach, Florida, USA 2006, pp. 473-482.

[13] Z. Wang and R. B. Lee, "Capacity Estimation of Non-Synchronous Covert
Channels," in Proceedings of the Second International Workshop on Security in

110

Distributed Computing Systems (SDCS) (ICDCSW'05) - Volume 02, 2005, pp.
170-176.

[14] Z. Wang and R. B. Lee, "New constructive approach to covert channel modeling
and channel capacity estimation," in Proceedings of the 8th international
conference on Information Security, Singapore, 2005, pp. 498-505.

[15] R. A. Kemmerer, "Shared resource matrix methodology: an approach to
identifying storage and timing channels," ACM Trans. Comput. Syst., vol. 1, pp.
256-277, 1983.

[16] J. C. Huskamp, "Covert Communication Channels in Timesharing Systems,"
University of California Technical Report UCB-CS-78-02, 1978.

[17] V. Gligor, "A guide to understanding covert channel analysis of trusted systems,"
Technical Report NCSC-TG-030, National Computer Security Center, 1993.

[18] ed: National Computer Security Center, Department of Defense Trusted
Computer System Evaluation Criteria, DoD 5200.28-STD 1985.

[19] C.-R. Tsai, et al., "On the Identification of Covert Storage Channels in Secure
Systems," IEEE Trans. Softw. Eng., vol. 16, pp. 569-580, 1990.

[20] M. Gasser, Building a secure computer system: Van Nostrand Reinhold Co., 1988.
[21] A. S. Tanenbaum, Modern Operating Systems: Prentice Hall, 2001.
[22] Wikipedia. Covert Channel [Online].
[23] J. K. Millen, "20 Years of Covert Channel Modeling and Analysis," presented at

the IEEE Symposium on Security and Privacy, 1999.
[24] S. B. Lipner, "A comment on the confinement problem," in Proceedings of the

fifth ACM symposium on Operating systems principles, Austin, Texas, United
States, 1975.

[25] W. M. Hu, "Reducing timing channels with fuzzy time," presented at the IEEE
Computer Society Symposium on Research in Security and Privacy, 1991.

[26] J. C. Wray, "An analysis of covert timing channels," presented at the IEEE
Computer Society Symposium on Research in Security and Privacy, 1991.

[27] C. Abad, "IP Checksum Covert Channels and Selected Hash Collision," UCLA
Technical Report, http://gray-world.net/papers/ipccc.pdf, 2001.

[28] C. G. Girling, "Covert Channels in LAN's," IEEE Trans. Softw. Eng., vol. 13, pp.
292-296, 1987.

[29] S. Cabuk, et al., "IP covert timing channels: design and detection," in
Proceedings of the 11th ACM conference on Computer and communications
security, Washington DC, USA, 2004.

[30] G. Shah, et al., "Keyboards and covert channels," in Proceedings of the 15th
conference on USENIX Security Symposium - Volume 15, Vancouver, B.C.,
Canada, 2006.

[31] Z. Wang, et al., "Mutual Anonymous Communications: A New Covert Channel
Based on Splitting Tree MAC," presented at the the 26th IEEE International
Conference on Computer Communications (INFOCOM 2007), Minisymposium,
2007.

[32] S. Li and A. Ephremides, "A covert channel in MAC protocols based on splitting
algorithms," presented at the IEEE Wireless Communications and Networking
Conference (WCNC 2005), 2005.

111

[33] S. Li and A. Epliremides, "A network layer covert channel in ad-hoc wireless
networks," presented at the the 1st Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks (SECON
2004), 2004.

[34] N. B. Lucena, et al., "Covert Channels in IPv6," in Proceedings of Privacy
Enhancing Technologies (PET), 2005, pp. 147-166.

[35] S. Zander, et al., "A Survey of Covert Channels and Countermeasures in
Computer Network Protocols," IEEE Communications Surveys & Tutorials, vol. 9,
pp. 44-57, 2007.

[36] P. A. Karger and J. C. Wray, "Storage Channels in Disk Arm Optimization,"
presented at the IEEE Symposium on Security and Privacy, 1991.

[37] D. E. Denning, Cryptography and Data Security. Massachusetts: Addison-Wesley,
1983.

[38] G. R. Andrews and R. P. Reitman, "An Axiomatic Approach to Information Flow
in Programs," ACM Trans. Program. Lang. Syst., vol. 2, pp. 56-76, 1980.

[39] R. Feiertag, "A Technique for Proving Specifications are Multilevel Secure,"
Technical Report CSL-109, Computer Science Laboratory, SRI International,
Menlo Park, California, 1980.

[40] J. Rushby, "The Security Model of Enhanced HDM," in Proceedings of the 7th
DOD/NBS Computer Security Conference, pp.120-136, September 1984.

[41] S. T. Eckmann, "Ina FIo: The FDM Flow Tool," in Proceedings of the 10th
National Computer Security Conference, Baltimore, Maryland, pp.175-182,
September 1987.

[42] J. McHugh, "An Information Flow Tool for Gypsy," in Proceedings of the 17th
Annual Computer Security Applications Conference, pp.191, 2001.

[43] J. McHugh and D. I. Good, "An Information Flow Tool for Gypsy," in
Proceedings of the IEEE Symposium on Security and Privacy, pp.46-48, April
1985.

[44] J. McHugh and R. L. Akers, "A Formal Justification for the Gypsy Information
Flow Tool," Technical Report, Computational Logic Inc., Austin, Texas, 1987.

[45] C.-R. Tsai, et al., "A Formal Method for the Identification of Covert Storage
Channels in Source Code," in Proceedings of the lEEE Symposium on Security
and Privacy, Oakland, California, pp. 74-86, April 1987.

[46] R. A. Kemmerer and P. A. Porras, "Covert Flow Trees: A Visual Approach to
Analyzing Covert Storage Channels," IEEE Trans. Softw. Eng., vol. 17, pp. 1166-
1185, 1991.

[47] J. Goguen and J. Meseguer, "Security policies and security models," presented at
the IEEE Symposium on Security and Privacy, 1982.

[48] J. McHugh, "Covert Channel Analysis: A Chapter of the Handbook for the
Computer Security Certification of Trusted Systems," Technical Memorundum
5540:080A, Naval Research Laboratory, Washington D.C., 1995.

[49] J. McLean, "Security Models," in Encyclopedia of Software Engineering, ed: John
Wiley & Sons, 1994.

[50] M. A. Bishop, Computer Security: Art and Science: Addison-Wesley 2002.

112

[51] J. A. Goguen and J. Meseguer, "Unwinding and inference control," presented at
the Proc. of the IEEE Symposium on Research in Security and Privacy, pp.75-86,
1984.

[52] J. T. Haigh, et al., "An Experience Using Two Covert Channel Analysis
Techniques on a Real System Design," IEEE Trans. Softw. Eng., vol. 13, pp. 157-
168, 1987.

[53] J. K. Millen, "Covert Channel Capacity," in Proceedings of the IEEE Symposium
on Security and Privacy, pp.60-66, 1987.

[54] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication:
University of Illinois Press, Urbana, Illinois, 1963.

[55] J. K. Millen, "Finite-state noiseless covert channels," in Proceedings of the
Computer Security Foundation Workshop II, pp.81-86, 1989.

[56] I. S. Moskowitz and A. R. Miller, "The channel capacity of a certain noisy timing
channel," IEEE Transactions on Information Theory, vol. 38, pp. 1339-1344,
1992.

[57] I. S. Moskowitz and A. R. Miller, "Simple Timing Channels," in Proceedings of
the 1994 IEEE Symposium on Security and Privacy, 1994.

[58] I. S. Moskowitz, et al., "An Analysis of the Timed Z-channel," in Proceedings of
the IEEE Symposium on Security and Privacy, pp.2-11, 1996.

[59] M. H. Kang and I. S. Moskowitz, "A pump for rapid, reliable, secure
communication," in Proceedings of the 1st ACM conference on Computer and
communications security, pp.119-129, 1993.

[60] M. H. Kang, et al., "A Network Pump," IEEE Trans. Softw. Eng., vol. 22, pp.
329-338, 1996.

[61] J. W. Gray, "On Introducing Noise into the Bus-Contention Channel," in
Proceedings of the 1993 IEEE Symposium on Security and Privacy, 1993.

[62] J. Giles and B. Hajek, "An information-theoretic and game-theoretic study of
timing channels," IEEE Transactions on Information Theory, vol. 48, pp. 2455-
2477, 2002.

[63] B. R. Venkatraman and R. E. Newman-Wolfe, "Capacity estimation and
auditability of network covert channels," in Proceedings of the IEEE Symposium
on Security and Privacy, pp.186-198, 1995.

[64] C.-R. Tsai and V. D. Gligor, "A Bandwidth Computation Model for Covert
Storage Channels and Its Applications," in Proceedings of the IEEE Symposium
on Security and Privacy, pp.108-121, April 1988.

[65] S.-P. W. Shieh and V. D. Gligor, "Auditing the Use of Covert Storage Channels
in Secure Systems," in Proceedings of the IEEE Symposium on Security and
Privacy, pp.285-295,1990.

[66] G. J. Popek and C. S. Kline, "Verifiable Secure Operating System Software," in
Proceedings of the National Computer Conference, pp.145-151, 1974.

[67] J. Giles and B. Hajek, "The jamming game for packet timing channels," in
Proceedings of IEEE International Symposium on Information Theory, pp.51,
2000.

[68] W.-M. Hu, "Lattice Scheduling and Covert Channels," in Proceedings of the 1992
IEEE Symposium on Security and Privacy, 1992.

113

[69] M. H. Kang, et al., "Design and Assurance Strategy for the NRL Pump," IEEE
Computer Magazine, vol. 31, pp. 56-64, 1998.

[70] M. H. Kang, et al., "The Pump: A Decade of Covert Fun," in Proceedings of the
21st Annual Computer Security Applications Conference, pp.352-360, 2005.

[71] S. P. Skorobogatov and R. J. Anderson, "Optical Fault Induction Attacks,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2002,
2003.

[72] P. Kocher, et al., "Differential Power Analysis," in Proceedings of the 19th
Annual International Cryptology Conference on Advances in Cryptology, 1999.

[73] T. S. Messerges, "Using Second-Order Power Analysis to Attack DPA Resistant
Software," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2000, 2000.

[74] J. Waddle and D. Wagner, "Towards Efficient Second-Order Power Analysis,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2004,
2004.

[75] M. Joye, et al., "On Second-Order Differential Power Analysis," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2005, 2005.

[76] L. Goubin and J. Patarin, "DES and differential power analysis: The duplication
method," presented at the Cryptographic Hardware and Embedded Systems -
CHES 1999, 1999.

[77] S. Chari, et al., "Template Attacks," presented at the Cryptographic Hardware and
Embedded Systems - CHES 2002, 2002.

[78] C. Archambeau, et al., "Template Attacks in Principal Subspaces," presented at
the Cryptographic Hardware and Embedded Systems - CHES 2006, 2006.

[79] T. S. Messerges, et al., "Investigations of power analysis attacks on smartcards,"
in Proceedings of the USENIX Workshop on Smartcard Technology, 1999, pp.
151-162.

[80] P. N. Fahn and P. K. Pearson, "IPA: A New Class of Power Attacks," presented at
the Cryptographic Hardware and Embedded Systems - CHES 1999, 1999.

[81] J. Kelsey, et al., "Side Channel Cryptanalysis of Product Ciphers," Journal of
Computer Security, vol. 8, pp. 141-158, 2000.

[82] K. Schramm, et al., "A New Class of Collision Attacks and Its Application to
DES," presented at the 10th International Workshop on Fast Software Encryption
(FSE 2003), 2003.

[83] E. Brier, et al., "Correlation Power Analysis with a Leakage Model," presented at
the Cryptographic Hardware and Embedded Systems - CHES 2004, 2004.

[84] F.-X. Standaert, et al., "Power Analysis of an FPGA: Implementation of Rijndael:
Is Pipelining a DPA Countermeasure?," presented at the Cryptographic Hardware
and Embedded Systems - CHES 2004, 2004.

[85] K. Schramm, et al., "A Collision-Attack on AES Combining Side Channel- and
Differential-Attack," presented at the Cryptographic Hardware and Embedded
Systems - CHES 2004, 2004.

[86] S. Mangard, "A Simple Power-Analysis (SPA) Attack on Implementations of the
AES Key Expansion," presented at the Information Security and Cryptology -
ICISC 2002, 2003.

114

[87] C. Lauradoux, "Collision attacks on processors with cache and countermeasures,"
Western European Workshop on Research in Cryptology - WEWoRC 2005, pp.
76-85, 2005.

[88] G. Bertoni, et al., "AES Power Attack Based on Induced Cache Miss and
Countermeasure," presented at the International Symposium on Information
Technology: Coding and Computing - ITCC 2005, 2005.

[89] J. Bonneau, "Robust Final-Round Cache-Trace Attacks Against AES,"
Cryptology ePrint Archive, Report 2006/374,2006.

[90] E. Oswald and S. Mangard, "Template Attacks on Masking - Resistance Is
Futile," in Proceedings of the RSA Conference 2007 Cryptographers' Track (CT-
RSA 2007), 2007.

[91] S. Mangard and K. Schramm, "Pinpointing the Side-Channel Leakage of Masked
AES Hardware Implementations," presented at the Cryptographic Hardware and
Embedded Systems 2006 (CHES 2006), 2006.

[92] R. Novak, "SPA-Based Adaptive Chosen-Ciphertext Attack on RSA
Implementation," presented at the Public Key Cryptography, 5th International
Workshop on Practice and Theory in Public Key Cryptosystems (PKC 2002),
2002.

[93] B. d. Boer, et al., "A DPA Attack against the Modular Reduction within a CRT
Implementation of RSA," presented at the Cryptographic Hardware and
Embedded Systems - CHES 2002, 2002.

[94] P.-A. Fouque, et al., "Attacking Unbalanced RSA-CRT Using SPA," presented at
the Cryptographic Hardware and Embedded Systems - CHES 2003, 2003.

[95] W. Schindler, "A Combined Timing and Power Attack," presented at the Public
Key Cryptography, 5th International Workshop on Practice and Theory in Public
Key Cryptosystems (PKC 2002), 2002.

[96] J.-S. Coron, "Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems," presented at the Cryptographic Hardware and Embedded
Systems - CHES 1999, 1999.

[97] E. Oswald, "Enhancing Simple Power-Analysis Attacks on Elliptic Curve
Cryptosystems," presented at the Cryptographic Hardware and Embedded
Systems - CHES 2002, 2002.

[98] K. Itoh, et al., "Address-Bit Differential Power Analysis of Cryptographic
Schemes OK-ECDH and OK-ECDSA," presented at the Cryptographic Hardware
and Embedded Systems - CHES 2002, 2002.

[99] L. Goubin, "A Refined Power-Analysis Attack on Elliptic Curve Cryptosystems,"
presented at the Public Key Cryptography - PKC 2003, 2003.

[100] S. B. Örs, et al., "Power-Analysis Attacks on an FPGA - First Experimental
Results," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2003, 2003.

[101] K. Lemke, et al., "DPA on n-Bit Sized Boolean and Arithmetic Operations and Its
Application to IDEA, RC6, and the HMAC-Construction," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2004, 2004.

[102] S. Mangard, et al., Power Analysis Attacks: Revealing the Secrets of Smart Cards:
Springer, 2007.

115

[103] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems," presented at the Advances in Cryptology - CRYPTO '96,
1996.

[104] J. F. Dhem, et al., "A Practical Implementation of the Timing Attack," in
Proceedings of the The International Conference on Smart Card Research and
Applications, 1998, pp. 167-182.

[105] W. Schindler, "Optimized timing attacks against public key cryptosystems,"
Statistics and Decisions 20, pp. 191-210, 2002.

[106] W. Schindler, et al., "Improving Divide and Conquer Attacks against
Cryptosystems by Better Error Detection / Correction Strategies," in Proceedings
of the 8th IMA International Conference on Cryptography and Coding, 2001, pp.
245-267.

[107] W. Schindler, "A Timing Attack against RSA with the Chinese Remainder
Theorem," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2000, 2000.

[108] D. Brumley and D. Boneh, "Remote timing attacks are practical," in Proceedings
of the 12th conference on USENIX Security Symposium, Washington, DC, 2003,
pp. 1-14.

[109] O. Aciiçmez, et al., "Improving Brumley and Boneh timing attack on unprotected
SSL implementations," in Proceedings of the 12th ACM conference on Computer
and Communications Security (CCS'05), 2005, pp. 139-146.

[110] D. Page, "Theoretical use of cache memory as a cryptanalytic side-channel,"
Technical Report CSTR-02-003, Department of Computer Science, University of
Bristol, 2002.

[111] O. Aciiçmez and Ç. K. Koç, "Trace-Driven Cache Attacks on AES," Cryptology
ePrint Archive, Report 2006/138,2006.

[112] Y. Tsunoo, et al., "Cryptanalysis of block ciphers imple-mented on computers
with cache," presented at the Proc. International Symposium on Information
Theory and its Applications, 2002.

[113] Y. Tsunoo, et al., "Cryptanalysis of DES Implemented on Computers with
Cache," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2003, 2003.

[114] D. J. Bernstein, "Cache-timing Attacks on AES," available at:
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf,2005.

[115] M. Neve, et al., "A refined look at Bernstein's AES side-channel analysis," in
Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, 2006.

[116] J. Bonneau and I. Mironov, "Cache-Collision Timing Attacks Against AES,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2006,
2006.

[117] O. Aciiçmez, et al., "Cache Based Remote Timing Attack on the AES," presented
at the Topics in Cryptology -- CT-RSA 2007, The Cryptographers' Track at the
RSA Conference 2007, 2007.

[118] D. A. Osvik, et al., "Cache Attacks and Countermeasures: the Case of AES ",
Cryptology ePrint Archive, Report 2005/271,2005.

116

[119] D. A. Osvik, et al., "Cache Attacks and Countermeasures: The Case of AES,"
presented at the Topics in Cryptology - CT-RSA 2006, The Cryptographers'
Track at the RSA Conference 2006, 2006.

[120] M. Neve and J.-P. Seifert, "Advances on Access-Driven Cache Attacks on AES "
presented at the Selected Areas in Cryptography - SAC'06, 2006.

[121] C. Percival, "Cache Missing for Fun and Profit," available at:
http://www.daemonology.net/papers/htt.pdf,2005.

[122] O. Aciiçmez, et al., "On the power of simple branch prediction analysis," in
Proceedings of the 2nd ACM symposium on Information, computer and
communications security, 2007, pp. 312-320.

[123] O. Aciiçmez, et al., "Predicting Secret Keys via Branch Prediction," presented at
the Topics in Cryptology -- CT-RSA 2007, The Cryptographers' Track at the RSA
Conference 2007, 2007.

[124] O. Acıiçmez, et al., "New Branch Prediction Vulnerabilities in OpenSSL and
Necessary Software Countermeasures," in Proceedings of the 14th IMA
International Conference on Cryptography and Coding, 2007, pp. 185-203.

[125] NSA, NSA TEMPEST Documents, http://www.cryptome.org/nsa-
tempest.htm,2003.

[126] D. Agrawal, et al., "The EM Side-Channel(s): Attacks and Assessment
Methodologies," presented at the Cryptographic Hardware and Embedded
Systems (CHES 2002), 2002.

[127] J.-J. Quisquater and D. Samyde, "A new tool for non-intrusive analysis of smart
cards based on electro-magnetic emissions: the SEMA and DEMA methods,"
presented at the Eurocrypt rump session, 2000.

[128] J.-J. Quisquater and D. Samyde, "Electromagnetic analysis (EMA): measures and
countermeasures for smart cards," presented at the Smart Cards Programming and
Security (e-Smart 2001), LNCS vol. 2140, 2001.

[129] K. Gandolfi, et al., "Electromagnetic analysis: Concrete results," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2001, LNCS vol. 2162,
2001.

[130] S. Mangard, "Exploiting Radiated Emissions – EM Attacks on Cryptographic
ICs," in Proceedings of Austrochip, Linz, Austria, 2003.

[131] V. Carlier, et al., "Electromagnetic Side Channels of an FPGA Implementation of
AES," Cryptology ePrint Archive, Report 2004/145,2004.

[132] D. Agrawal, et al., "Multi-channel Attacks," presented at the Cryptographic
Hardware and Embedded Systems - CHES 2003, 2003.

[133] J.-J. Quisquater and D. Samyde, "Automatic code recognition for smart cards
using a Kohonen neural network," in Proceedings of the 5th conference on Smart
Card Research and Advanced Application Conference, San Jose, CA, 2002.

[134] M. G. Kuhn, "Compromising Emanations: Eavesdropping Risks of Computer
Displays," University of Cambridge, Computer Laboratory, UCAM-CL-TR-577,
2003.

[135] M. G. Kuhn, "Electromagnetic Eavesdropping Risks of Flat-Panel Displays,"
Privacy Enhancing Technologies, pp. 88-107, 2005.

[136] D. Asonov and R. Agrawal, "Keyboard Acoustic Emanations," in Proceedings of
25th IEEE Symposium on Security and Privacy, 2004, pp. 3-11.

117

[137] A. Shamir and E. Tromer, "Acoustic cryptanalysis - On nosy people and noisy
machines," http://people.csail.mit.edu/tromer/acoustic/, 2004.

[138] R. Anderson, Security engineering: A Guide to Building Dependable Distributed
Systems. New York: Wiley & Sons, 2001.

[139] R. Anderson and M. Kuhn, "Tamper resistance: a cautionary note," in
Proceedings of the Second USENIX Workshop on Electronic Commerce, 1996, pp.
1-11.

[140] R. Anderson and M. Kuhn, "Low Cost Attacks on Tamper Resistant Devices," in
Proceedings of the 5th International Workshop on Security Protocols, 1998, pp.
125-136.

[141] P. Gutmann, "Data remanence in semiconductor devices," in Proceedings of the
10th conference on USENIX Security Symposium - Volume 10, Washington, D.C.,
2001.

[142] D. P. Maher, "Fault Induction Attacks, Tamper Resistance, and Hostile Reverse
Engineering in Perspective," in Proceedings of the First International Conference
on Financial Cryptography, 1997, pp. 109-122.

[143] J.-J. Quisquater and D. Samyde, "Eddy current for magnetic analysis with active
sensor," Proceedings of Esmart, 2002.

[144] S. P. Skorobogatov and R. Anderson, "Optical Fault Induction Attacks,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2003,
2003.

[145] E. Biham and A. Shamir, "Differential Cryptanalysis of DES-like
Cryptosystems," Journal of Cryptology, vol. 4, pp. 3-72, 1991.

[146] L. Hemme, "A Differential Fault Attack Against Early Rounds of (Triple-)DES "
Cryptographic Hardware and Embedded Systems - CHES 2004, vol. 3156
(LNCS), pp. 254-267, 2004.

[147] C. Giraud and H. Thiebeauld, "A Survey on Fault Attacks," presented at the
Smart Card Research and Advanced Applications VI - 18th IFIP World Computer
Congress, 2004.

[148] J. Blömer and J.-P. Seifert, "Fault Based Cryptanalysis of the Advanced
Encryption Standard (AES) " presented at the Financial Cryptography, 2003.

[149] C.-N. Chen and S.-M. Yen, "Differential Fault Analysis on AES Key Schedule
and Some Countermeasures," presented at the Information Security and Privacy,
8th Australasian Conference, ACISP 2003, 2003.

[150] P. Dusart, et al., "Differential Fault Analysis on A.E.S," presented at the Applied
Cryptography and Network Security (ACNS 2003), 2003.

[151] C. Giraud, "DFA on AES," IACR eprint archive, Report 2003/008, 2003.
[152] G. Piret and J.-J. Quisquater, "A Differential Fault Attack Technique against SPN

Structures, with Application to the AES and KHAZAD," presented at the
Cryptographic Hardware and Embedded Systems (CHES 2003), 2003.

[153] J. J. Hoch and A. Shamir, "Fault Analysis of Stream Ciphers," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2004, 2004.

[154] E. Biham, et al., "Impossible Fault Analysis of RC4 and Differential Fault
Analysis of RC4," presented at the Fast Software Encryption (FSE 2005), 2005.

[155] D. Boneh, et al., "On the Importance of Checking Cryptographic Protocols for
Faults," presented at the Advances in Cryptology - EUROCRYPT'97, 1997.

118

[156] D. Boneh, et al., "On the Importance of Eliminating Errors in Cryptographic
Computations " Journal of Cryptology, vol. 14, pp. 101-119, 2001.

[157] M. Joye, et al., "Chinese Remaindering Based Cryptosystems in the Presence of
Faults " Journal of Cryptology, vol. 12, pp. 241-245, 1999.

[158] J. Blömer, et al., "Sign Change Fault Attacks On Elliptic Curve Cryptosystems,"
presented at the Fault Diagnosis and Tolerance in Cryptography, 2006.

[159] I. Biehl, et al., "Differential Fault Attacks on Elliptic Curve Cryptosystems," in
Proceedings of the 20th Annual International Cryptology Conference on
Advances in Cryptology (CRYPTO 2000), 2000, pp. 131-146.

[160] F. Bao, et al., "Breaking Public Key Cryptosystems on Tamper Resistant Devices
in the Presence of Transient Faults," in Proceedings of the 5th International
Workshop on Security Protocols, 1998, pp. 115-124.

[161] M. Joye, et al., "RSA-type Signatures in the Presence of Transient Faults,"
Proceedings of the 6th IMA International Conference on Cryptography and
Coding, vol. 1355 (LNCS), pp. 155-160, 1997.

[162] O. Goldreich, "Towards a theory of software protection and simulation by
oblivious RAMs," in Proceedings of the nineteenth annual ACM symposium on
Theory of computing, 1987, pp. 182-194.

[163] O. Goldreich and R. Ostrovsky, "Software protection and simulation on oblivious
RAMs," Journal of the ACM, vol. 43, pp. 431-473, 1996.

[164] M. G. Kuhn, "Cipher Instruction Search Attack on the Bus-Encryption Security
Microcontroller DS5002FP," IEEE Transactions on Computers, vol. 47, pp.
1153-1157, 1998.

[165] R. M. Best, "Preventing Software Piracy with Crypto-Microprocessors," Proc.
IEEE Spring COMPCON'80, pp. 466-469, 1980.

[166] X. Zhuang, et al., "HIDE: an infrastructure for efficiently protecting information
leakage on the address bus," in Proceedings of the 11th international conference
on Architectural support for programming languages and operating systems,
Boston, MA, USA, 2004.

[167] J.-S. Coron, et al., "Statistics and secret leakage," ACM Transactions on
Embedded Computing Systems, vol. 3, pp. 492-508, 2004.

[168] M.-L. Akkar, et al., "Power Analysis, What Is Now Possible..." presented at the
Advances in Cryptology - ASIACRYPT 2000, 2000.

[169] M. Joye and S.-M. Yen, "The Montgomery Powering Ladder," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2002, 2003.

[170] J. Bos and M. Coster, "Addition chain heuristics," presented at the Advances in
cryptology - Crypto 1989, 1989.

[171] D. E. Knuth, The Art of Computer Programming, 2nd ed. vol. 2: Semi Numerical
Algorithms: Addison Wesley, 1981.

[172] Ç. K. Koç, "Analysis of Sliding Window Techniques for Exponentiation,"
Computers and Mathematics with Applications, vol. 30, pp. 17-24, 1995.

[173] C. D. Walter, "Exponentiation Using Division Chains," IEEE Transactions on
Computers, vol. 47, pp. 757-765, 1998.

[174] C. D. Walter, "MIST : An Efficient, Randomized Exponentiation Algorithm for
Resisting Power Analysis " presented at the Topics in Cryptology -- CT-RSA
2002, 2002.

119

[175] M. A. Hasan, "Power Analysis Attacks and Algorithmic Approaches to Their
Countermeasures for Koblitz Curve Cryptosystems," IEEE Transactions on
Computers, vol. 50, pp. 1071-1083, 2001.

[176] M. Joye and C. Tymen, "Protections against Differential Analysis for Elliptic
Curve Cryptography," presented at the Cryptographic Hardware and Embedded
Systems - CHES 2001, 2001.

[177] P.-Y. Liardet and N. P. Smart, "Preventing SPA/DPA in ECC systems using the
Jacobi form," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2001, 2001.

[178] E. Oswald and M. Aigner, "Randomized Addition-Subtraction Chains as a
Countermeasure against Power Attacks," Cryptographic Hardware and
Embedded Systems - CHES 2001, vol. 2162 (LNCS), pp. 39-50, 2001.

[179] J.-C. Ha and S.-J. Moon, "Randomized Signed-Scalar Multiplication of ECC to
Resist Power Attacks," presented at the Cryptographic Hardware and Embedded
Systems - CHES 2002, 2002.

[180] T. Izu and T. Takagi, "A Fast Parallel Elliptic Curve Multiplication Resistant
against Side Channel Attacks," Proceedings of the 5th International Workshop on
Practice and Theory in Public Key Cryptosystems (PKC), vol. 2274 (LNCS), pp.
280-296, 2002.

[181] J.-S. Coron, "Resistance Against Differential Power Analysis For Elliptic Curve
Cryptosystems " presented at the Cryptographic Hardware and Embedded
Systems - CHES 1999, 1999.

[182] T. S. Messerges, et al., "Power Analysis Attacks of Modular Exponentiation in
Smartcards," presented at the Cryptographic Hardware and Embedded Systems -
CHES 1999, 1999.

[183] K. Itoh, et al., "DPA Countermeasures by Improving the Window Method,"
Revised Papers from the 4th International Workshop on Cryptographic Hardware
and Embedded Systems, vol. 2523 (LNCS), pp. 303-317, 2003.

[184] M. Ahn, et al., "A Random M-ary Method Based Countermeasure against Side
Channel Attacks," presented at the Computational Science and Its Applications -
ICCSA 2003, 2003.

[185] C. D. Walter, "Sliding Windows Succumbs to Big Mac Attack," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2001, 2001.

[186] S. Chari, et al., "Towards Sound Approaches to Counteract Power-Analysis
Attacks," presented at the Advances in Cryptology - Crypto 1999, 1999.

[187] D. Chaum, "Blind signatures for untraceable payments," presented at the
Advances in Cryptology -- CRYPTO '82, 1983.

[188] D. Chaum, "Showing credentials without identification: transferring signatures
between unconditionally unlinkable pseudonyms," presented at the Advances in
Cryptology - AUSCRYPT '90, 1990.

[189] M.-L. Akkar and C. Giraud, "An Implementation of DES and AES, Secure
against Some Attacks," presented at the Cryptographic Hardware and Embedded
Systems - CHES 2001, 2001.

[190] J.-S. Coron and L. Goubin, "On Boolean and Arithmetic Masking against
Differential Power Analysis," presented at the Cryptographic Hardware and
Embedded Systems - CHES 2000, 2000.

120

[191] L. Goubin, "A Sound Method for Switching between Boolean and Arithmetic
Masking," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2001, 2001.

[192] T. S. Messerges, "Securing the AES Finalists Against Power Analysis Attacks,"
in Proceedings of the 7th International Workshop on Fast Software Encryption
(FSE '00), 2000, pp. 150-164.

[193] J. D. Golic and C. Tymen, "Multiplicative Masking and Power Analysis of AES,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2002,
2003.

[194] E. Trichina, et al., "Simplified Adaptive Multiplicative Masking for AES,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2002,
2003.

[195] D. May, et al., "Random Register Renaming to Foil DPA," presented at the
Cryptographic Hardware and Embedded Systems - CHES 2001, 2001.

[196] J. A. Ambrose, et al., "RIJID: random code injection to mask power analysis
based side channel attacks," in Proceedings of the 44th annual conference on
Design automation, 2007, pp. 489-492.

[197] Y. Ishai, et al., "Private Circuits: Securing Hardware against Probing Attacks "
presented at the Advances in Cryptology - CRYPTO 2003, 2003.

[198] T. S. Messerges, et al., Method and Apparatus for Preventing Information
Leakage Attacks on a Microelectronic Assembly: US Patent 6,295,606, 2001.

[199] E. Trichina, "Combinational logic design for AES subbyte transformation on
masked data," Cryptology ePrint Archive, Report 2003/236, 2003.

[200] E. Trichina and T. Korkishko, "Small Size, Low Power, Side Channel-Immune
AES Coprocessor: Design and Synthesis Results," in Proceedings of the Fourth
Conference on the Advanced Encryption Standard (AES), 2004.

[201] S. Mangard, et al., "Side-Channel Leakage of Masked CMOS Gates," presented at
the Topics in Cryptology - CT-RSA 2005, 2005.

[202] W. Fischer and B. M. Gammel, "Masking at Gate Level in the Presence of
Glitches," presented at the Cryptographic Hardware and Embedded Systems -
CHES 2005, 2005.

[203] S. Moore, et al., "Improving Smart Card Security using Self-timed Circuits," in
Proceedings of the 8th IEEE International Symposium on Asynchronous Circuits
and Systems - ASYNC '02, 2002, pp. 23-58.

[204] J. J. A. Fournier, et al., "Security Evaluation of Asynchronous Circuits,"
presented at the Cryptographic Hardware and Embedded Systems - CHES 2003,
2003.

[205] M. Bucci, et al., "Three-Phase Dual-Rail Pre-charge Logic " presented at the
Cryptographic Hardware and Embedded Systems - CHES 2006, 2006.

[206] T. Popp and S. Mangard, "Masked Dual-Rail Pre-charge Logic: DPA-Resistance
Without Routing Constraints," presented at the Cryptographic Hardware and
Embedded Systems - CHES 2005, 2005.

[207] D. Suzuki and M. Saeki, "Security Evaluation of DPA Countermeasures Using
Dual-Rail Pre-charge Logic Style," presented at the Cryptographic Hardware and
Embedded Systems - CHES 2006, 2006.

121

[208] K. Tiri, et al., "A Dynamic and Differential CMOS Logic with Signal
Independent Power Consumption to Withstand Differential Power Analysis on
Smart Cards," presented at the Proc. 28th European Solid-State Circuits Conf.
(ESSCIRC 02), 2002.

[209] Z. Toprak and Y. Leblebici, "Low-power current mode logic for improved DPA-
resistance in embedded systems," presented at the IEEE International Symposium
on Circuits and Systems (ISCAS 2005), 2005.

[210] F. Macé, et al., "A Design Methodology for Secured ICs Using Dynamic Current
Mode Logic," presented at the Integrated Circuit and System Design, 2005.

[211] M. W. Allam and M. I. Elmasry, "Dynamic current mode logic (DyCML): a new
low-power high-performance logic style," Solid-State Circuits, IEEE Journal of,
vol. 36, pp. 550-558, 2001.

[212] J. Daemen and V. Rijmen, "Resistance against implementation attacks: A
comparative study of the AES proposals," in Proceedings of the Second Advanced
Encryption Standard (AES) Candidate Conference, 1999.

[213] G. B. Ratanpal, et al., "An On-Chip Signal Suppression Countermeasure to Power
Analysis Attacks," IEEE Transactions on Dependable and Secure Computing, vol.
1, pp. 179-189, 2004.

[214] A. Shamir, "Protecting Smart Cards from Passive Power Analysis with Detached
Power Supplies," presented at the Cryptographic Hardware and Embedded
Systems - CHES 2000, 2000.

[215] J. F. Dhem, "Design of an effcient public-key cryptographic library for risc-based
smart cards," Ph.D. Thesis, Université catholique de Louvain (UCL), Crypto
Group - Laboratoire de microélectronique (DICE),1998.

[216] C. D. Walter, "Montgomery Exponentiation Needs no Final Subtractions,"
Electronics Letters, vol. 35, pp. 1831-1832, 1999.

[217] C. D. Walter, "Montgomery's Multiplication Technique: How to Make It Smaller
and Faster " presented at the Cryptographic Hardware and Embedded Systems -
CHES 1999, 1999.

[218] G. Hachez and J.-J. Quisquater, "Montgomery Exponentiation with no Final
Subtractions: Improved Results," presented at the Cryptographic Hardware and
Embedded Systems - CHES 2000, 2000.

[219] E. Biham, "A Fast New DES Implementation in Software," in Proceedings of the
4th International Workshop on Fast Software Encryption (FSE), 1997, pp. 260-
272.

[220] E. Brickell, et al., "Software mitigations to hedge AES against cache-based
software side channel vulnerabilities," IACR ePrint Archive, Report
2006/052,2006.

[221] E. Brickell, et al., "Mitigating cache/timing attacks in AES and RSA software
implementations," presented at the RSA Conference 2006, session DEV-203,
http://2006.rsaconference.com/us/cd_pdfs/DEV-203.pdf, 2006.

[222] D. Page, "Partitioned Cache Architecture as a Side-Channel Defense Mechanism
" Cryptology ePrint Archive, Report 2005/280,2005.

[223] B. Pfitzmann, "Information Hiding Terminology - Results of an Informal Plenary
Meeting and Additional Proposals," in Proceedings of the First International
Workshop on Information Hiding, 1996, pp. 347-350.

122

[224] F. A. P. Petitcolas, et al., "Information Hiding - A Survey," Proceedings of the
IEEE, special issue on protection of multimedia content, vol. 87, pp. 1062-1078,
1999.

[225] N. F. Johnson, et al., Information Hiding: Steganography and Watermarking -
Attacks and Countermeasures: Springer, 2000.

[226] "Encyclopedia of Cryptography and Security," Tilborg and H. C. A. van, Eds., ed:
Springer, 2005, p. 159.

[227] M. Miller and J. B. M. Miller, Digital Watermarking: Principles and Practice:
Morgan Kaufmann, 2001.

[228] J. Dittmann, et al., "Media-independent watermarking classification and the need
for combining digital video and audio watermarking for media authentication,"
presented at the International Conference on Information Technology: Coding and
Computing, 2000.

[229] N. Cvejic and T. Seppanen, Digital Audio Watermarking Techniques and
Technologies: Applications and Benchmarks IGI Global, 2007.

[230] R. G. van Schyndel, et al., "A digital watermark," in IEEE International
Conference on Image Processing - ICIP '94, 1994, pp. 86-90.

[231] I. J. Cox, et al., "A Secure, Robust Watermark for Multimedia," in Proceedings of
the First International Workshop on Information Hiding, 1996, pp. 185-206.

[232] M. Barni, et al., "A DCT-domain system for robust image watermarking," Signal
Process., vol. 66, pp. 357-372, 1998.

[233] W.-N. Lie, et al., "Robust image watermarking on the DCT domain," presented at
the IEEE International Symposium on Circuits and Systems - ISCAS 2000, 2000.

[234] C. I. Podilchuk and W. Zeng, "Digital image watermarking using visual models,"
in Proceedings of the SPIE Conference on Human Vision and Electronic Imaging
II, 1997, pp. 100-111.

[235] D. Kundur and D. Hatzinakos, "A Robust Digital Image Watermarking Scheme
Using the Wavelet-Based Fusion," in Proceedings of the International
Conference on Image Processing (ICIP '97), 1997, pp. 544-547.

[236] A. A. Reddy and B. N. Chatterji, "A new wavelet based logo-watermarking
scheme," Pattern Recogn. Lett., vol. 26, pp. 1019-1027, 2005.

[237] L. Boney, et al., "Digital Watermarks for Audio Signals," in Proceedings of the
1996 International Conference on Multimedia Computing and Systems (ICMCS
'96), 1996, pp. 473-480.

[238] M. Ramkumar, et al., "A robust data hiding scheme for images using DFT,"
presented at the International Conference on Image Processing - ICIP '99, 1999.

[239] J. J. K. O. Ruanaidh, et al., "Phase watermarking of digital images," in
International Conference on Image Processing - ICIP '96, 1996, pp. 239-242.

[240] I. J. Cox, et al., "Secure Spread Spectrum Watermarking for Multimedia," IEEE
Transactions on Image Processing, vol. 6, pp. 1673-1687, 1997.

[241] J. R. Smith and B. O. Comiskey, "Modulation and Information Hiding in Images,"
in Proceedings of the First International Workshop on Information Hiding, 1996,
pp. 207-226.

[242] W. Bender, et al., "Techniques for Data Hiding," IBM Systems Journal, vol. 35,
pp. 313-336, 1996.

123

[243] J. Fridrich, "Robust Bit Extraction from Images," presented at the IEEE
International Conference on Multimedia Computing and Systems (ICMCS '99),
1999.

[244] R. B. Wolfgang and E. J. Delp, "A Watermark For Digital Images," presented at
the IEEE International Conference on Image Processing (ICIP'96), 1996.

[245] J. T. Brassil, et al., "Copyright protection for the electronic distribution of text
documents," Proceedings of the IEEE, vol. 87, pp. 1181-1196, 1999.

[246] P. Wayner, "Mimic functions," Cryptologia, vol. XVI(3), pp. 285-299, 1992.
[247] US-CERT, http://www.us-cert.gov/.
[248] SecureFocus, http://www.securityfocus.com/.
[249] INSECURE.ORG, http://seclists.org/.
[250] The Mozilla Organization. "Javascript lambda replace exposes memory contents".

http://www.mozilla.org/security/announce/mfsa2005-33.html, 2005.
[251] S. Byers, "Information leakage caused by hidden data in published documents,"

Security & Privacy, IEEE, vol. 2, pp. 23-27, 2004.
[252] P. Gutmann, "Lessons Learned in Implementing and Deploying Crypto

Software," in Proceedings of the 11th USENIX Security Symposium, 2002.
[253] D. Engler, et al., "Bugs as deviant behavior: a general approach to inferring errors

in systems code," SIGOPS Oper. Syst. Rev., vol. 35, pp. 57-72, 2001.
[254] "Wu-ftpd core dump vulnerability,"

http://www.insecure.org/sploits/ftp.coredump2.html.
[255] "Solaris (and others) ftpd core dump bug,"

http://www.insecure.org/sploits/ftpd.pasv.html.
[256] "Coredump hole in imapd and ipop3d in slackware 3.4,"

http://www.insecure.org/sploits/slackware.ipop.imap.core.html.
[257] "Security Dynamics FTP server core problem,"

http://www.insecure.org/sploits/solaris.secdynamics.core.html.
[258] J. Chow, et al., "Understanding data lifetime via whole system simulation," in

Proceedings of the 13th conference on USENIX Security Symposium - Volume 13,
San Diego, CA, 2004.

[259] Arkoon Security Team. "Information leak in the Linuxkernel ext2
implementation". http://arkoon.net/advisories/ext2-make-empty-leak.txt, March
2005.

[260] N. Provos, "Encrypting virtual memory," in Proceedings of the 9th conference on
USENIX Security Symposium - Volume 9, Denver, Colorado, 2000.

[261] J. A. Halderman, et al., "Lest We Remember: Cold Boot Attacks on Encryption
Keys," Center For Information Technology Policy, Princeton University,February
2008.

[262] D. Lie, et al., "Architectural support for copy and tamper resistant software,"
SIGPLAN Not., vol. 35, pp. 168-177, 2000.

[263] G. E. Suh, et al., "AEGIS: architecture for tamper-evident and tamper-resistant
processing," in Proceedings of the 17th annual international conference on
Supercomputing, San Francisco, CA, USA, 2003.

[264] R. B. Lee, et al., "Architecture for Protecting Critical Secrets in
Microprocessors," in Proceedings of the 32nd annual international symposium on
Computer Architecture, 2005.

124

[265] J. S. Dwoskin and R. B. Lee, "Hardware-rooted trust for secure key management
and transient trust," in Proceedings of the 14th ACM conference on Computer and
communications security, Alexandria, Virginia, USA, 2007, pp. 389-400.

[266] D. Champagne and R. B. Lee, "Scalable architectural support for trusted
software," in High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, 2010, pp. 1-12.

[267] D. Champagne, et al., "The Reduced Address Space (RAS) for Application
Memory Authentication," in Proceedings of the 11th international conference on
Information Security, Taipei, Taiwan, 2008, pp. 47-63.

[268] M. Matsui, "Linear cryptanalysis method for DES cipher," in Workshop on the
theory and application of cryptographic techniques on Advances in cryptology,
Lofthus, Norway, 1994, pp. 386-397.

[269] P. Ranganathan, et al., "Reconfigurable caches and their application to media
processing," in Proceedings of the 27th annual international symposium on
Computer architecture, Vancouver, British Columbia, Canada, 2000, pp. 214-224.

[270] P. Shivakumar and N. Jouppi, "Cacti 3.0: An integrated cache timing, power, and
area model," Technical report, COMPAQ Western Research Lab, 2001.

[271] T. M. Cover and J. A. Thomas, Elements of information theory: Wiley-
Interscience, 1991.

[272] J. Kong, et al., "Deconstructing new cache designs for thwarting software cache-
based side channel attacks," in Proceedings of the 2nd ACM workshop on
Computer security architectures, Alexandria, Virginia, USA, 2008, pp. 25-34.

[273] J. Kong, et al., "Hardware-software integrated approaches to defend against
software cache-based side channel attacks," in High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th International Symposium on, 2009,
pp. 393-404.

[274] M-Sim v2.0, http://www.cs.binghamton.edu/~jsharke/m-sim/.
[275] M. Zhang and K. Asanovic, "Highly-Associative Caches for Low-Power

Processors " presented at the Kool Chips Workshop, MICRO-33, Monterey, CA,
December 2000.

[276] C. Zhang, "Balanced Cache: Reducing Conflict Misses of Direct-Mapped
Caches," in Proceedings of the 33rd annual international symposium on
Computer Architecture, 2006, pp. 155-166.

[277] H. Al-Zoubi, et al., "Performance evaluation of cache replacement policies for the
SPEC CPU2000 benchmark suite," in Proceedings of the 42nd annual Southeast
regional conference, Huntsville, Alabama, 2004, pp. 267-272.

[278] V. Fischer, et al., "True Random Number Generator Embedded in Reconfigurable
Hardware," in Revised Papers from the 4th International Workshop on
Cryptographic Hardware and Embedded Systems, 2003, pp. 415-430.

[279] S. Thoziyoor, et al., "CACTI 5.0," PHL Techincal Report HPL-2007-167.
[280] Predictive Technology Model. http://www.eas.asu.edu/~ptm.
[281] M. D. Hill and A. J. Smith, "Evaluating Associativity in CPU Caches," IEEE

Trans. Comput., vol. 38, pp. 1612-1630, 1989.
[282] http://www.simplescalar.com.

125

[283] M. D. Powell, et al., "Reducing set-associative cache energy via way-prediction
and selective direct-mapping," in Proceedings of the 34th annual ACM/IEEE
international symposium on Microarchitecture, Austin, Texas, 2001, pp. 54-65.

[284] K. Inoue, et al., "Way-predicting set-associative cache for high performance and
low energy consumption," in Proceedings of the 1999 international symposium on
Low power electronics and design, San Diego, California, United States, 1999, pp.
273-275.

[285] P. P. Shirvani and E. J. McCluskey, "PADded Cache: A New Fault-Tolerance
Technique for Cache Memories," in Proceedings of the 1999 17TH IEEE VLSI
Test Symposium, 1999, p. 440.

[286] M. Mutyam and V. Narayanan, "Working with process variation aware caches,"
in Proceedings of the conference on Design, automation and test in Europe, Nice,
France, 2007, pp. 1152-1157.

[287] H. Lee, et al., "Performance of Graceful Degradation for Cache Faults," in
Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2007, pp.
409-415.

[288] D. M. Tullsen, et al., "Simultaneous multithreading: Maximizing on-chip
parallelism," in Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 392-403.

[289] D. T. Marr, et al., "Hyper-Threading Technology Architecture and
Microarchitecture," Intel Technology Journal, vol. 6, pp. 4-15, 2002.

[290] H. M. Mathis, et al., "Characterization of simultaneous multithreading (SMT)
efficiency in POWER5," IBM Journal of Research and Development, vol. 49, pp.
555-564, 2005.

[291] "Intel Itanium Architecture Software Developer’s Manuals," vol. 1-3, available at
http://www.intel.com/design/itanium2/documentation.htm.

[292] R. Zahir, et al., "OS and compiler considerations in the design of the IA-64
architecture," SIGARCH Comput. Archit. News, vol. 28, pp. 212-221, 2000.

[293] A. Raman, et al., "Speculative parallelization using software multi-threaded
transactions," in Proceedings of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating systems, Pittsburgh,
Pennsylvania, USA, 2010, pp. 65-76.

[294] H. Kim, et al., "Scalable Speculative Parallelization on Commodity Clusters," in
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, 2010, pp. 3-14.

[295] M. C. Davey and D. J. C. Mackay, "Reliable communication over channels with
insertions, deletions, and substitutions," Information Theory, IEEE Transactions
on, vol. 47, pp. 687-698, 2001.

[296] R. L. Doburshin, "Shannon’s Theorems for Channels with Synchronization
Errors," Problemy Peredachi Informatsii, vol. 3, pp. 18-36, 1967.

[297] N. D. Vvedenskaya and R. L. Doburshin, "The Computation on a Computer of
The Channel Capacity of a Line with Symbol Drop-out," Problemy Peredachi
Informatsii, vol. 4, pp. 92-95, 1968.

[298] A. S. Dolgopolov, "Capacity Bounds for a Channel with Synchronization Errors,"
Problemy Peredachi Informatsii, vol. 26, pp. 27-37, 1990.

126

[299] K. S. Zigangirov, "Sequential Decoding for A Binary Channel with Drop Outs
and Insertions," Problemy Peredachi Informatsii, vol. 5, pp. 22-30, 1969.

[300] D. Leigh, "Capacity of Insertion and Deletion Channels," Project Report,
available at http://www.inference.phy.cam.ac.uk/is/papers/, 2001.

[301] J. Luo and A. Ephremides, "On the throughput, capacity, and stability regions of
random multiple access," IEEE/ACM Trans. Netw., vol. 14, pp. 2593-2607, 2006.

