
...

NEWCACHE: SECURE CACHE
ARCHITECTURE THWARTING CACHE

SIDE-CHANNEL ATTACKS
...

NEWCACHE IS A SECURE CACHE THAT THWARTS CACHE SIDE-CHANNEL ATTACKS,

PREVENTING THE LEAKAGE OF CRITICAL INFORMATION. THE AUTHORS PRESENT AN

IMPROVED DESIGN OF NEWCACHE, IN TERMS OF SECURITY, CIRCUIT DESIGN, AND

SIMPLICITY. THEY SHOW NEWCACHE’S SECURITY AGAINST A SUITE OF CACHE SIDE-

CHANNEL ATTACKS AND DESIGN A TEST CHIP TO PROVE ITS FEASIBILITY. NEWCACHE’S

SYSTEM PERFORMANCE IS AS GOOD AS CONVENTIONAL SET-ASSOCIATIVE CACHES.

......An increasing amount of sensitive
data and proprietary programs are now
stored in cyberspace. With the escalating
number of cyberattacks, it is crucial that we
protect the confidentiality and integrity of
data and programs in our networked com-
puters. Although strong cryptography can be
used to encrypt and authenticate data, this
protection is rendered useless if the secret
crypto keys can be leaked out. It turns out
that this can be done rather easily through
cache side-channel attacks, which are soft-
ware attacks on hardware caches. Today, all
processors with caches—from embedded sys-
tems to smartphones to cloud computers—
are susceptible to these cache side-channel
attacks.

Software memory isolation mechanisms,
like virtual machine or process isolation, can-
not prevent cache side-channel attacks
because the underlying hardware caches are
still shared. Also, it is important to under-
stand that leakage of critical information

through cache side-channel attacks happens
with correctly functioning caches. Unlike
software security vulnerabilities that are due
to software bugs, cache side-channel attacks
are not due to hardware flaws. They use the
caches’ intrinsic behaviors, wherein cache hits
are fast and cache misses are slow.

Although researchers have proposed soft-
ware solutions to cache side-channel attacks,
they incur significant performance degrada-
tion—reported as 3� to 10� slowdown.1

Also, their security is not assured, because
software cannot directly control the hard-
ware-managed caches, which can change
with different implementations of the pro-
cessor-cache subsystem. Furthermore, al-
though it might be possible to change the
software for well-known crypto libraries, it is
not possible to change all legacy software
with embedded crypto routines, nor other
software using secret or sensitive data or
code. It may be more feasible to provide
security for legacy programs by changing the

Fangfei Liu

Hao Wu

Princeton University

Kenneth Mai

Carnegie Mellon University

Ruby B. Lee

Princeton University

...

8 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

underlying cache architecture at the hardware
level.

Hardware solutions proposed to thwart
cache side-channel attacks have typically used
some form of cache partitioning with reduced
overall system performance.2–4 In contrast,
Newcache5 is a novel secure cache architecture
based on randomized mappings, implement-
ing a “moving target defense” strategy for
securing hardware caches. Although New-
cache has a random replacement algorithm,
its design and testing is fully deterministic. It
has the promise of defeating cache side-chan-
nel attacks without degrading performance.5

However, when considering technology trans-
fer to the industry, it is necessary to perform
additional security testing, extensive perform-
ance evaluation for today’s computing envi-
ronments (such as cloud computing and
smartphones), and design a test chip to prove
the feasibility of a Newcache-style cache.
Hence, we thoroughly evaluated Newcache’s
system-level security and performance using a
detailed simulation of Newcache on a full sys-
tem simulator. We also designed a test chip to
prove the feasibility of Newcache and to meas-
ure its physical characteristics, such as access
latency, power, and area, compared to a con-
ventional set-associative (SA) cache of the
same size. We report the results in this article.

Background
We give a brief introduction to cache side-
channel attacks and the Newcache architecture.

Overview of Cache Side-Channel Attacks
Because caches are shared resources, cache
states affect and are affected by all processes.
Therefore, one process can infer the cache
usage of another process through cache con-
tention. In conventional SA caches with fixed
memory-to-cache mapping and least-recently-
used replacement, all cache contentions are
deterministic, which enables an attacker proc-
ess to deduce the memory addresses accessed
by a victim process—and, therefore, to deduce
the secret information if the memory ad-
dresses are secret-dependent.

Cache side-channel attacks on both level-1
(L1) caches6–8 and last-level caches9 have been
shown. In this article, we discuss the attacks
against the L1 caches, including both the data

cache (D-cache) and the instruction cache
(I-cache), because L1 caches are closest to the
processor, so attacks against them are the fast-
est and most dangerous. We assume the
attacker can share the L1 cache with the victim
through simultaneous multithreading (SMT)
or preemptive scheduling.

Dynamic Randomized Mapping and Newcache
A promising approach to defeat cache side-
channel attacks is to randomize the memory-
to-cache mapping at runtime so that an
attacker cannot extract useful information
from observing cache contention. Randomized
mapping can be achieved using a fully associa-
tive cache with a random replacement algo-
rithm. However, the fully associative cache is
slow and power hungry. Newcache provides a
practical way to achieve randomized mapping
with much lower impact on latency and
power.5,10–12 Conceptually, this is done by a
level of indirection. The memory address is
first mapped to a logical direct mapped
(LDM) cache, and each LDM cache line is
then mapped in a fully associative and
randomized way to a physical cache line.
Although this two-step mapping is done con-
ceptually, physically, the LDM cache does not
actually exist, and the mapping is done by
accessing a content addressable memory
(CAM; see Figure 1). Each CAM entry is
called a line number register (LNreg), which
stores the logical cache line number in the
LDM cache of the associated physical cache
line. In essence, the LNregs replace the static
address decoder in a direct-mapped cache
architecture. Although all other aspects of a
cache’s architecture have been optimized for
performance or power reasons over the deca-
des, a key novelty of the Newcache architec-
ture is that it is the first to consider such
replacement of a cache’s address decoder.

Given the existence of LNregs in New-
cache, it is easy to increase the width of the
LNregs by a few bits, called k extra index bits.
This corresponds to an LDM cache that is 2k

times larger than the physical cache, which
can improve both its performance and its
security.

A cache access compares the index bits
within the desired memory address with the
contents of all the LNregs for a match. On a
match with the contents of LNregi, called an

...

SEPTEMBER/OCTOBER 2016 9

index hit, Newcache checks that the associ-
ated cache tag matches the rest of the
memory address, called a tag hit, and simulta-
neously reads out the associated cache line. If
the tag part does not match (tag miss), the
associated cache line is replaced with the new
cache line, as for a direct-mapped cache. On
an index miss, a random cache line is selected
for replacement, giving a dynamic, random-
ized memory-to-cache mapping.

To eliminate potential fixed-cache con-
flicts during a tag miss between a victim proc-
ess and an attacker process, Newcache also
provides each trust domain with a disjoint
mapping (identified by a Trust Domain Iden-
tifier [TDID]) so that no conflicts will ever
occur between two processes from different
trust domains. Newcache can also eliminate
the cache conflicts between protected and
unprotected memory regions within a proc-
ess, by concatenating the TDID with a “P”

bit to indicate a protected cache line. We
improved the original Newcache design5 by
moving the P bit from the tag array to the
LNregs. This deflects a subtle exploit10 and
simplifies the replacement algorithm.5 Note
that the CAM implementation of Newcache
(which we’ll describe in the “Test Chip
Design” section) also differs from the circuit
design proposed for the original Newcache.5

Security Testing
Newcache targets all the L1 cache attacks that
exploit cache contention. We identified dif-
ferent classes of cache side-channel attacks:
access-based versus timing-based attacks, and
attacks on instructions versus attacks on data
(see Table 1). We developed an attack suite of
cache side-channel attacks, including known
attacks on vulnerable cryptographic algo-
rithms (see Table 2), to evaluate Newcache’s
security. Our security testing results show
that Newcache defeats all known cache side-
channel attacks on the L1 D-cache and
I-cache due to cache contention.

Prime-Probe and Evict-Time are two
common attack techniques.6 Prime-Probe is
an access-driven attack in which the attacker
measures how the victim’s memory accesses
impact its own memory accesses. Evict-Time
is a timing-driven attack in which the
attacker measures the total execution time of
the victim’s encryption operation.

A Prime-Probe attack works as follows:

� Prime: An attacker A fills the cache
(or just one or more security-critical
cache sets) with its own data.

� Idle: A waits for a Prime-Probe inter-
val while the victim process V gains
control of the processor and uses the
cache.

� Probe: A gains control of the pro-
cessor again and measures the time to
access the same cache sets to learn V’s
cache activity.

Cache data line (64 bytes)= [LNregi]?

= [LNreg2
n
–1]

P

Memory address

tag index

tagVD

n + k

=

Tag hit/miss

Index hit/miss

0

Data out

Address
decoder

TDID

d

CAM

Block offset

Data arrayTag array

SRAM SRAM

= [LNreg0]

2n–1

Figure 1. Block diagram of Newcache. The fixed address decoder of a direct-

mapped cache is replaced by a dynamic (inverse) line-number mapper,

which can be implemented by content addressable memory (CAM).

Table 1. Contention-based attacks.

Cache type being attacked Access-based attack Timing-based attack

Data cache Prime-Probe Evict-Time

Instruction cache Prime-Probe N/A

..

SECURITY

..

10 IEEE MICRO

If V uses some cache sets during the
Prime-Probe interval, some of A’s cache lines
in these cache sets will be evicted, which will
cause a longer load time for those cache sets
during A’s probe phase. The Prime-Probe
technique can attack both the D-cache and
the I-cache.

An Evict-Time attack works as follows:

� Evict: An attacker A fills one specific
cache set with its own data.

� Time: A triggers the victim process to
perform the security-critical opera-
tion (for example, encrypting one
block of plaintext) and measures V’s
execution time.

If the victim accesses the evicted cache set,
its execution time tends to be statistically
higher than when it does not access the evicted
cache set, due to the victim having a cache
miss.

We modeled Newcache in gem5,13 a
cycle-accurate simulator, as a cache object
that can be used for any cache in the cache
hierarchy. Our attack suite can be run on
gem5 on top of the system with Newcache or
conventional caches.

Prime-Probe Attack on L1 D-Cache
We use the Prime-Probe attack against the
first-round encryption of the Advanced
Encryption Standard 128 (AES-128). The
attack code primes the D-cache by reading
data from an array before it calls the AES
encryption library call to encrypt one block of
random plaintext. Then the attack code probes
the array and measures the time to access each
cache set (for the SA cache) or each cache line

(for Newcache). For the SA cache, the array
can be the same size as the D-cache. For New-
cache, we use a smaller array with the same size
as the AES tables to avoid self-
eviction during Prime and Probe operations.

Figure 2 shows the D-cache heat maps for
the SA cache and Newcache. Each point rep-
resents the average probe time over 220 trials,
with the lighter color representing a longer
probe time. Because we use an all-zero key
(for simplicity without losing generality), we
can see a clear bright straight line if the attack
succeeds, which is the case for the eight-way
SA cache (see Figure 2a). However, there is
no bright straight line in the heat map for
Newcache, which indicates that Newcache
can defeat the attack (see Figure 2b).

Although the visual results are clear, we
also confirm them with quantitative results.
We can calculate the Pearson correlation coef-
ficient between the attacker’s measurements
(the D-cache heat map) and ground truth.
The ground truth is the expected D-cache pat-
tern—that is, a piecewise straight line with
each segment containing 16 points (a 64-byte
cache line contains 16 AES table entries). The
closer the coefficient is to zero, the less accu-
rately the attacker is observing patterns. The
correlation coefficients in parentheses for the
D-cache in Table 2 agree with the visual heat
map.

Evict-Time Attack on L1 D-Cache
The Evict-Time attack is also performed
against the first-round encryption of AES-
128. The attack code first evicts one cache
line containing AES table entries out of the
D-cache, then invokes a library call to

Table 2. Summary of attack suite and attack results on Newcache.

Cache type Attack

Results

Set-associative (SA) cache Newcache

Data cache Prime-Probe attack against first-round Advanced

Encryption Standard (AES)

Attack succeeds (0.4209*) Attack is defeated (0.0032*)

Evict-Time attack against first-round AES Attack succeeds (0.8068*) Attack is defeated (0.0217*)

Instruction cache Prime-Probe attack against modular

exponentiation

Attack succeeds (90.2%†) Attack is defeated (48.1%†)

...

*Pearson correlation coefficient; †accuracy of classification.

...

SEPTEMBER/OCTOBER 2016 11

encrypt one AES block with random plain-
text and measures the encryption time. If the
attack can succeed, the average encryption
time over 220 trials will be higher for certain

plaintext values (due to cache misses), thus
revealing certain key bits. This is true for the
eight-way SA cache (see Figure 3a), but there
is not a significantly higher average time for
Newcache (see Figure 3b).

We can also quantify a design’s vulnerabil-
ity to Evict-Time attacks by correlating the
attacker’s measurements with the expected
ground truth values (“1” for points with sig-
nificantly higher average encryption time,
“0” for others), as shown in Table 2.

Prime-Probe Attack on L1 I-Cache
Performing Prime-Probe attacks on the
I-cache is trickier than on the D-cache. To
prime or probe one cache set for a W-way SA
cache, the attacker must execute W jmp S
instructions, which jump to the next jmp S
instruction, except for the last block, which
has a return instruction. (S is the size, in bytes,
of one way of the cache.) The attacker jumps
to the first jmp S instruction from the main
program, and the W memory blocks contain-
ing jmp S instructions will be fetched into the
I-cache set, one by one, before returning to
the main program.

We use a Prime-Probe attack against the
modular exponentiation algorithm in lib-
gcrypt v1.5.3. Modular exponentiation is the
main computation in many public-key algo-
rithms, such as RSA and ElGamal. It can be
implemented as a square-and-multiply algo-
rithm that scans the exponent bits from left to
right. For each bit, the algorithm performs a
square operation and a modular reduce opera-
tion. If the exponent bit is 1, it performs an
extra multiply operation and modular reduce
operation. The sequence of operations exe-
cuted by the algorithm can leak information
about the exponent, which is the private key
used in public-key ciphers.

For each Prime-Probe trial, the attacker
gets a cache footprint, which is a vector of tim-
ings, one timing per cache set (or cache line,
for Newcache). The footprint can be classified
as one of the square, multiply, or reduce oper-
ations using a multilabel support vector
machine (SVM) classifier. Figure 4 shows the
classification matrices (also called confusion
matrices) for the attack, for the set-associative
cache, and for Newcache. The diagonal entries
of each 3 � 3 matrix are the correct classifica-
tions. The classification accuracy is 90.2

Value of plaintext byte
0(a)

(b)

50 100 150 200 250 300

t a
vg

0

0.2

0.4

0.6

Value of plaintext byte
0 50 100 150 200 250 300

0

0.2

0.4

0.6

t a
vg

Figure 3. Evict-Time attack results for (a) eight-way SA cache and

(b) Newcache. A significantly higher average encryption time for certain

plaintext byte values indicates that the attack succeeded.

Cache sets
0 20 40 60

V
al

ue
 o

f p
la

in
te

xt
 b

yt
e

0

50

100

150

200

250

Index of cache line
0 20 40 60

V
al

ue
 o

f p
la

in
te

xt
 b

yt
e

0

50

100

150

200

250

(a) (b)

Figure 2. Data cache heat map (average probe times) for (a) eight-way set-

associative (SA) cache and (b) Newcache. The bright straight line indicates

that the attack succeeded.

..

SECURITY

..

12 IEEE MICRO

percent for the SA cache, which indicates that
the three operations can be easily distin-
guished. In contrast, the classification accuracy
for Newcache is only 48.1 percent, which
means it would be extremely difficult for fur-
ther offline analysis to extract key bits
correctly.7

In addition to contention-based cache
side-channel attacks, there are also reuse-based
attacks,14 such as cache collision attacks.8

Although Newcache cannot defeat these
attacks, it is about one order of magnitude
harder to attack than the conventional SA
cache. We can easily enhance Newcache to
defeat reuse-based attacks by modifying the
D-cache’s cache controller to use a random fill
fetch policy, as proposed by Fangfei Liu and
Ruby Lee.14

System Performance
We completed a thorough performance evalua-
tion on smartphone and cloud computing
benchmarks using the gem5 simulator in full-
system mode. For the smartphone benchmarks,
we used four benchmark suites: Bbench,
0xBench, CoreMark, and Mibench. For
cloud computing, we used six of the most com-
mon cloud computing workloads: web
server (apache), database server
(mysql), mail server (bhm), file
server (smbd), streaming server
(ffserver), and application server
(tomcat). We ran the server benchmarks in
gem5 dual-system mode, simulating both the
client and server.

We found that smartphone benchmarks
show no performance impact when using
Newcache versus the SA cache, so we show

results for cloud server benchmarks only
and compare them with the SPEC2006
benchmarks typically used in computer
architecture conferences. Table 3 gives the
baseline simulator configuration, which is
the same as for our security evaluations dis-
cussed earlier.

Newcache Used as D-Cache
We compare the performance of the baseline
configuration in Table 3 with one where the
D-cache is replaced with Newcache. Figures
5a and 5b show the D-cache miss rate and
overall performance, in instructions per cycle
(IPC), normalized to the baseline eight-way
SA cache, respectively, for different numbers
of extra index bits k in Newcache.

Server benchmarks. The random replacement
of Newcache (for example, web server or
database server) could increase the D-
cache miss rate, because some frequently
used data could be randomly evicted. How-
ever, Newcache could also decrease the D-
cache miss rate for other benchmarks, such as
the file server and application
server, because it changes the conflicting
sets of memory lines that map to the same
cache line. On average, the miss rate
decreases slightly with an increasing k. New-
cache’s impact on the IPC is negligible. On
average, the overall performance is degraded
by less than 1 percent for different values of k
(from 3 to 6).

SPEC benchmarks. The SPEC benchmarks
have larger variations for the D-cache miss
rate than the server benchmarks, and some of
the benchmarks (such as mcf, astar, and

92 (2%) 148 (4%) 3,760 (94%)

Accuracy = 90.2%
(a)

3,479 (87%) 189 (5%) 332 (8%)

375 (9%) 3,587 (90%) 38 (1%)

Square

Square

Multiply

Multiply

Reduce

Reduce

1,570 (39%) 1,545 (39%) 885 (22%)

1,484 (37%) 1,869 (47%) 647 (16%)

799 (20%) 874 (21%) 2,327 (58%)

Accuracy = 48.1%
(b)

Square Multiply Reduce

Square

Multiply

Reduce

Figure 4. SVM classification matrix for (a) SA cache and (b) Newcache. The matrix entries are the number of times SVM

classified a pattern as the operation in the column label when it was actually the operation in the row label. The diagonal

entries are correct classifications. The number in parenthesis represents the percentage (probability) of that classification,

with the three entries in a row summing to 100%. The accuracy of SVM classification is also listed.

...

SEPTEMBER/OCTOBER 2016 13

libquantum) are memory-intensive. New-
cache can significantly reduce the miss rate
for some SPEC benchmarks, such as astar
and povray, which could improve the IPC
by about 5 percent. The largest performance
degradation is within 3 percent for hmmer.
On average, the overall performance actually
improves slightly, by 0.5 percent, for different
values of k (from 3 to 6).

Newcache Used as I-Cache
We next replaced only the I-cache with
Newcache (see Table 3). Figures 6a and 6b
show the I-cache miss rate and IPC, normal-
ized to the baseline four-way SA I-cache,
respectively.

Server benchmarks. Server benchmarks have
relatively high I-cache miss rates, due to their
large instruction working sets. On average,
Newcache induces about a 3 percent higher
I-cache miss rate than the four-way SA cache.
Increasing k decreases the average miss rate
slightly. We notice that for some workloads
(for example, mail server, streaming
server, and application server),
Newcache as the I-cache has no penalty. The
impact to the overall performance in terms of
IPC is very small. For k > 3, no workloads
cause IPC degradation larger than 2 percent.

SPEC benchmarks. Generally, SPEC bench-
marks have a much lower I-cache miss rate
(except for gcc), so the impact on overall
performance is small. The IPC variations are
all within 0.5 percent, except for povray,
which can significantly reduce the already-
low I-cache miss rate and improve the IPC
by 3 percent when k > 3.

Recommendations
To summarize, Newcache with k ¼ 4 extra
index bits, for both the D-cache and the
I-cache, can achieve performance equivalent
to conventional SA caches of the same size.

For efficient cache coherency manage-
ment, we suggest using a directory-based
cache coherence protocol, or inclusive caches,
where snooping at the L1 cache is not
required. These kinds of cache subsystems
are also the most common today.

Test Chip Design
We designed a test chip to establish the feasi-
bility of Newcache’s physical design using a
65-nm CMOS process. The test chip has a
32-Kbyte Newcache and a 32-Kbyte eight-
way SA cache on the same chip for direct com-
parison. Figure 7 shows the die microphoto-
graph. We used circuit-level optimizations,
such as a hierarchical NAND-type CAM,
which detects a match instead of a mismatch

Table 3. Baseline simulator configurations

Parameter Value

L1 data cache 8-way SA, 32 Kbytes, 4 cycles

L1 instruction cache 4-way SA, 32 Kbytes, 4 cycles

L2 cache 8-way SA, 256 Kbytes, 10 cycles

L3 cache (last-level cache) 16-way SA, 2 Mbytes, 35 cycles

Cache line size 64 bytes

Memory size, latency 2 Gbytes, 200 cycles

0

web

data
bas

e
mail file

str
ea

ming

ap
plic

ati
on

av
g_s

er
ve

r

bzip
2

gcc mcf
as

tar

pov
ra

y

h2
64

re
f

lib
qua

ntu
m

hm
mer

av
g_S

PEC

0.05
0.10
0.15
0.20
0.25
0.30
0.35

8-way SA Newcache k = 3 Newcache k = 4

Newcache k = 5 Newcache k = 6

D
at

a
ca

ch
e

m
is

s
ra

te

90
92
94
96
98
100
102
104
106

N
or

m
al

iz
ed

 IP
C

(%
)

8-way SA Newcache k = 3 Newcache k = 4

Newcache k = 5 Newcache k = 6

web

data
bas

e
mail file

str
ea

ming

ap
plic

ati
on

av
g_s

er
ve

r

bzip
2

gcc mcf
as

tar

pov
ra

y

h2
64

re
f

lib
qua

ntu
m

hm
mer

av
g_S

PEC

(a)

(b)

Figure 5. Performance of Newcache as the data cache. (a) D-cache miss

rate (lower is better). (b) Normalized instructions per cycle (higher is better).

..

SECURITY

..

14 IEEE MICRO

and consumes much less power than a conven-
tional NOR-type CAM. The eight-way SA
cache accesses the tag and data array serially, so
eight tags are read out in parallel but only one
word (64 bits) of data is read out from the
data array to conserve power. There is a small
area overhead of 10 percent for the cache
(which implies a negligible overall processor
core overhead of less than 1 percent). The
power overhead was about 20 percent for the
test chip we measured, where the SA cache
was optimized for lower power, as described
earlier. If the SA cache was optimized for
higher performance instead, where the eight
tags and eight data are read out in parallel, the
SA cache would incur higher power, and
Newcache would have a lower power over-
head. The security and peformance benefits of
Newcache also suggest that new designs for
lower-power CAMs should be further
explored for caches. Importantly, Newcache’s
access latency was limited by the data array
common to both caches but not by the CAM.

We adopted a CAM-based design for the
dynamic memory-to-cache mapping for
Newcache when used as L1 caches, because
of the sensitivity to access latency for L1
caches for performance reasons. For L2 and
larger caches, which have longer access times,
a CAM-based implementation is not neces-
sary, and future work can explore other
implementations of a Newcache-like archi-
tecture for dynamic mapping.

O ur security evaluation shows that
Newcache can completely defeat all

known contention-based attacks for both the
D-cache and the I-cache, and our test chip
design shows that Newcache is feasible and
comparable to an eight-way SA cache of the
same size. Furthermore, our extensive per-
formance evaluation shows that Newcache
performs as well as conventional set-
associative caches for contemporary comput-
ing environments such as cloud computing,
desktops, and smartphones—sometimes even
slightly better. Hence, our recommendation
to processor vendors is to replace current SA
L1 I-caches and D-caches with secure caches
like Newcache. This will prevent critical infor-
mation leakage through cache side-channel
attacks without impacting performance, even
for legacy software. MICRO

0

0.05

0.10

0.15

0.20

0.25

0.30

web

data
bas

e
mail file

str
ea

ming

ap
plic

ati
on

av
g_s

er
ve

r

bzip
2

gcc mcf
as

tar

pov
ra

y

h2
64

re
f

lib
qua

ntu
m

hm
mer

av
g_S

PECIn
st

ru
ct

io
n

ca
ch

e
m

is
s

ra
te

4-way SA Newcache k = 3 Newcache k = 4

Newcache k = 5 Newcache k = 6

90
92
94
96
98

100
102
104
106

web

data
bas

e
mail file

str
ea

ming

ap
plic

ati
on

av
g_s

er
ve

r

bzip
2

gcc mcf
as

tar

pov
ra

y

h2
64

re
f

lib
qua

ntu
m

hm
mer

av
g_S

PEC

N
or

m
al

iz
ed

 IP
C

 (
%

)
4-way SA Newcache k = 3 Newcache k = 4

Newcache k = 5 Newcache k = 6

(a)

(b)

Figure 6. Performance of Newcache as the instruction cache. (a) I-cache

miss rate (lower is better). (b) Normalized instructions per cycle (higher is

better).

32-Kbyte Newcache

Built-in self test

32-Kbyte 8-way SA

Built-in self test

65 nm bulk CMOS
2.0 mm x 2.2 mm die

Figure 7. Die microphotograph of

Newcache test chip. The majority of area

and power is dominated by the SRAMs,

which is common to both Newcache and

the SA cache, each of 32 Kbytes with its

own built-in self-test circuitry.

...

SEPTEMBER/OCTOBER 2016 15

Acknowledgments
This work was supported by Dept. of
Homeland Security/Air Force Research Lab-
oratory grant FA8750-12-2-0295 and the
attack metrics by National Science Founda-
tion STARSS award 1526493.

..
References
1. E. Brickell et al., Software Mitigations to

Hedge AES against Cache-Based Software

Side Channel Vulnerabilities, report 2006/

52, IACR Cryptology, 2006.

2. Z. Wang and R.B. Lee, “New Cache

Designs for Thwarting Software Cache-

Based Side Channel Attacks,” Proc. 34th

Ann. Int’l Symp. Computer Architecture,

2007, pp. 494–505.

3. L. Domnitser et al., “Non-monopolizable

Caches: Low-Complexity Mitigation of

Cache Side Channel Attacks,” ACM Trans.

Architecture and Code Optimization, vol. 8,

no. 4, 2012, article 35.

4. D. Page, Partitioned Cache Architecture as

a Side-Channel Defence Mechanism, report

2005/280, IACR, 2005.

5. Z. Wang and R.B. Lee, “A Novel Cache

Architecture with Enhanced Performance

and Security,” Proc. 41st IEEE/ACM Int’l

Symp. Microarchitecture, 2008, pp. 83–93.

6. D.A. Osvik, A. Shamir, and E. Tromer,

“Cache Attacks and Countermeasures: The

Case of AES,” Proc. Cryptographers’ Track

at RSA Conf. Topics in Cryptology, 2006,

pp. 1–20.

7. Y. Zhang et al., “Cross-VM Side Channels

and Their Use to Extract Private Keys,”

Proc. ACM Conf. Computer and Communi-

cations Security, 2012, pp. 305–316.

8. J. Bonneau and I. Mironov, “Cache-Collision

Timing Attacks against AES,” Proc. 8th Int’l

Conf. Cryptographic Hardware and

Embedded Systems, 2006, pp. 201–215.

9. F. Liu et al., “Last-Level Cache Side-Channel

Attacks Are Practical,” Proc. IEEE Symp.

Security and Privacy, 2015, pp. 605–622.

10. F. Liu and R.B. Lee, “Security Testing of a

Secure Cache Design,” Proc. 2nd Work-

shop Hardware and Architectural Support

for Security and Privacy, 2013, article 3.

11. F. Liu, H. Wu, and R.B. Lee, “Can Random-

ized Mapping Secure Instruction Caches

from Side-Channel Attacks?” Proc. 4th

Workshop Hardware and Architectural Sup-

port for Security and Privacy, 2015, article 4.

12. B. Erbagci et al., “A 32kB Secure Cache

Memory with Dynamic Replacement Map-

ping in 65nm Bulk CMOS,” Proc. IEEE

Asian Solid-State Circuits Conf., 2015;

doi:10.1109/ASSCC.2015.7387501.

13. N. Binkert et al., “The gem5 Simulator,”

SIGARCH Computer Architecture News,

vol. 39, no. 2, 2011, pp. 1–7.

14. F. Liu and R.B. Lee, “Random Fill Cache

Architecture,” Proc. 47th Ann. IEEE/ACM

Int’l Symp. Microarchitecture, 2014, pp.

203–215.

Fangfei Liu is a PhD candidate in the
Department of Electrical Engineering at
Princeton University. She received an MS in
electrical engineering from Shanghai Jiao
Tong University. Contact her at fangfeil@
princeton.edu.

Hao Wu is a CPU performance validation
architect at Soft Machines. He received an
MS in electrical engineering from Princeton
University, where he completed the work for
this article. Contact him at haow.princeton@
gmail.com.

Kenneth Mai is a principal systems scientist
in the Electrical and Computer Engineering
Department at Carnegie Mellon University.
He received a PhD in electrical engineering
from Stanford University. He is a member of
IEEE. Contact him at kenmai@andrew.
cmu.edu.

Ruby B. Lee is the Forest G. Hamrick Profes-
sor in the Department of Electrical Engineer-
ing at Princeton University. She received a
PhD in electrical engineering from Stanford
University. She is a Fellow of IEEE and ACM
and is on the advisory board of IEEE Micro.
Contact her at rblee@princeton.edu.

..

SECURITY

..

16 IEEE MICRO

