
Ruby B. Lee and A. Murat Fiskiran, "PLX: A Fully Subword-Parallel Instruction Set Architecture for Fast Scalable Multimedia Processing," Proceedings
of the 2002 IEEE International Conference on Multimedia and Expo (ICME 2002), pp. 117-120, August 2002.

PLX: A FULLY SUBWORD-PARALLEL INSTRUCTION SET ARCHITECTURE
FOR FAST SCALABLE MULTIMEDIA PROCESSING

Ruby B. Lee and A. Murat Fiskiran

Princeton Architecture Laboratory for Multimedia and Security (PALMS)*

Princeton University
{rblee,fiskiran}@princeton.edu

* PALMS research is supported in part by HP, NSF and Kodak.

ABSTRACT

PLX is a small, fully subword-parallel instruction set
architecture designed for very fast multimedia
processing, especially in constrained environments
requiring low cost and power such as handheld
multimedia information appliances. In PLX, we select
the most useful multimedia instructions added previously
to microprocessors. We also introduce a few novel
features: a new definition of predication requiring very
few bits in each predicated instruction, and datapath
scalability from 32-bit to 128-bit words, which allows
different degrees of subword parallelism without any
changes to the ISA. Performance results from basic
multimedia kernels testify to PLX’s superiority for
multimedia processing.

1. INTRODUCTION

Multimedia processing involves compute-intensive
operations and constitutes an increasingly greater
fraction of the general-purpose processor’s workload [1].
To achieve better multimedia performance, instruction
set architectures (ISAs) have added multimedia
extensions [2,3], such as MAX-2 [4] to PA-RISC
processors [5], MMX [6] to IA-32 processors, and a
superset of these to IA-64 [7] processors. These ISAs
exploit the following two properties of multimedia
applications:

• Huge amounts of data parallelism
• Extensive use of low-precision data

These two properties are exploited well by the use of
subword parallelism, also called microSIMD parallelism
[2,8]. In a subword-parallel architecture, the processor’s
datapath is partitioned into multiple lower-precision
segments called the subwords, and the instructions
operate in parallel on these subwords (Figure 1).

PLX is a fully subword-parallel ISA designed for very
fast media processing [9]. We introduce the PLX
architecture along with some examples that highlight
some of its features, such as low-cost multiplication, a
new definition of predication, and datapath scalability.

Figure 1: Parallel add instruction operating
simultaneously on multiple subwords

Figure 2: PLX processor with three functional
units: ALU, Shift and Permute Unit (SPU), and an
optional pipelined multiplier

2. PLX INSTRUCTIONS

PLX instructions can be classified into three major

groups based on the functional unit responsible for their
execution: ALU instructions, shift and permute
instructions, and multiply instructions (Figure 2). All
instructions are 32-bits long and subword sizes are 1, 2, 4
and 8 bytes.

Basic ALU instructions shown in Table 1 include
parallel add and subtract (with modular or saturation
arithmetic), parallel shift and add, parallel average,
parallel maximum and minimum, logical and compare
instructions (Section 3).

Rs1:

Rs2:

Rd:

Register

File

ALU SPU M1

M2

M3

2.1. Low-cost multiplication

Pshift [left|right] add instructions allow

low-cost integer and fixed-point multiplication in the
ALU without requiring a separate multiplier. Since the
shift amounts are limited to 1, 2 or 3 bits to the right or
left, they are realized by a small pre-shifter added to the
ALU [8,10]. Because multiplications can be performed
efficiently and inexpensively in the ALU, a separate
integer multiplier becomes optional for very low-cost
and low-power PLX implementations (as indicated by
the dotted lines in Figure 2).

Table 1: ALU instructions*

Instruction Description
padd iii bac +=

padd w/ saturation ,iii bac +=],[HLci ∈

psubtract iii bac −=

psubtract w/ saturation ,iii bac −=],[HLci ∈

paverage),(iii baaveragec =

psubtract average),(iii baaveragec −=

pshift left add iii bnac +<<=)(

pshift right add iii bnac +>>=)(

pmaximum),max(iii bac =

pminimum),min(iii bac =

logical operations (and,or,
not,xor,and complement)

 c = a op b , where op is one
of the logical operations

cmp (compare) Pd1 = rel(a,b); Pd2 = !Pd1

cmp.pw1 (compare parallel
 write one)

see Section 3

* Variables ci, ai and bi, correspond to the subwords in the
destination and source registers respectively. (If no subscript is
given, the entire register is used as source or destination.) L and
H represent the low and high saturation limits when saturation
arithmetic is used. If used, n represents an immediate value
given in the instruction word. The function rel(a,b) compares a
and b for a relation specified in the instruction word. If this
relation is true, rel(a,b) returns 1, otherwise it returns 0. Pd1 and
Pd2 are destination predicate registers in compare instructions.

2.2. Full multiplication

While they are low-cost and effective, the pshift

[left|right] instructions only allow multiplication
by constants. Therefore PLX also includes instructions to
multiply two registers (Table 2). These instructions are
handled by a separate optional multiplier unit.

Pmultiply shift right right-shifts the
products before writing the lower-order half of the bits to
the destination register. This allows selection of the
desired 16-bits of each product. Pmultiply odd and
pmultiply even only multiply the odd or even
indexed subwords of the source registers, producing full-
length products.

2.3. Shift and permute instructions

PLX has parallel shift and subword permute

instructions, implemented in the shift and permute unit
(Table 3). The parallel shift instructions shift the
subwords in a register to the left or to the right by any
amount specified either in an immediate field or in a
register. The shift right pair instruction, first
introduced in PA-RISC processors, is very useful for bit
fields spanning two registers [5,7]. This instruction
concatenates two source registers and shifts this value to
the right. The lower half of the shifted value is placed in
the destination register. Rotation is achieved when both
source operands are the same register.

Table 2: Multiply instructions
Instruction Description

pmultiply shift right lowerhalfiii nbac])*[(>>=

pmultiply even iiii bacc 22122 *],[=+

pmultiply odd 1212122 *],[+++ = iiii bacc

Table 3: Shift and permute instructions

Instruction Description
pshift left nac ii <<=

pshift left variable bac ii <<=

pshift right nac ii >>=

pshift right variable bac ii >>=

shift right pair []lowerhalfnbac >>=],[

mix left/right see text
permute see text
permute variable see text

Subword permutation instructions are used to reorder

the subwords in a register. Mix instructions described in
[2-4,7] are very useful for performing matrix
transposition of subwords packed into multiple registers.
The permute instruction works on 1-byte and 2-byte
subwords, and performs a small set of carefully selected
permutation primitives [11,12]. The permute
variable instruction uses a second source register to
specify the permutation control bits, and hence can
perform any arbitrary permutation of 1-byte or 2-byte
subwords, with or without repetitions of any subword.

3. PREDICATION

All PLX instructions are predicated. PLX has 128 1-

bit predicate registers organized into 16 predicate register
sets of 8 predicate registers each. At any given time, only
one of these predicate register sets is active and the
registers in this set are numbered P0 through P7. The
active predicate register set is changed in software.

The predicate registers P1 to P7 can be set and cleared
using compare instructions (P0 is always true). This

definition of predication requires only three bits in each
instruction to specify a predicate register compared to the
seven bits that would be required if the 128 predicate
registers were addressed directly.

Two types of compare instructions set the predicate
registers in PLX. They are illustrated below, comparing
two registers, R1 and R2, for equality.

Type 1: cmp.rel (rel field specifies the relation to be tested.)
Example: cmp.eq R1,R2,P1,P2
Operation: If R1==R2, P1 � 1 and P2 � 0, else P1 � 0 and P2 � 1.

Type 2: cmp.pw1.rel (pw1 stands for parallel write one.)
Example: cmp.pw1.eq R1,R2,P1,P2
Operation: If R1==R2, P1 � 1 and P2 � 0, else P1 and P2 are
unchanged.

The first type of compare is useful for implementing

if-then-else statements without conditional branch
instructions. The second type differs from the first
because it writes the predicate registers only if the
relation specified in the rel field is true. This allows
multiple cmp.pw1.rel instructions to be executed in
the same cycle, targeting the same predicate registers, to
speedup complex conditional expressions. The values in
the predicate registers must be initialized before using
cmp.pw1.rel instructions.

PLX also has load, store and jump instructions, as
needed for a stand-alone processor.

4. DATAPATH SCALABILITY

PLX can be implemented as a 32-bit, 64-bit or 128-bit

architecture without any changes to the ISA. To allow
this, PLX instructions are designed to work for these
different word sizes. All subword sizes of 1, 2, 4 and 8
bytes are supported, up to the larger of the word size or 8
bytes: a 32-bit PLX does not support 8 byte subwords
and a 128-bit PLX does not support 16-byte subwords.

Compared to a 64-bit PLX, a 32-bit implementation
has a lower performance, but also a lower cost. On the
other hand, doubling the datapath width to 128 bits
effectively doubles the subword parallelism, but at a
lower cost compared to a superscalar implementation
with an equivalent degree of operation parallelism.

5. EXAMPLES AND PERFORMANCE

Performance of PLX is verified by simulating three
commonly used multimedia algorithms in four different
setups: 1) using a basic RISC-like 64-bit ISA without
subword parallelism or predication; 2) using 64-bit
MMX instructions; 3) using 64-bit PLX; and 4) using
128-bit PLX to demonstrate datapath scalability.

In all cases, the algorithms are hand-coded and
optimized in their respective assembly languages. To

emphasize the effects of ISA features, we keep the
microarchitecture as simple as possible by using a single-
issue pipeline and assuming a perfect memory system,
where all loads and stores take a single cycle. Execution
latencies are properly accounted for, with single-cycle
ALU and SPU instructions and three-cycle multiply
instructions. Whenever possible, instructions are
scheduled to eliminate pipeline stalls caused by data
dependencies.

The simulation software used is part of a
comprehensive ISA research toolbox developed under
the PLX project [9]. In addition to a cycle-accurate
customizable simulator, it includes an assembler and a
compiler as well as other auxiliary tools for workload
characterization and performance analysis.

Performance results are shown in Table 4, as
speedups of the second, third and fourth setups over the
first one.

5.1. Digital filtering

The most common DSP kernel is the digital filter.
Applications include frequency-domain alterations of
signals; low-pass, high-pass and band-pass filtering;
audio equalization, adaptive filtering and speech
compression. We simulate a 4-tap finite impulse
response (FIR) filter that uses fixed-point numbers for
both input data and coefficients. This algorithm benefits
most from subword-parallelism and the low-cost
multiplication that is offered by the pshift
[left|right] add instructions.

The 64-bit PLX is 4.48 times faster than the basic
ISA, and also 4.07 times faster than MMX. A 128-bit
PLX doubles the performance of a 64-bit PLX.

5.2. Discrete cosine transform

The Discrete Cosine Transform (DCT) and its inverse

(IDCT) are commonly used code kernels in image and
video compression such as JPEG, MPEG and H.261. We
run simulations for an 8x8 2-dimensional DCT using the
AAN [13] algorithm.

The most time critical operations in the IDCT
algorithm are matrix transposition and multiplication by
fractional constants. Using mix instructions, the
transposition of an 8x8 matrix of 16-bit IDCT
coefficients is achieved very efficiently. The average
number of parallel shift and add (and other) instructions
required per multiplication in AAN DCT is only 3.5.
Since four 16-bit multiplications are done in parallel in a
single-issue 64-bit PLX, this is more than one
multiplication per cycle, using just a single ALU (and no
multiplier). A superscalar implementation with multiple
ALUs can achieve even higher multiplication
performance using the parallel shift and add instructions.

5.3. Median filter

Median filter is an image-processing algorithm used

for noise reduction. Its most compute-intensive step is to
find the median of nine 8-bit pixels enclosed within a
3x3 box that is stepped across the whole image. To
illustrate the PLX compare instructions and predication
feature, we use a bubble-sort algorithm to sort the nine
pixels, and then take the center value in the sorted list as
the desired median.

We show how the evaluation of conditionals in the
sorting algorithm is accelerated with cmp.pw1
instructions. Eight pairs of registers are compared for
equality. Decisions are made based on whether the
equality holds for all the comparisons or not. Without
predication, these equality tests require at least eight
serial comparisons, interspersed with conditional jump
instructions. In PLX, the cmp.pw1.ne (compare,
parallel write one, not equal) instruction is used to
evaluate the comparisons in parallel as follows:

Optimized Comparison Subroutine in Median Filter
(R1-R8 are compared to R11-R18 respectively for equality.)

01. P0 cmp.ne R0,R0,P1,P0;; # Init P1 to 0
02. P0 cmp.pw1.ne R1,R11,P1,P0
03. P0 cmp.pw1.ne R2,R12,P1,P0
04. P0 cmp.pw1.ne R3,R13,P1,P0

...
09. P0 cmp.pw1.ne R8,R18,P1,P0;;
10. P1 jmp sometarget;;

The double semi-columns are used to separate

instruction groups that must be executed in different
cycles. The theoretical limit for the execution of this
sequence is three cycles. For a two-way superscalar
implementation, six cycles are required.

The median filter was further optimized by the use
of shift right pair, pmaximum and pminimum
instructions, for an overall speedup of about 10x over the
non-subword-parallel implementation. A pair of
pmaximum and pminimum instructions can sort 8 bytes
in parallel on a 64-bit PLX, and 16 bytes in parallel on a
128-bit PLX.

Table 4: Speedups over the basic ISA

 MMX (64 bits) 64-bit PLX 128-bit PLX
FIR Filter 1.10 4.48 9.83
AAN DCT 1.97 3.10 6.17
Median Filter 6.50 10.66 19.53

In each case, 64-bit PLX is much faster than MMX
(which has the same degree of subword parallelism), and
128-bit PLX provides a further 2x speedup.

6. CONCLUSIONS

The PLX architecture is capable of delivering very

high multimedia performance at only a fraction of the

complexity of existing microprocessors with multimedia
extensions. The 32-bit instructions of PLX result in a
higher code density compared to architectures with
longer instructions such as IA-64. In addition PLX has a
novel definition of predication that allows all instructions
to be predicated with 128 predicate registers, while only
consuming three bits in each instruction. We plan to
investigate more thoroughly the usefulness of predication
in reducing branch penalties in media programs. Another
novel property of PLX is datapath scalability, which
allows processor implementations with different datapath
sizes using the same ISA. This gives extra flexibility in
balancing complexity versus cost.

Our results show that very high multimedia
performance can be achieved with a simple and low-cost
ISA like PLX. This makes PLX especially suitable for
constrained environments such as wireless multimedia
information appliances, where high multimedia
performance and low cost and power are required.

7. REFERENCES

[1] R.B. Lee and M. Smith, “Media Processing: A New Design
Target,” IEEE Micro, Vol. 16, No. 4, pp. 6-9, Aug. 1996.
[2] R.B. Lee and A.M. Fiskiran, “Multimedia Instructions in
Microprocessors for Native Signal Processing,” Programmable
Digital Signal Processors: Architecture, Programming, and
Applications, edited by Yu Hen Hu, pp. 91-145, Marcel Dekker
Inc., ISBN 0-8247-0647-1, 2002.
[3] R.B. Lee, “Multimedia Extensions for General-Purpose
Processors,” Proc. IEEE SIPS 97, pp. 9-23, Nov. 1997.
[4] R.B. Lee, “Subword Parallelism with MAX-2,” IEEE
Micro, Vol. 16, No. 4, pp. 51-59, Aug. 1996.
[5] G. Kane, “PA-RISC 2.0 Architecture,” Prentice Hall, ISBN
0-13-182734-0, 1996.
[6] A. Peleg and U. Weiser, “MMX Technology Extension to
the Intel Architecture,” IEEE Micro, Vol. 16, No. 4, pp. 42-50,
Aug. 1996.
[7] Intel, “IA-64 Architecture Software Developer’s Manual,
Vol. 3: ISA Reference,” Rev. 1.1, ID. 245319-002, Jul. 2000.
[8] R.B. Lee, “Accelerating Multimedia with Enhanced
Microprocessors,” IEEE Micro, Vol. 15, No. 2, pp. 22-32, Apr.
1995.
[9] R.B. Lee, et al., PLX Project at Princeton University,
http://palms.ee.princeton.edu/plx.
[10] Z. Luo and R.B. Lee, “Cost-Effective Multiplication with
Enhanced Adders for Multimedia Applications,” Proc. IEEE
International Symposium on Circuits and Systems, Vol. 1, pp.
651-654, May 28-31, 2000.
[11] R.B. Lee, A.M. Fiskiran and A. Bubshait, “Multimedia
Instructions in IA-64,” Proc. IEEE International Conference on
Multimedia and Expo, Aug. 22-25, 2001.
[12] R.B. Lee, “Subword Permutation Instructions for Two-
Dimensional Multimedia Processing in MicroSIMD
Architectures,” Proc. IEEE International Conference on
Application-specific Systems, Architectures and Processors, pp.
3-14, Jul. 10-12, 2000.
[13] Y. Arai, T. Agui and M. Nakajima, “A Fast DCT-SQ
Scheme for Images,” Trans. IEICE, E 71(11):1095, Nov. 1988.

